
Citation: Yildiz, B.; Kut, A.;

Yilmaz, R. Hiding Sensitive Itemsets

Using Sibling Itemset Constraints.

Symmetry 2022, 14, 1453. https://

doi.org/10.3390/sym14071453

Academic Editors: Tzu Chuen Lu,

Wun-She Yap, Biswapati Jana and

Jeng-Shyang Pan

Received: 27 May 2022

Accepted: 11 July 2022

Published: 15 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Hiding Sensitive Itemsets Using Sibling Itemset Constraints
Baris Yildiz 1,* , Alp Kut 1 and Reyat Yilmaz 2

1 Department of Computer Engineering, Dokuz Eylul University, 35160 Izmir, Turkey; alp@cs.deu.edu.tr
2 Department of Electrical and Electronics Engineering, Dokuz Eylul University, 35160 Izmir, Turkey;

reyad.yilmaz@deu.edu.tr
* Correspondence: yildiz.baris@ogr.deu.edu.tr

Abstract: Data collection and processing progress made data mining a popular tool among orga-
nizations in the last decades. Sharing information between companies could make this tool more
beneficial for each party. However, there is a risk of sensitive knowledge disclosure. Shared data
should be modified in such a way that sensitive relationships would be hidden. Since the discovery
of frequent itemsets is one of the most effective data mining tools that firms use, privacy-preserving
techniques are necessary for continuing frequent itemset mining. There are two types of approaches
in the algorithmic nature: heuristic and exact. This paper presents an exact itemset hiding approach,
which uses constraints for a better solution in terms of side effects and minimum distortion on the
database. This distortion creates an asymmetric relation between the original and the sanitized
database. To lessen the side effects of itemset hiding, we introduced the sibling itemset concept that is
used for generating constraints. Additionally, our approach does not require frequent itemset mining
executed before the hiding process. This gives our approach an advantage in total running time. We
give an evaluation of our algorithm on some benchmark datasets. Our results show the effectiveness
of our hiding approach and elimination of prior mining of itemsets is time efficient.

Keywords: frequent itemset mining; privacy-preserving data mining; sensitive itemset hiding

1. Introduction

Data mining is a successful tool for extracting knowledge from large amounts of data.
It is efficiently applied to many fields, such as weather forecasting [1], biomedical [2],
medical diagnosis [3], marketing [4], security [5], and fraud detection [6]. On the other
hand, sensitive data used in data mining applications or sensitive knowledge gained from
these applications may cause privacy breaches directly or through linkable private data.
Privacy-preserving data mining (PPDM) arises from the need to continue performing data
mining efficiently but while preserving private data or sensitive knowledge. PPDM can be
divided into two as input privacy and output privacy. These are also known as data hiding
and knowledge hiding, respectively. Data hiding techniques aim to preserve individual’s
sensitive data private and modify data mining algorithms in such a way that sensitive data
cannot be inferred from the results of data mining algorithm. Achieving this requires some
special techniques, including anonymization, distortion, randomization, and encryption [7].
Knowledge hiding techniques aim to preserve sensitive rules or patterns as private and
modify original data in such a way that all sensitive patterns or rules stay unrevealed while
remaining ones can still be discovered [8,9].

Finding frequently co-occurring items using data mining is popular among companies
to discover valuable knowledge such as customer habits. Although this is very valuable
alone, companies may be willing to share data for collaboration. In this way, a better
understanding of discovered knowledge can be gained, which will help to make better
strategies. However, the risk of disclosing sensitive relationships may increase. For example,
let us consider a scenario in which a supermarket sells products of two rival companies. To
collaborate and increase profits, one company offers lower prices to the supermarket. The

Symmetry 2022, 14, 1453. https://doi.org/10.3390/sym14071453 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14071453
https://doi.org/10.3390/sym14071453
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-4636-9957
https://orcid.org/0000-0002-5781-334X
https://orcid.org/0000-0001-9108-0576
https://doi.org/10.3390/sym14071453
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14071453?type=check_update&version=2

Symmetry 2022, 14, 1453 2 of 13

collaborator company reveals relationships with its rival’s products through data mining.
Using this knowledge and campaigns, the collaborator company may monopolize certain
products, which can negatively affect the rival company and the supermarket [10]. For
similar situations, the stakeholders should sanitize the databases before sharing.

