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Abstract: This paper studies three discretization methods to formulate discrete analogues of the
well-known continuous generalized Pareto distribution. The generalized Pareto distribution provides
a wide variety of probability spaces, which support threshold exceedances, and hence, it is suitable
for modeling many failure time issues. Bayesian inference is applied to estimate the discrete models
with different symmetric and asymmetric loss functions. The symmetric loss function being used is
the squared error loss function, while the two asymmetric loss functions are the linear exponential
and general entropy loss functions. A detailed simulation analysis was performed to compare
the performance of the Bayesian estimation using the proposed loss functions. In addition, the
applicability of the optimal discrete generalized Pareto distribution was compared with other discrete
distributions. The comparison was based on different goodness-of-fit criteria. The results of the study
reveal that the discretized generalized Pareto distribution is quite an attractive alternative to other
discrete competitive distributions.

Keywords: discretization methods; Bayesian estimation; symmetric and asymmetric loss functions;
prior distribution; simulation analysis; Monte Carlo Markov chain; goodness-of-fit measures
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1. Introduction

The amount of data available in nature has become larger, demanding new statistical
distributions to modify the description of each phenomenon or experiment under study.
Most lifetime data are continuous, while they are discrete in observation, which leads to a
need for appropriate methods to discretize the continuous distribution to better fit these
data. Almost always, the observed values are in fact discrete because they are restrained to
only a finite number of decimal places and cannot really create all points in a continuum. In
some other cases, because of the accuracy of the measuring apparatus or the need to save
space, continuous variables are measured by the frequencies of separate class intervals,
whose union creates the whole range of random variables, and multinomial law is used to
model this situation. Therefore, considering them as discrete values is more appropriate.
Even for a continuous life experiment, records in an interval of time result in a discrete
model, which seems more suitable than a continuous model.

Recently, many discrete distributions have been identified, particularly in reliability
and survival analyses. For a special description and the role of discrete distributions, one
may refer to [1–8], among others. Hence, many authors have conducted much work to
originate and develop discrete reliability theory from various points of view.

The characterization of continuous random variables can be performed either by
their probability density function (pdf), cumulative distribution function (CDF), moments,
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hazard rate functions, or others. Usually, creating a discrete analogue from a continuous
distribution is based on the principle of preserving one or more characteristic properties of
the continuous one. Consequently, different ways to discretize a continuous distribution
appear in the literature, depending on the property the researcher aims to preserve (see, for
example, [9,10]). In [11], the author provided an extensive survey of different discretization
methods that preserve different functions.

There are many useful tips for creating discrete random variables from continuous
ones: through discretization, data can actually be summarized and simplified; in addition,
they can also become easier to understand, use, and explain for researchers (see [12]). Other
tests appearing in the literature are suitable for both discrete and continuous distributions
(see, for example, [13,14]).

Therefore, it is desirable to study a suitable discrete distribution created from the
underlying continuous models.

In the present paper, we discretize the continuous generalized Pareto distribution
(GPD) using three different discretization methods. Almost all authors have used one
discretization method, which depends on the survival function. In [6,7], discrete normal
and discrete Rayleigh distributions were introduced, respectively, and the author used
the survival discretization approach. Using the same approach, discrete Burr type II was
studied in [15]. Additionally, [16] introduced the discrete additive Weibull distribution (see
also [17–23]). However, there remains a need to improve discrete models and generate new
ones for the sake of describing and fitting the huge amount of data that appear and spread
evenly throughout humans’ daily lives. Further, [24] discussed the discrete odd Perks-G
class of distributions. Reference [25] introduced a new novel discrete distribution with
an application to COVID-19, and [26] obtained a discrete Weibull Marshall–Olkin family
of distributions.

We aim to discretize the GPD since it has extensive applications and can model
many real-life distributions. Recently, many authors have studied the continuous GPD;
for example, one may refer to [27], in which the authors discussed baseline methods for
parameter estimation. The authors of [28] performed statistical inference of the dynamic
conditional GPD with weather and air quality factors, and [29] discussed outlier-robust
truncated maximum likelihood parameter estimators of the GPD. Reference [30] introduced
risk analysis using the GPD.

The originality of this work stems from the fact that no earlier research has been
conducted in this area using the suggested discretization method and compared it with
other methods from a Bayesian point of view. Symmetric and asymmetric loss functions
are performed in the Bayesian estimation method using different parameter values. There-
fore, the main objective of this paper is to illustrate the efficiency and performance of
discrete generalized Pareto distributions (DGPDs) for modeling different COVID-19 daily
death cases.

The rest of this paper is organized as follows: Section 2 contains the model descrip-
tion and the discretization methods. Section 3 presents Bayesian inference for unknown
parameters, and both point and interval estimations are performed for the three DGPDs. In
Section 4, the simulation study is described. Real data examples are provided in Section 5.
Finally, conclusions are provided in Section 6.

2. Model Description and Discretization Methods

The generalized Pareto distribution is a continuous distribution with two parameters.
However, its continuous distributional form is limited in characterizing data of discrete
forms. Discretizing the GPD, therefore, produces a consequent distribution that accommo-
dates count data while preserving the vital tail-modeling feature of the GPD. In this paper,
we perform three discrete versions of the two-parameter GPD and use these counterparts
to model real-life data.
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The probability density function (pdf) of the continuous GPD is given as

f (x; θ, λ) =

 1
λ

(
1 + θ

λ x
)−(1+ 1

θ )
θ 6= 0

1
λ e−x/λ θ = 0

, (1)

and the cumulative distribution function (CDF) is given by

F(x; θ, λ) =

1−
(

1 + θ
λ x
)− 1

θ
θ 6= 0

1− e−x/λ θ = 0
, (2)

where λ > 0 is the scale parameter, and θ is the shape parameter, −∞ < θ < ∞. The domain
of the random variable x depends on the value of θ, particularly whether it is positive or
negative; hence, we have two cases: first, when θ > 0, x > 0, and when θ < 0, the support
of x will be bounded, i.e., 0 < x < − λ

θ . For θ > 0, the GPD is the well-known Pareto
distribution. When θ → 0 , the GPD reduces to the exponential distribution, as shown in
Equation (1).