Approaches for privacy preservation in frequent itemset mining may be heuristic and
exact in their algorithmic nature [11]. These approaches aim to modify the database so
that sensitive itemsets or association rules are hidden, and non-sensitive ones are affected
minimally. Heuristic ones are faster, while exact ones have fewer side effects on non-
sensitive itemsets.

In this study, we propose an exact approach for frequent itemset hiding. Our moti-
vations are (i) to hide all sensitive itemsets, (ii) to minimize side effects on non-sensitive
itemsets, (iii) to use fewer constraints to lessen runtime, (iv) to bypass the need for prior
mining of all frequent itemsets, and (v) to use relaxation techniques where an exact so-
lution is not feasible. We have evaluated performance for different hiding scenarios on
different datasets observing effectiveness, the number of lost itemsets as a side effect, and
runtime efficiency.

This paper is organized as follows. Section 2 gives related work on frequent itemset
hiding research. Section 3 provides preliminary information for itemset mining and hiding.
Section 4 presents our itemset hiding approach with an example. In Section 5, the results of
experiments for our approach are given. Lastly, Section 6 concludes the paper.

2. Related Work

The optimal itemset hiding is NP-hard [12]. Therefore, researchers have focused
on approaches that rely on some assumptions, namely heuristic approaches. Based on
heuristics, the database is modified for sanitization [10,13,14]. These techniques are efficient,
scalable, and fast algorithms but may have too many lost itemsets as a side effect. Some
other studies extend heuristics and use border theory [15]. The notion behind these
approaches is that the itemsets on the border represent a boundary between the frequent
and the infrequent itemsets. Instead of considering non-sensitive frequent itemsets during
the hiding process, these approaches focus on preserving the border’s quality [16,17].
Another heuristic approach uses intersection lattice theory and distance concepts to lessen
the side effects of the hiding process [18]

Heuristic approaches are fast but may have side effects, and the number of non-
sensitive itemsets accidentally hidden may increase. To cope with this, exact approaches
deal with the problem as a Constraint Satisfaction Problem (CSP). These approaches present
better solutions in terms of the number of lost itemsets but have more complexity and may
have a longer runtime.

The first itemset hiding approach based on constraint programming is in [19]. In this
approach, first, constraints for integer programming are defined. Solving the problem
would lead us to identify the selection of transactions to be modified. Following this,
heuristically, items are selected from the transactions and altered. This process continues
until the selected transaction no longer supports any sensitive itemsets.

In [20], the authors defined distance measures for the sanitized database. Instead of
the number of transactions, they considered the number of modified items. Minimization of
this distance is accomplished by maximizing the occurrences of items of sensitive itemsets.
Using the positive and negative borders and the Apriori property, constraints are defined to
maximize itemset occurrences and minimize item modifications. The authors also propose
an approach for the degree reduction of constraints. When the constructed CSP is not
solvable, this approach removes one constraint and constructs the CSP again iteratively
until the CSP is solvable.

In [21], the authors revised the previous approach and gave a two-phase iterative
approach. Firstly, sensitive itemsets are hidden using the revised positive border of itemsets.
Secondly, transactions are modified to support accidentally hidden itemsets. For both
phases, CSP is used.

Symmetry 2022, 14, 1453 3 of 13

In [22], authors defined new constraints and relaxation procedures to provide an exact
solution. This approach observes all frequent itemsets to ensure they are kept frequent after
sanitization. On the other hand, the number of constraints and variables is extremely large,
resulting in an increased runtime.

There are also some techniques for itemset hiding based on evolutionary algorithms
in recent years. Since the solution is NP-hard, dealing with the problem as an optimization
problem is feasible. Based on the algorithm in [23], specified transactions were deleted
for sanitization. In [24], authors proposed particle swarm optimization-based algorithms,
which need fewer parameters to be set compared to previous algorithms. In [25], an
algorithm was proposed formulating an objective function that estimates the effect on
non-sensitive rules with recursive computation.

3. Preliminaries

Frequent itemset mining has been one of the most essential and popular data mining
techniques since it was first introduced in [26]. Some of the most popular algorithms are
Apriori [27], Eclat [28], and FP-Growth [29]. Originating from market basket data analysis,
it can be applied to many fields [6,30–32].