The GPD has a mean of (λ/(1 − θ)) and a variance λ2

(1−θ)2(1−2θ)
, provided θ < 0.5.

The survival function S(x; θ, λ) and the hazard rate function HR are given, respectively,
as follows:

S(x; θ, λ) =

(
1 +

θx
λ

)− 1
θ

, (3)

and

h(x; θ, λ) =
1
λ

(
1 +

θ

λ
x
)−1

. (4)

The three discretization methods are presented in the next subsections. The first
method aims to preserve the survival function, while the second method preserves the pdf,
and the third method preserves the hazard rate.

2.1. Survival Discretization Method

The probability mass function (pmf ) of a discrete distribution is defined by [6,7]
as follows:

P(X = k) = S(k)− S(k + 1), k = 0, 1, 2, . . . (5)

where S(x) is the survival function given by Equation (3). Hence, the pmf of the first
discrete generalized Pareto distribution (DGPD1) is

P(X = k) =
(

1 +
θk
λ

)− 1
θ

−
(

1 +
θ(k + 1)

λ

)− 1
θ

(6)

The CDF of the DGPD1 distribution in the survival discretization method can be
written as:

P(X < k) = F(k + 1) = 1−
(

1 +
θ(k + 1)

λ

)− 1
θ

(7)

2.2. Methodology II

In this method, the pmf of the discrete random variable is derived as an analogue of
the continuous random variable with pdf f (x) as

P(X = k) =
f (k)

∑∞
j=0 f (j)

, k = 0, 1, 2, . . . (8)
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For more details and examples of this method, one can refer to [11]. When applying
this method to the continuous GPD, we perceive a second discrete distribution, namely,
DGPD2. Accordingly, the pmf can be written as:

P(X = k) =

(
1 + θk

λ

)−( 1
θ +1)

(
θ
λ

)−( 1
θ +1)

ξ
(

1 + 1
θ , λ

θ

) , k = 0, 1, 2, . . . . (9)

The corresponding CDF is derived as

P(X < k) =
1(

θ
λ

)−( 1
θ +1)

ξ
(

1 + 1
θ , λ

θ

) ∑k
x=0

(
1 +

θx
λ

)−( 1
θ +1)

, (10)

where ξ(s, a) = ∑∞
ι=0(ι + a)−s represents the Hurwitz zeta function.

2.3. Methodology III (Hazard Rate)

This methodology preserves the hazard rate function. It is performed as a two-stage
method. In the first stage, the continuous random variable X with CDF F(x) defined
on [0, +∞) is used to construct a new continuous random variable X1 with the hazard
rate function hX1(x) = e−F(x), (x ≥ 0). For more details about this methodology, a good
reference is [11]. The survival function of the discrete analogue Y is given by

P(Y ≥ k) =
(
1− hX1(1)

)(
1− hX1(2)

)
. . .
(
1− hX1(k− 1)

)
, k = 1, 2, . . . , m. (11)

The corresponding pmf is then given by

P(Y = k) =


hX1(0), k = 0,(

1− hX1(1)
)(

1− hX1(2)
)

. . .
(
1− hX1(k− 1)

)
hX1(k), k = 1, 2, . . . , m

0, otherwise
(12)

Note that the range of Y is the value of m (m need not be finite) and is determined so
that it satisfies the condition 0 ≤ h (y) ≤ 1.

For the GPD model, the hazard rate function of X1 will be hX1(y) = e−1+(1+ θy
λ )
− 1

θ
;

hence, the above condition holds. The survival function in Equation (11) for the third
version of the discrete GP distribution (DGPD3) is

P(Y ≥ k) = ∏k−1
i=1 (1− e−1+(1+ θ∗i

λ )
− 1

θ
),

Therefore, the CDF is

P(Y < k) = 1−∏k−1
i=1 (1− e−1+(1+ θ∗i

λ )
− 1

θ
).

The corresponding pmf is then given by

P(Y = k) =


1, k = 0

e−1+(1+ θk
λ )
− 1

θ
k−1
∏
i=1

(1− e−1+(1+ θ∗i
λ )
− 1

θ
), k = 1, 2, . . . , m

(13)

In Figures 1–3, the pmfs of DGPD1, DGPD2, and DGPD3 are plotted, respectively,
for different parameter values. They possess a decreasing trend with different selected
parameter values.
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3. Parameter Estimation

In this section, we estimate the unknown parameters of the three versions of the DGPD
distribution using the Bayesian estimation method. Numerical techniques are utilized for
Bayesian calculations, such as the Monte Carlo Markov Chain (MCMC) technique.

In the Bayesian method, the parameters of the model are assumed to be random vari-
ables with a certain distribution called the prior distribution. Usually, the prior information
is not available; hence, we need to specify a suitable choice of the prior. In this work, we
decided to use a natural joint conjugate prior distribution for the parameters λ and θ, which
is known as the modified Lwin Prior; it is defined by assuming a gamma distribution for λ
and the Pareto (I) distribution for θ. Hence,

λ ∼ Gamma(a1, b1),

and
θ|λ ∼ Pareto(I)(λa2, b2),

where a1, a2, b1 and b2 are nonnegative hyperparameters of the assumed distributions. The
authors of [31] mentioned that it is more meaningful to express θ conditional on λ rather
than vice versa. Moreover, they strongly believed that it is more appropriate to consider
that the prior distributions for λ and θ are independent of each other.

Therefore, the prior distributions for λ and θ can be written as

π1(λ) =
b1

a1

Γ(a1)
λa1−1e−b1λ,

π2(θ|λ) =
λa2

b2

(
θ

b2

)−a2λ

.

Hence, the joint prior for λ and θ is

π(λ, θ) ∝λa1 e−b1λ

(
θ

b2

)−a2λ

. (14)

The joint posterior of λ and θ given the data is defined as

p(λ, θ/x) =
1
K

L(x/λ,θ)π(λ, θ),

where L(x/λ, θ) is the likelihood function of the DGPD, π(λ, θ) is the joint prior given by
Equation (14), and K =

s
L(x/λ, θ)π(λ, θ)dλdθ.

The estimation for the parameters of the DGPD can be performed using different
loss functions, such as (i) squared error (SE), (ii) LINEX, and (iii) general entropy (GE)
loss functions. The performance of the estimators using the said loss functions was in-
vestigated using a simulation study. The bias, the mean square error (MSE), and the
length of the credible interval were used as criteria for determining the superiority of the
respective estimates.

3.1. Loss Functions

The following loss functions are used for posterior estimation.

3.1.1. Squared Error (SE) Loss Function

Assuming the SE loss function, Bayesian estimation for the parameters λ and θ is
defined as the mean or expected value with respect to the joint posterior:

λ̂SE =
1
k

x
λL(x/λ, θ)π(λ, θ)dλdθ, (15)
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and
θ̂SE =

1
k

x
θL(x/λ, θ)π(λ, θ)dλdθ. (16)

3.1.2. LINEX Loss Function

With the LINEX loss function, Bayesian estimation for the parameters λ and θ are
formulated as

λ̂LIN = − 1
h ln[ 1

K
s

e−hλL(x/λ, θ)π(λ, θ)dλdθ]

θ̂LIN = − 1
h ln[ 1

K
s

e−hθ L(x/λ, θ)π(λ, θ)dλdθ] .
(17)

3.1.3. General Entropy (GE) Loss Functions

Using the GE loss function, Bayesian estimation for the parameters λ and θ is given by

λ̂GE =
(

1
k
s

λ−qL(x/λ, θ)π(λ, θ)dλdθ
)−1/q

,

θ̂GE =
(

1
k
s

θ−qL(x/λ, θ)π(λ, θ)dλdθ
)−1/q

.
(18)

3.2. Bayesian Estimation

For evaluating the above-expected values and double integration, numerical methods
are essential. We opted to use the Markov Chain Monte Carlo (MCMC) technique by using
the Gibbs sampling method and by formulating the suitable R code. For more details,
one may refer to [32]. Many authors have used Bayesian estimation for different lifetime
models with many real data applications (see, for example, [33–35]).

Since we implement three different discretization methods on the GP distribution, we
have to deal with three cases of Bayesian inference based on the different pmfs of DGPDs
that are written in Equations (6), (9), and (13).

3.2.1. Case 1

When applying the survival discretization method, we obtain DGPD1 with the pmf
given by Equation 6. The joint posterior density is

p1(λ, θ/x) =
1
K ∏n

i=1

[(
1 +

θxi
λ

)− 1
θ

−
(

1 +
θxi + 1

λ

)− 1
θ

]
λa1 e−b1λ

(
θ

b2

)−a2λ

(19)

= Gλ(a1 + 1, b1)Q(λ, θ),

where Q(λ, θ) = 1
K ∏n

i=1

[(
1 + θxi

λ

)− 1
θ −

(
1 + θxi+1

λ

)− 1
θ

](
θ
b2

)−a2λ
, and G (.,.) represents

the gamma distribution.
Bayesian estimation for the parameters λ and θ using the SE loss function is performed

using Equations (15) and (16) with the posterior density Equation (19), respectively:

λ̂SE =
1
k

x
∏n

i=1

[(
1 +

θxi
λ

)− 1
θ

−
(

1 +
θxi + 1

λ

)− 1
θ

]
λa1+1e−b1λ

(
θ

b2

)−a2λ

dλdθ,

θ̂SE =
1
k

x
∏n

i=1

[(
1 +

θxi
λ

)− 1
θ

−
(

1 +
θxi + 1

λ

)− 1
θ

]
θ−a2λ+1λa1 e−b1λ(b2)

a2λdλdθ.

For the LINEX loss function, Bayesian estimation is obtained by using Equation (17)
and the posterior density Equation (18):

λ̂LIN = −1
h

ln[
1
K

x
∏n

i=1

[(
1 +

θxi
λ

)− 1
θ

−
(

1 +
θxi + 1

λ

)− 1
θ

]
λa1 e−(b1+h)λ

(
θ

b2

)−a2λ

dλdθ

]
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θ̂LIN = −1
h

ln[
1
K

x n

∏
i=1

[(
1 +

θxi
λ

)− 1
θ

−
(

1 +
θxi + 1

λ

)− 1
θ

]
λa1 e−b1λ−hθ

(
θ

b2

)−a2λ

dλdθ]

Bayesian estimation for the parameters λ and λ using the GE loss function is obtained
using Equations (18) and (19) and is given by

λ̂GE =

(
1
k

x n

∏
i=1

[(
1 +

θxi
λ

)− 1
θ

−
(

1 +
θxi + 1

λ

)− 1
θ

]
λa1−qe−b1λ

(
θ

b2

)−a2λ

dλdθ

)−1/q

3.2.2. Case 2

For the second form of discrete GPD, namely, DGPD2, with the pmf given by Equation (9),
the joint posterior density is given by

p2(λ, θ/x) =
1
K ∏n

i=1


(

1 + θxi
λ

)−( 1
θ +1)

θ−a2λ+( 1
θ +1)

b−a2λ
2 ξ

(
1 + 1

θ , λ
θ

)
λa1−( 1

θ +1)e−b1λ (20)

= Gλ

(
a1 −

1
θ

, b1

)
R(λ, θ),

where R(λ, θ)= 1
K ∏n

i=1

 (1+ θxi
λ

)−( 1
θ
+1)

θ
−a2λ+( 1

θ
+1)

b−a2λ
2 ξ(1+ 1

θ , λ
θ )

.

Bayesian estimation for the parameters λ and θ using the SE loss function is given as

λ̂SE =
1
k

x
∏n

i=1


(

1 + θxi
λ

)−( 1
θ +1)

θ−a2λ+( 1
θ +1)

b−a2λ
2 ξ

(
1 + 1

θ , λ
θ

)
 λa1− 1

θ e−b1λdλdθ,

θ̂SE =
1
k

x
∏n

i=1


(

1 + θxi
λ

)−( 1
θ +1)

θ−a2λ+( 1
θ +2)

b−a2λ
2 ξ

(
1 + 1

θ , λ
θ

)
 λa1−( 1

θ +1)e−b1λdλdθ.