The basic concepts can be defined as follows. You can refer to Table 1 for used notations.
Let I = {i1,, i2, . . . , im} be a set of literals, called items. Let D = {T1,, T2, . . . , Tn} be a
dataset of transactions where each transaction Ti is a set of items in I such that Ti ⊆ I. Each
transaction can be defined in the binary form where dij = 1 if the j-th item of I appears in
the transaction ti. Considering all transactions, for ease of calculation, we have a binary
form of D as a matrix that is called bitmap notation. It is given in Equation (1). All items
have the same level of importance; therefore, they are symmetric.

dij =

{
1, i f Ij ∈ Ti
0, otherwise

(1)

Table 1. Notation descriptions.

Notation Description

D Dataset
∼ D Intermediate form of dataset
Ds Sanitized dataset
Ti i-th transaction of dataset
I Set of items
σ(X) Support count of itemset X in dataset
σs(X) Support count of itemset X in sanitized dataset
σmin Minimum support count threshold
S Set of sensitive itemsets
Ss Set of supersets of sensitive itemsets
F Set of frequent itemsets in dataset
Fn Set of non-sensitive frequent itemsets in dataset
Fs Set of frequent itemsets in sanitized dataset
dij Item of dataset in bitmap notation at i-th row j-th column
∼ dij Item of intermediate form of dataset in bitmap notation at i-th row j-th column
ds

ij Item of sanitized dataset in bitmap notation at i-th row j-th column
uij Binary variable of intermediate form of dataset in bitmap notation at i-th row j-th column
SI Set of sibling itemsets
SI(X) Set of sibling itemsets of itemset X
rY Binary variable of constraint defined for itemset Y

Let X be a set of items where X ⊆ I, which we called an itemset. If X ⊆ ti, then itemset
X is said to be supported by transaction ti. In other words, all items of the itemset appear
in the transaction. The number of transactions in D supporting itemset X is defined as the
support count of X. Benefiting from the symmetric nature of the items, the support count
of itemset X in bitmap notation can be calculated as given in Equation (2).

σ(X) =
n

∑
i=1

∏
Ij∈X

dij (2)

Symmetry 2022, 14, 1453 4 of 13

If the support count of itemset X is at least equal to the minimum support count,
i.e., σ(X) ≥ σmin, then itemset X is called frequent or large. The frequent itemset mining
problem is to find all frequent itemsets in the database for a predefined minimum support
threshold. We can define the set of all frequent itemsets F, as stated in Equation (3).

F = {X ⊆ I : σ(X) ≥ σmin} (3)

Some itemsets in F may contain sensitive information. Denoting these as S, referring
to sensitive itemsets, we need to modify database D into Ds in such a way that the frequent
itemsets of sanitized database Fs exclude sensitive itemsets. As known from the a priori
property, if an itemset is frequent, all of its subsets are also frequent. Rephrasing vice versa
for the itemset hiding concept, we can say that when an itemset is sensitive, its supersets
are also sensitive. Sensitive supersets Ss should also be hidden, which can be defined in
Equation (4).

Ss = {X ∈ F : ∀Y ∈ S, X ⊃ Y} (4)

The remaining frequent itemsets are non-sensitive frequent itemsets donated by Fn, as
given in Equation (5).

Fn = F− (S ∪ Ss) (5)

Then, we can define frequent the itemset hiding problem as modifying dataset D into
Ds in such a way that Fs—frequent itemsets of sanitized dataset Ds—excludes sensitive
frequent itemsets S whereas non-sensitive frequent itemsets Fn can still be mined from Ds

with the same minimum support threshold. D and Ds have an asymmetric relationship
since we delete some items to sanitize the dataset.

Fs = {X ⊆ I : X ∈ Fn and σs(X) ≥ σmin} (6)

For an ideal sensitive itemset hiding methodology, as many of the following goals should
be accomplished on the sanitized database with the same minimum support threshold.

1. Modification of the database is minimized, such that originality of the database is
kept as much as possible.

2. All sensitive itemsets are hidden and do not appear in the sanitized database.
3. Supersets of sensitive itemsets are also hidden and do not appear in the sanitized

database. We know from the Apriori property that this goal is also accomplished if
the first goal is achieved.

4. All non-sensitive frequent itemsets appear in the sanitized database. If an itemset
doesn’t appear in the new database, it is called a lost itemset.

5. No new itemset appears in the sanitized database. Such itemsets are called ghost
itemsets. However, approaches that delete items from the dataset naturally accomplish
this goal, and no new itemset can be mined.

Goal 1 can be rewritten as accomplishing min(D− Ds). Minimization of modification
for approaches use item deletion; we can say that number of items deleted should be
minimized. Using the bitmap notation given in Equation (1), let us define items in the
new dataset as ds

ij. Then, the minimization of the number of 1s converted to 0s is the
maximization of the 1s in Ds and can be defined as follows.

max ∑
i, j

ds
ij (7)

Goal 2 can be accomplished by keeping the support count of all sensitive itemsets
below the minimum support count in the new dataset.

∀X ∈ S

σs(X) < σmin
(8)

Goal 3 is accomplished if goal 2 is already satisfied.
Goal 4 can be accomplished by keeping the support count of all non-sensitive itemsets

at the same or above the minimum support count in the new dataset.

Symmetry 2022, 14, 1453 5 of 13

∀X ∈ Fn

σs(X) ≥ σmin
(9)

Goal 5 is satisfied if the approach uses item deletion for the sanitization method and
does not add any item to the new dataset. Some approaches use reconstruction methods
and may also add new transactions to the sanitized dataset. Such approaches may be
exposed to this side effect.

∀X ∈ Fs

X ∈ Fn (10)

The majority of sensitive itemset hiding approaches aim to hide sensitive itemsets
while minimizing modified items in the dataset and the number of lost itemsets. They are
focused on goals 1, 2, 3, and 4.

CSP Formulation

Preliminaries for sensitive itemset hiding are already given, and this process can be
formulated as a constraint satisfaction problem. By satisfying goal 1, we can say that
there are two kinds of constraints. The first type of constraint defined for accomplishing
goal 2 is defined in Inequation (8). Other constraints are determined to achieve goal 4
given in Inequation (9). The first type is compulsory since hiding sensitive itemsets is the
primary goal of frequent itemset hiding. The second type serves for the preservation of the
non-sensitive frequent itemsets.

For CSP formulation, we modified the dataset into an intermediate form. Consider X
as one of the sensitive itemsets. Then, all transactions supporting X should be modified
to an intermediate state for constraint formulation. The items of the sensitive itemset are
modified to temporary binary u variables. Using the bitmap notation, this modification is
given in the intermediate dataset ∼ D and can be defined as shown in Equation (11).

∀X ∈ S

∼ dij =

{
uij, i f X ⊆ Ti and Ij ∈ X
dij, otherwise

(11)

Since the items that may be modified in the sanitized dataset are u variables, the
optimal itemset hiding problem can be formulated as follows.

maximize

 ∑
uij∈U

uij


subject to

{
∀X ∈ S, σs(X) < σmin
∀Y ∈ Fn, σs(Y) ≥ σmin

(12)

4. Itemset Hiding Using Sibling Itemsets Constraints

Frequent itemset mining and CSP formulation preliminaries are given in the previous
section. Considering that all non-sensitive frequent itemsets will increase the number of
constraints, to lessen constraints, we introduce the sibling itemset concept. Sibling itemsets
SI of a frequent k-itemset X are generating itemsets of k + 1 candidate itemset. The idea
behind this concept is that hiding a k-itemset will also hide its k + 1 supersets but remain
non-sensitive subsets of these k + 1 supersets discoverable. This represents a local border.

∀X ∈ S,

SI(X) = {Y ∈ Fn : |Y− X| = 1 and Y ≡ X}
(13)

Using sibling itemsets instead of all non-sensitive frequent itemsets, CSP defined in
(12) can be defined as follows

Symmetry 2022, 14, 1453 6 of 13

maximize

 ∑
uij∈U

uij


subject to

{
∀X ∈ S, σs(X) < σmin
∀Y ∈ SI, σs(Y) ≥ σmin

(14)

Generation and determining support of sibling itemsets of a sensitive itemset is
conducted in the hiding process. In this way, the time consumption of prior itemset mining
is eliminated.