For the LINEX loss function, Bayesian estimation is found by the following integrations:

λ̂LIN = −1
h

ln[
1
K

x
∏n

i=1


(

1 + θxi
λ

)−( 1
θ +1)

θ−a2λ+( 1
θ +1)

b−a2λ
2 ξ

(
1 + 1

θ , λ
θ

)
 λa1−( 1

θ +1)e−(b1+h)λdλdθ

,

θ̂LIN = −1
h

ln[
1
K

x n

∏
i=1


(

1 + θxi
λ

)−( 1
θ +1)

θ−a2λ+( 1
θ +1)

b−a2λ
2 ξ

(
1 + 1

θ , λ
θ

)
 λa1−( 1

θ +1)e−b1λ−hθdλdθ]

For the GE loss function, Bayesian estimation for parameters λ and θ is given by

λ̂GE =

1
k

x n

∏
i=1


(

1 + θxi
λ

)−( 1
θ +1)

θ−a2λ+( 1
θ +1)

b−a2λ
2 ξ

(
1 + 1

θ , λ
θ

)
 λa1−( 1

θ +1)−qe−b1λdλdθ


−1/q
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θ̂GE =

1
k

x n

∏
i=1


(

1 + θxi
λ

)−( 1
θ +1)

θ−a2λ+( 1
θ +1)−q

b−a2λ
2 ξ

(
1 + 1

θ , λ
θ

)
 λa1−( 1

θ +1)e−b1λdλdθ


−1/q

3.2.3. Case 3

The third discretization method of GP yields DGPD3 with the pmf described by
Equation (13), and the joint posterior density is

p3(λ, θ/x) =
1
k ∏n

j=1 e−1+(1+
θxj
λ )
− 1

θ
[
∏

xj−1
i=1 (1− e−1+(1+ θ∗i

λ )
− 1

θ
)

]
λa1 e−b1λ

(
θ

b2

)−a2λ

=
1
k

Gλ(a1 + 1, b1)S(λ, θ),

where S(λ, θ) =
n
∏
j=1

e−1+(1+
θxj
λ )
− 1

θ
[

∏
xj−1
i=1 (1− e−1+(1+ θ∗i

λ )
− 1

θ
)

](
θ
b2

)−a2λ
.

Bayesian estimation for the parameters λ and θ using the SE loss function is given as

λ̂SE =
1
k

x
∏n

j=1 e−1+(1+
θxj
λ )
− 1

θ
[
∏

xj−1
i=1 (1− e−1+(1+ θ∗i

λ )
− 1

θ
)

]
λa1+1e−b1λ

(
θ

b2

)−a2λ

dλdθ, (21)

θ̂SE =
1
k

x
∏n

j=1 e−1+(1+
θxj
λ )
− 1

θ
[
∏

xj−1
i=1 (1− e−1+(1+ θ∗i

λ )
− 1

θ
)

]
b2λa1 e−b1λ

(
θ

b2

)−a2λ+1
dλdθ.

For the LINEX loss function, Bayesian estimation is found by the following integrations:

λ̂LIN = −1
h

ln[
1
K

x
∏n

j=1 e−1+(1+
θxj
λ )
− 1

θ
[
∏

xj−1
i=1 (1− e−1+(1+ θ∗i

λ )
− 1

θ
)

]
λa1 e−(b1+h)λ

(
θ

b2

)−a2λ

dλdθ],

θ̂LIN = −1
h

ln[
1
K

x
∏n

j=1 e−1+(1+
θxj
λ )
− 1

θ
[
∏

xj−1
i=1 (1− e−1+(1+ θ∗i

λ )
− 1

θ
)

]
λa1 e−b1λ−hθ

(
θ

b2

)−a2λ

dλdθ].

For the GE loss function, Bayesian estimation for parameters λ and θ is given by

λ̂GE =

(
1
k

x
∏n

j=1 e−1+(1+
θxj
λ )
− 1

θ
[
∏

xj−1
i=1 (1− e−1+(1+ θ∗i

λ )
− 1

θ
)

]
λa1−qe−b1λ

(
θ

b2

)−a2λ

dλdθ

)−1/q

,

θ̂GE =

(
1
k

x
∏n

j=1 e−1+(1+
θxj
λ )
− 1

θ
[
∏

xj−1
i=1 (1− e−1+(1+ θ∗i

λ )
− 1

θ
)

]
b2
−qλa1 e−b1λ

(
θ

b2

)−a2λ−q
dλdθ

)−1/q

.

4. Simulation Analysis

To evaluate the performance of the three discrete versions of the continuous GPD, we
aim to compare the point estimation of the unknown parameters with respect to bias and
MSE. Additionally, a comparison is conducted using the different loss functions described
in Section 3. Some interesting conclusions and results are reported at the end of this section.

Random samples were generated with 10,000 iterations using the suitable R code; the
different selected values of the parameters λ and θ were {0.5, 3}, and different sample sizes
n = {20,50,100} were considered.

The simulation results of point and interval estimations for the three discrete versions
of the GPD are reported in Tables 1–3. Figures 4–6 illustrate the MSE for the simulation
results in Tables 1–3. The x-axis represents sample sizes, which take values of {20,50,100}.
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For a fixed sample size, six different parameter values are presented. Therefore, lambda
increases from 0.5 to 3 (the first six points) when theta is 0.5, and lambda increases from
0.5 to 3 (the last six points) when theta is 3.

Table 1. Bayesian inference for DGPD1 (bias, MSE, and length of CI) for different values of parameters.