There are two types of constraints for our CSP: sensitive itemset constraints and sibling
itemset constraints. The first type ensures that sensitive itemsets are below the defined
minimum support threshold. Thus, all of these constraints must be satisfied. The second
type of constraint is satisfied to lessen information loss. There are situations when all of
these cannot be satisfied, and the CSP is not solvable. Then, we need to sacrifice some
of them. In our approach, information loss is preferred to a privacy breach. Therefore,
some constraints for sibling itemsets can be sacrificed. Instead of removing any of those
constraints, we add binary relaxation variables. By adding these, we do not need to
reformulate the CSP and run solver more than once. We add a unique binary relaxation
variable r to the inequality for all sibling constraints.

maximize

 ∑
uij∈U

uij


subject to

{
∀X ∈ S, σs(X) < σmin

∀Y ∈ SI, σs(Y) + rY ≥ σmin

(15)

Relaxation on constraints should be minimized to ensure that information loss is minimized.

minimize

(
∑

Y∈SI
rY

)
(16)

So, Equation (15) gives our final CSP formulation.

maximize

 ∑
uij∈U

uij − ∑
Y∈SI

rY


subject to

{
∀X ∈ S, σs(X) < σmin

∀Y ∈ SI, σs(Y) + rY ≥ σmin

(17)

Illustrative Example

In the following, an illustrative example of our hiding approach is given. Let D be the
dataset of 10 transactions shown in Table 2. Our set of items is I = {A, B, C, D, E}.

Table 2. Dataset D.

TID Items

T1 AC
T2 ACDE
T3 CD
T4 BE
T5 ACDE
T6 DE
T7 C
T8 AB
T9 AC
T10 CD

Symmetry 2022, 14, 1453 7 of 13

Using the bitmap notation given in (1), we have a 10 × 5 binary matrix representation
of D. It is given in Table 3.

Table 3. Dataset D in bitmap notation.

A B C D E

1 0 1 0 0
1 0 1 1 1
0 0 1 1 0
0 1 0 0 1
1 0 1 1 1
0 0 0 1 1
0 0 1 0 0
1 1 0 0 0
1 0 1 0 0
0 0 1 1 0

Using the formulation in (2), we can calculate the support count of an itemset, for
instance, the support count of itemset {AC}.

σ{AC} = d1,1d1,3 + d2,1d2,3 + . . . + d10,1d10,3

σ{AC} = 4

Given minimum support count σmin = 2 and Equation (3), we can find 16 frequent itemsets.

F = {A, B, C, D, E, AC, AD, AE, CD, CE, DE, ACD, ACE, ADE, CDE, ACDE}

Suppose that itemset {CD} is given as sensitive and needs to be hidden. Then,
S = {CD}

Equations (4) and (5) give supersets of sensitive itemsets and non-sensitive itemsets as follows:

Ss = {ACD, CDE, ACDE}

Fn = {A, B, C, D, E, AC, AD, AE, CE, DE, ACE, ADE}

All itemsets in S and Ss must be hidden to achieve privacy, whereas as many itemsets
as in Fn should remain frequent after sanitization.

Using the formulation given in (11), transactions supporting itemset {CD} are modi-
fied with binary variables. Their values will be determined after the CSP is solved. The
intermediate form of the dataset is given in Table 4.

Table 4. Intermediate form of dataset D.

A B C D E

1 0 1 0 0
1 0 u2,3 u2,4 1
0 0 u3,3 u3,4 0
0 1 0 0 1
1 0 u5,3 u5,4 1
0 0 0 1 1
0 0 1 0 0
1 1 0 0 0
1 0 1 0 0
0 0 u10,3 u10,4 0

Using (13), we can find sibling itemsets as SI = {AC, CE, AD, DE}. Now, we can
define the CSP formulation given in (15).

Symmetry 2022, 14, 1453 8 of 13

maximize u2,3 + u2,4 + u3,3 + u3,4 + u5,3 + u5,4 + u10,3 + u10,4 –r{AC}− r{CE}− r{AD}− r{DE}

subject to



u2,3u2,4 + u3,3u3,4 + u5,3u5,4 + u10,3u10,4 < σmin
1 + u2,3 + u5,3 + r{AC} ≥ σmin

u2,3 + u5,3 + r{CE} ≥ σmin
u2,4 + u5,4 + r{AD} ≥ σmin
u2,4 + u5,4 + r{DE} ≥ σmin

where σmin = 2

The solution of such CSP is
u2,3 = u2,4 = u3,4 = u5,3 = u10,4 = r{AD} = 1

u3,3 = u5,4 = u10,3 = r{AC} = r{CE} = r{DE} = 0

When results are applied to the intermediate form of the dataset, we obtain the
sanitized dataset Ds as given in Table 5. From this sanitized dataset, we can find itemsets
for minimum support count σmin = 2 as Fs = {A, B, C, D, E, AC, AE, CE, DE, ACE}.