SE LINEX (−1.5) LINEX (1.5) GE (−1.5) GE (1.5)

θ λ n Bias MSE L.CCI Bias MSE L.CCI Bias MSE L.CCI Bias MSE L.CCI Bias MSE L.CCI

0.5

0.5

20
θ 0.0247 0.0887 0.5335 0.0601 0.0194 0.4371 −0.0066 0.0167 0.4630 0.0450 0.0820 0.6443 −0.0870 0.0245 0.4930

λ 0.2946 0.1284 0.7412 0.3597 0.1870 0.8541 0.2368 0.0866 0.6692 0.3190 0.1458 0.7567 0.1631 0.0586 0.6918

50
θ −0.0130 0.0155 0.4394 0.0034 0.0167 0.4526 −0.0289 0.0150 0.4294 −0.0020 0.0155 0.4396 −0.0750 0.0215 0.4590

λ 0.2666 0.0952 0.6031 0.2901 0.1120 0.6405 0.2429 0.0796 0.5616 0.2764 0.1014 0.6067 0.2132 0.0465 0.5528

100
θ −0.0084 0.0112 0.4062 −0.0025 0.0112 0.4070 −0.0144 0.0113 0.4062 −0.0041 0.0110 0.4023 −0.0316 0.0136 0.4360

λ 0.1827 0.0424 0.3745 0.1923 0.0470 0.3914 0.1729 0.0381 0.3569 0.1872 0.0444 0.3781 0.1586 0.0326 0.3407

3

20
θ 0.0353 0.0150 0.4610 0.0680 0.0162 0.4588 0.0064 0.0178 0.4533 0.0537 0.0126 0.4755 −0.0642 0.0159 0.4910

λ 0.0704 0.0555 0.8743 0.1615 0.0852 0.9396 −0.0176 0.0469 0.8464 0.0803 0.0574 0.8773 0.0206 0.0500 0.8675

50
θ 0.0009 0.0116 0.4267 0.0080 0.0120 0.4324 −0.0062 0.0114 0.4220 0.0057 0.0116 0.4274 −0.0248 0.0131 0.4528

λ 0.0192 0.0276 0.6226 0.0301 0.0287 0.6274 0.0084 0.0269 0.6189 0.0204 0.0277 0.6217 0.0132 0.0274 0.6259

100
θ −0.0080 0.0079 0.3509 −0.0042 0.0079 0.3511 −0.0117 0.0079 0.3508 −0.0054 0.0078 0.3480 −0.0214 0.0087 0.3554

λ 0.0230 0.0143 0.4554 0.0285 0.0148 0.4601 0.0175 0.0139 0.4513 0.0236 0.0143 0.4552 0.0200 0.0141 0.4526

3

0.5

20
θ 0.0121 0.0751 0.3389 0.0512 0.0107 0.3506 −0.0595 0.0779 0.3306 0.0164 0.0766 0.3387 −0.0935 0.0674 0.3351

λ 0.2173 0.1645 0.8449 0.4302 0.1759 1.0064 0.2412 0.0961 0.7222 0.2527 0.1297 0.8780 0.2331 0.0514 0.7289

50
θ −0.0037 0.0098 0.3079 0.0348 0.0098 0.3335 −0.0405 0.0087 0.2944 0.0005 0.0076 0.3612 −0.0245 0.0080 0.2998

λ 0.2719 0.1411 0.5948 0.3410 0.1623 0.6569 0.2115 0.0745 0.5119 0.2499 0.1272 0.6932 0.1251 0.0499 0.5576

100
θ −0.0321 0.0097 0.3052 0.0018 0.0092 0.3060 −0.0655 0.0061 0.2343 −0.0284 0.0069 0.3509 −0.0151 0.0061 0.2534

λ 0.1317 0.1330 0.5668 0.3723 0.1380 0.6074 0.2068 0.0598 0.5096 0.2338 0.0148 0.6809 0.1021 0.0371 0.4620

3

20
θ 0.0039 0.0705 0.3629 0.0430 0.0096 0.4776 −0.0339 0.0090 0.3625 0.0082 0.0071 0.3986 −0.0175 0.0724 0.4327

λ 0.0440 0.0524 0.8789 0.1402 0.0791 0.9525 −0.0487 0.0489 0.8914 0.0545 0.0538 0.8868 −0.0091 0.0496 0.8982

50
θ 0.0038 0.0575 0.3339 0.0421 0.0075 0.3526 −0.0333 0.0083 0.3348 0.0080 0.0070 0.3368 −0.0172 0.0167 0.3383

λ 0.0443 0.0522 0.8095 0.1370 0.0773 0.8957 −0.0451 0.0409 0.8679 0.0544 0.0535 0.7960 −0.0069 0.0497 0.8517

100
θ −0.0152 0.0170 0.3049 −0.0080 0.0069 0.3489 −0.0224 0.0073 0.4917 −0.0144 0.0069 0.3049 −0.0192 0.0072 0.2491

λ 0.0112 0.0233 0.5707 0.0197 0.0240 0.5772 0.0028 0.0228 0.5787 0.0122 0.0234 0.5702 0.0065 0.0231 0.5744

Table 2. Bayesian inference for DGPD2 (bias, MSE, and length of CI) for different values of parameters.

SE LINEX (−1.5) LINEX (1.5) GE (−1.5) GE (1.5)

θ λ n Bias MSE L.CCI Bias MSE L.CCI Bias MSE L.CCI Bias MSE L.CCI Bias MSE L.CCI

0.5

0.5

20
θ −0.1145 0.0668 0.7749 −0.1110 0.0652 0.7740 −0.1177 0.0681 0.7734 −0.1086 0.0630 0.7578 −0.1349 0.0793 0.7870

λ −0.4889 0.2491 0.0185 −0.4856 0.2459 0.0247 −0.4911 0.2412 0.0142 −0.4684 0.2296 0.0421 −0.4993 0.2493 0.0039

50
θ −0.0972 0.0525 0.7273 −0.0951 0.0518 0.7252 −0.0991 0.0531 0.7284 −0.0945 0.0511 0.7180 −0.1075 0.0574 0.7516

λ −0.4901 0.2402 0.0177 −0.4878 0.2380 0.0204 −0.4916 0.2417 0.0157 −0.4732 0.2240 0.0291 −0.4980 0.2480 0.0092

100
θ −0.0522 0.0186 0.4950 −0.0515 0.0184 0.4941 −0.0529 0.0187 0.4963 −0.0516 0.0184 0.4927 −0.0550 0.0192 0.4994

λ −0.4747 0.2254 0.0255 −0.4696 0.2206 0.0293 −0.4782 0.2288 0.0243 −0.4505 0.2031 0.0335 −0.4919 0.2420 0.0193

3

20
θ 0.1424 0.0378 0.4501 0.1906 0.0604 0.5041 0.1000 0.0234 0.4023 0.1647 0.0459 0.4579 0.0206 0.0143 0.4190

λ −0.0366 0.0591 0.8932 0.0534 0.0699 0.9843 −0.1246 0.0681 0.8693 −0.0265 0.0588 0.9016 −0.0881 0.0641 0.8811

50
θ 0.0248 0.0145 0.4295 0.0328 0.0154 0.4373 0.0167 0.0138 0.4241 0.0300 0.0147 0.4286 −0.0031 0.0137 0.4048

λ −0.0371 0.0312 0.6886 −0.0256 0.0300 0.6766 −0.0487 0.0327 0.6941 −0.0358 0.0310 0.6877 −0.0437 0.0323 0.6971

100
θ 0.0068 0.0077 0.3405 0.0104 0.0078 0.3384 0.0032 0.0075 0.3367 0.0092 0.0077 0.3346 −0.0056 0.0079 0.3475

λ −0.0257 0.0113 0.4118 −0.0213 0.0109 0.4001 −0.0302 0.0117 0.4212 −0.0252 0.0113 0.4104 −0.0283 0.0116 0.4019
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Table 2. Cont.

SE LINEX (−1.5) LINEX (1.5) GE (−1.5) GE (1.5)

θ λ n Bias MSE L.CCI Bias MSE L.CCI Bias MSE L.CCI Bias MSE L.CCI Bias MSE L.CCI

3

0.5

20
θ 0.0315 0.0547 0.9001 0.0348 0.0549 0.9038 0.0282 0.0543 0.8926 0.0318 0.0547 0.9004 0.0297 0.0546 0.8976

λ −0.4798 0.2309 0.0569 −0.4715 0.2240 0.0845 −0.4850 0.2355 0.0409 −0.4503 0.2046 0.1119 −0.4998 0.2498 0.0006

50
θ 0.0211 0.0169 0.4877 0.0234 0.0171 0.4883 0.0187 0.0166 0.4842 0.0214 0.0169 0.4879 0.0198 0.0168 0.4854

λ −0.3902 0.1568 0.2287 −0.3676 0.1406 0.2581 −0.4090 0.1710 0.1935 −0.3388 0.1195 0.2469 −0.4981 0.2490 0.0003

100
θ 0.0183 0.0085 0.3602 0.0199 0.0086 0.3628 0.0166 0.0083 0.3570 0.0184 0.0085 0.3605 0.0173 0.0084 0.3587

λ −0.3494 0.1252 0.1901 −0.3246 0.1087 0.2058 −0.3715 0.1407 0.1709 −0.3002 0.0929 0.1893 −0.4992 0.2049 0.0002

3

20
θ 0.0932 0.0255 0.6319 0.1333 0.0251 0.3280 0.0544 0.0195 0.5306 0.0975 0.0263 0.5319 0.0719 0.0219 0.5632

λ 0.0225 0.0618 0.9381 0.1175 0.0857 1.0463 −0.0703 0.0608 0.8915 0.0330 0.0629 0.9506 −0.0309 0.0606 0.8925

50
θ 0.0546 0.0203 0.5208 0.0640 0.0219 0.5218 0.0453 0.0189 0.5090 0.0556 0.0204 0.5209 0.0495 0.0196 0.5177

λ −0.0173 0.0281 0.6513 −0.0059 0.0272 0.6505 −0.0287 0.0293 0.6510 −0.0160 0.0279 0.6504 −0.0238 0.0290 0.6459

100
θ 0.0451 0.0115 0.3816 0.0495 0.0123 0.3872 0.0406 0.0107 0.3728 0.0455 0.0116 0.3835 0.0426 0.0111 0.3791

λ −0.0042 0.0115 0.4137 0.0000 0.0115 0.4164 −0.0083 0.0117 0.4146 −0.0037 0.0115 0.4138 −0.0065 0.0116 0.4162

Table 3. Bayesian inference for DGPD3 (bias, MSE, and length of CI) for different values of parameters.

SE LINEX (−1.5) LINEX (1.5) GE (−1.5) GE (1.5)

θ λ n Bias MSE L.CCI Bias MSE L.CCI Bias MSE L.CCI Bias MSE L.CCI Bias MSE L.CCI

0.5

0.5

20
θ 0.0231 0.0552 0.9405 0.0248 0.0552 0.9396 0.0214 0.0550 0.9399 0.0236 0.0552 0.9397 0.0208 0.0552 0.9422

λ −0.4908 0.2409 0.0134 −0.4879 0.2381 0.0189 −0.4927 0.2428 0.0097 −0.4710 0.2219 0.0349 −0.4998 0.2498 0.0005

50
θ 0.0067 0.0134 0.4749 0.0075 0.0135 0.4757 0.0058 0.0133 0.4719 0.0069 0.0134 0.4750 0.0055 0.0133 0.4718

λ −0.4505 0.2032 0.0495 −0.4374 0.1916 0.0645 −0.4603 0.2120 0.0397 −0.4064 0.1655 0.0713 −0.4999 0.2499 0.0002

100
θ 0.0291 0.0124 0.4307 0.0303 0.0134 0.4333 0.0028 0.0131 0.4255 0.0295 0.0130 0.4312 0.0274 0.0131 0.4246

λ −0.4204 0.1771 0.0642 −0.4030 0.1628 0.0796 −0.4342 0.1887 0.0521 −0.3742 0.1405 0.0841 −0.4946 0.2446 0.0097

3

20
θ 0.0783 0.1698 1.3450 0.1181 0.2003 1.3980 0.0418 0.1425 1.2318 0.0989 0.1747 1.3478 −0.0302 0.1534 1.2360

λ −0.5967 0.4528 1.0853 −0.4890 0.3254 0.9966 −0.6941 0.5849 1.1111 −0.5818 0.4329 1.0580 −0.6704 0.5575 1.1327

50
θ −0.0389 0.0829 0.9246 −0.0219 0.0866 0.9413 −0.0558 0.0793 0.8868 −0.0247 0.0803 0.9205 −0.1120 0.1012 0.9059

λ −0.2242 0.0906 0.7755 −0.1974 0.0726 0.6992 −0.2507 0.1108 0.8376 −0.2207 0.0881 0.7653 −0.2414 0.1040 0.8219

100
θ −0.0457 0.0799 0.8656 −0.0290 0.0828 0.9041 −0.0622 0.0770 0.8300 −0.0314 0.0769 0.8707 −0.1192 0.0999 0.8511

λ −0.2203 0.0876 0.7755 −0.1938 0.0700 0.6992 −0.2466 0.1073 0.8376 −0.2169 0.0851 0.7653 −0.2373 0.1007 0.8219

3

0.5

20
θ −0.0119 0.0524 0.8664 −0.0101 0.0523 0.8657 −0.0137 0.0524 0.8661 −0.0117 0.0524 0.8664 −0.0129 0.0525 0.8665

λ −0.4911 0.2411 0.0129 −0.4884 0.2385 0.0180 −0.4929 0.2429 0.0099 −0.4717 0.2226 0.0330 −0.4998 0.2498 0.0005

50
θ 0.0029 0.0112 0.4081 0.0036 0.0112 0.4077 0.0022 0.0111 0.4081 0.0030 0.0112 0.4080 0.0025 0.0112 0.4082

λ −0.4495 0.2023 0.0525 −0.4360 0.1905 0.0672 −0.4596 0.2113 0.0404 −0.4048 0.1643 0.0736 −0.4999 0.2499 0.0002

100
θ 0.0034 0.0049 0.2857 0.0040 0.0049 0.2853 0.0029 0.0049 0.2860 0.0035 0.0049 0.2857 0.0031 0.0049 0.2859

λ −0.4238 0.1799 0.0538 −0.4064 0.1654 0.0653 −0.4375 0.1916 0.0439 −0.3757 0.1415 0.0652 −0.4986 0.2486 0.0026

3

20
θ −0.0261 0.0370 0.6937 0.0126 0.0297 0.6419 −0.0640 0.0320 0.6453 −0.0218 0.0317 0.5972 −0.0478 0.0386 0.6255

λ −0.6123 0.4187 0.7591 −0.5002 0.3003 0.8630 −0.7168 0.5547 0.7219 −0.5969 0.4002 0.7670 −0.6900 0.5200 0.7443

50
θ −0.0277 0.0274 0.5896 −0.0182 0.0268 0.5730 −0.0372 0.0282 0.6052 −0.0267 0.0273 0.5874 −0.0331 0.0280 0.6017

λ −0.2226 0.0826 0.7089 −0.2005 0.0687 0.6596 −0.2449 0.0978 0.7456 −0.2198 0.0807 0.7030 −0.2368 0.0925 0.7363

100
θ −0.0252 0.0270 0.5209 −0.0159 0.0264 0.5730 −0.0345 0.0277 0.6052 −0.0242 0.0269 0.5874 −0.0305 0.0276 0.6017

λ −0.2207 0.0816 0.6709 −0.1990 0.0680 0.6596 −0.2423 0.0965 0.7456 −0.2179 0.0798 0.7030 −0.2344 0.0913 0.7363
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Figure 4. MSE of Bayesian inference for DGPD1.
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Figure 5. MSE of Bayesian inference for DGPD2.
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Figure 6. MSE of Bayesian inference for DGPD3.

The main simulation analysis points are as follows:

• It can be observed that the estimated values of the model parameters converge to their
true values when increasing the sample size. This can be observed since the MSE and
biases decrease as the sample size increases, which shows that the proposed estimators
are consistent in nature.

• For a small sample size, the LINEX loss function provides the lowest values of MSE
and bias when estimating θ, while the GE loss function provides the lowest values of
MSE and bias when estimating λ.

• For a large sample size, the LINEX loss function provides the lowest values of MSE
and bias when estimating both parameters λ and θ.
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• In almost all cases, the LINEX and GE loss functions produce minimum bias and
MSE values, and this is true for different sample sizes. Hence, LINEX and GE are
recommended over SE in this study.

• For the credible CI, it is noted that the shortest interval length is obtained when using
the LINEX loss function.

• The SE loss function has some advantages over other loss functions under some
conditions; for example, when λ = θ = 3 and for a small sample size (n = 20), the bias
and MSE attain their minimum values when estimating θ.

• For a fixed value of λ, the bias decreases when the shape parameter θ increases.
Similarly, for a fixed value of θ, the bias decreases when λ increases.

• The length of the credible interval decreases when the sample size increases, and this
is true for all loss functions under study.

When comparing the performance of the three DGPD analogues, we observe the following:

• For almost all small-size cases, the first discrete analogue DGPD1 has the least bias
and lowest MSE for different parameter values.

• For a large sample size, it is observed that the MSE attains its minimum values when
using the second analogue, DGPD2.

• The advantage of using the third analogue, DGPD3, appears when finding the credible
interval for the parameter θ using the GE loss function, where the interval length
reaches its minimum value.

5. Real Data Examples

In this section, some real data are utilized for the purpose of proving the efficiency of
the discrete analogues of the GP distribution.

Some goodness-of-fit measures are used, such as the chi-square test, Kolmogorov–
Smirnov (KS), Akaike information criterion (AIC), Bayesian information criterion (BIC),
corrected Akaike information criterion (CAIC), and Hannan–Quinn information criterion
(HQIC). As a model selection criterion, the researcher should choose the model with the
minimum value from the above-mentioned measures of fit.

Data set 1: The first set of data represents a 42-day COVID-19 data set from the
United States Virgin Islands, recorded between 19 April 2021 and 30 May 2021. These data
comprise daily new deaths. The data are as follows: 11, 2, 3, 10, 10, 4, 12, 0, 10, 3, 5, 12, 6, 9,
13, 4, 10, 26, 0, 32, 0, 0, 13, 10, 3, 20, 5, 6, 0, 3, 18, 2, 18, 14, 24, 7, 0, 30, 16, 26, 17, 23. The data
are available on the Worldometer website at [36].

Table 4 summarizes the values of goodness-of-fit measures when comparing the DGPD
with nine different discrete models, including those with one, two, and three parameters.
The competitive models are discrete Marshal Olkin inverted Topp–Leone (DMOITL), which
is introduced in [37], Discrete Burr (DB), which is introduced in [38], discrete Weibull
(DW), which is introduced in [39], discrete inverse Weibull (DIW), which is obtained in [40],
negative binomial NB in [41], Poisson, discrete generalized exponential (DGE), which
is introduced in [42], discrete alpha power inverse Lomax (DAPIL) in [19], and discrete
Lindley (DL) in [43].

Table 4 reveals the efficiency and suitability of DGPD1 for modeling COVID-19 cases
with respect to other discrete candidate models, while Figure 7 shows PMF and CDF for the
fitted DGPD1 of data set 1. The distribution that has smaller values of key statistics, such as
AIC, BIC, CAIC, HQIC, KS-test statistics, and Chi2-test statistics, is generally the one that
fits the data the best. These statistics show that among all fitted models, the DGPD1 has the
lowest KS-statistical, Chi2-statistical, AIC, BIC, CAIC, and HQIC values. The P-value of
KS-test statistics and Chi2-test statistics are compared at the 5% level of significance. For
data set 1, Table 5 elucidates the performance of Bayesian estimation, which is marginally
better than the well-known classical maximum likelihood estimation (MLE) with respect to
minimizing SE.
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Table 4. MLE estimates with goodness-of-fit test and different measures for different alternative models.

Estimates KS-Test Chi2-Test AIC CAIC BIC HQIC

DGP
θ −0.4052 0.1429 35.2645

284.7945 285.1021 288.2698 286.0683
λ 15.6070 0.3581 0.3164

DMOITL
θ 16.5627 0.1429 49.3821

297.3120 297.6197 300.7873 298.5859
λ 1.8434 0.3581 0.0255

DB
α 1.6460 0.3209 94.9821

325.9139 326.2216 329.3892 327.1877
θ 0.7401 0.0004 0.0000

DW
λ 0.9297 0.1429 38.7117

288.3261 288.6338 291.8014 289.6000
β 1.0837 0.3581 0.1925

DIW
λ 0.0642 0.2034 64.6983

315.3363 315.6439 318.8116 316.6101
β 0.7797 0.0618 0.0005

NB P 0.8015
0.3072 28307.5450

431.9343 432.0343 433.6720 432.5712
0.0007 0.0000

Poisson λ 10.4048
0.3277 677700.3282

482.2590 482.3590 483.9967 482.8960
0.0002 0.0000

DGE
α 0.9124 0.1595 38.3097

288.6633 288.9710 292.1386 289.9371
θ 0.9986 0.2359 0.2049

DAPL

α 48.5629 0.1804 44.5099

305.8090 306.4406 311.0221 307.7198θ 3.1137 0.1301 0.0697

λ 0.5752

DL θ 0.8437
0.1231 51.3964

289.7677 289.8677 291.5054 290.4046
0.5479 0.0163
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Table 5. MLE and Bayesian estimates with SE for data set 1.

MLE Bayesian

Estimates SE Estimates SE

θ −0.4052 0.1651 −0.2337 0.1209

λ 15.6070 3.3902 15.5417 0.8679
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To confirm this conclusion, we should check the convergence of the MCMC results.
Figure 7 shows the trace and convergence plots of MCMC for parameter estimates of
DGPD1. Figure 8 depicts the MCMC convergence of λ and θ. We confirm the results of
MCMC that the parameters of DGPD1 have convergence by the MH algorithm. Figure 9
shows the posterior density plots of MCMC for parameter estimates of DGPD1 for data set
1, which has a normal curve, as per the proposed distribution of the MH algorithm.
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Data set 2: The second set of data represents a 53-day COVID-19 data set from Italy,
recorded between 13 June 2021 and 4 August 2021. These data comprise daily new deaths.
The data are as follows: 52, 26, 36, 63, 52, 37, 35, 28, 17, 21, 31, 30, 10, 56, 40, 14, 28, 42, 24, 21,
28, 22, 12, 31, 24, 14, 13, 25, 12, 7, 13, 20, 23, 9, 11, 13, 3, 7, 10, 21, 15, 17, 5, 7, 22, 24, 15, 19, 18,
16,5, 20, 27. The data are available on the Worldometer website at [36].

Figure 10 shows PMF and CDF for the fitted DGP of data set 2. The SE values of the
parameters of DGP are shown in Table 6 to compare between MLE and Bayesian estimation
methods for data set 2. From the results of SE in Table 6, we note that Bayesian estimation
is a superior estimation method for data set 2 compared to MLE. Figure 11 shows that the
posterior density plots of MCMC for parameter estimates of DGPD1 for data set 2 have
a normal curve, as per the proposed distribution of the MH algorithm. To confirm this
conclusion, we should check the convergence of the MCMC results. Figure 12 shows the
trace and convergence plots of MCMC for parameter estimates of DGPD1 for data set 2.
In Figure 12, we confirm that the results of MCMC for the parameters of DGPD1 have
convergence by the MH algorithm.
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Table 6. MLE and Bayesian estimates with SE for data set 2.

MLE Bayesian

Estimates SE Estimates SE

θ −0.491911 0.103421 −0.41147 0.093889

λ 33.312755 5.266817 33.34727 0.886706
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6. Conclusions

In this study, we propose and study new discrete distributions that have a decreasing
probability mass function for all choices of their parameters. The new distribution is called
the discrete generalized Pareto distribution (DGPD). We used different discretization meth-
ods that introduced three discrete analogues of the DGPD. Point and interval estimations
through the Bayesian method were obtained, and a simulation analysis was performed
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using R code to assess the efficiency of the three discrete models. Some loss functions were
employed in this study, such as SE, LINEX, and GE loss functions. The tables presented in
the simulation section show some good properties for each analogue. To check the validity
of the DGPD, two real data examples were considered, which comprised COVID-19 death
cases in two different regions. Our proposed DGPD1 was compared with other discrete
candidates, and via goodness-of-fit tests, it was proved that DGPD1 fit the data very well.
The tables and figures illustrate the efficiency of the new model as well. For further study,
we suggest using other discretization methods and testing their performance and suitability
using real-life data.
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