Table 5. Sanitized Dataset.

A B C D E

1 0 1 0 0
1 0 1 1 1
0 0 0 1 0
0 1 0 0 1
1 0 1 0 1
0 0 0 1 1
0 0 1 0 0
1 1 0 0 0
1 0 1 0 0
0 0 0 1 0

The sensitive itemset {CD} is no longer frequent for support count 2. Compared
to the initial dataset, the number of itemsets decreased to 10 from 16. Two itemsets are
accidentally lost, and 3 itemsets are supersets of {CD }; therefore, they are also missing.

5. Experimental Analysis

In this section, we give a performance evaluation of our approach. The reference
algorithm for comparison is IPA [20]. We implemented the algorithms using Python.
Constraints were solved using Minizinc [33]. Implementations used the Pymzn [34] library
to be able to invoke, run, and gather results from the constraint solver. All computational
experiments were conducted on a PC running MS Windows 10 with an Intel i5-4200U CPU
and 8 GB of RAM.

5.1. Evaluation Metrics of Itemset Hiding

Itemset hiding aimed for transforming the dataset in a way that sensitive itemsets
were concealed. Itemset hiding aimed for transforming the dataset in a way that sensitive
itemsets were concealed, non-sensitive frequent itemsets were preserved, ghost itemsets
were not generated and dataset distortion is minimum. These goals are mentioned in
Section 3, and related metrics are given below.

5.1.1. Hiding Failure

This metric concerns sensitive itemsets remaining frequent after the sanitization pro-
cess. It is defined as the percentage of sensitive itemsets that appear in the sanitized dataset
divided by the ones that appeared in the original dataset.

Symmetry 2022, 14, 1453 9 of 13

Our approach ensures that all sensitive itemsets are hidden; therefore, HF = 0 for
all scenarios. As far as we have surveyed, all proposed approaches focus on HF and
ensure that they are 0. Our reference algorithm IPA also ensures that all sensitive itemsets
are hidden.

5.1.2. Artifactual Patterns

This metric concerns side effects of sanitization process because some approaches
insert items or transactions to the dataset during or after sanitization. It was calculated as
the ratio of itemsets that did not appear in the original dataset but appeared in the sanitized
dataset to the itemsets that appear in both the original and the sanitized datasets.

Since our approach does not insert items on the original dataset, it is not possible to
produce new itemsets from the sanitized dataset. This is the same for the IPA algorithm.

5.1.3. Dissimilarity

This metric is the measure of the differences between the original and the sanitized
dataset quantified by comparing total number of items or the frequencies.

For our approach, the number of deleted items gives dissimilarity between the original
and sanitized dataset. The number of deleted items are identical with IPA algorithm.

5.1.4. Misses Cost

This metric concerns the side effects of the sanitization process. It is measured as the
percentage of non-sensitive patterns that disappeared in the sanitized dataset divided by
the ones that appeared in the original dataset.

We have given this measure as the number of lost itemsets. This is the only metric that
differs with the IPA algorithm and further comparison is given in next title.

5.2. Comparison

We evaluated the algorithms on six different datasets obtained from [35]. Characteris-
tics of these datasets are given in Table 6. Since the IPA algorithm uses frequent itemsets
discovered before the hiding process, we also provided time consumption for tested values
on datasets. Python implementation [36] of the Eclat algorithm was used for frequent
itemset mining.

Table 6. Properties of datasets.

Dataset Name Number of
Transactions (Count)

Average
Transaction Length

Number
of Items

Minimum
Support Count

Number of
Frequent Itemsets Runtime (Seconds)

T10I4D100K 100,000 10.10 870 500 (%0.5) 1073 9.15
T40I10D100K 100,000 39.60 942 500 (%0.5) 1,286,037 392.96

Mushroom 8124 23.00 119 406 (%5) 3,755,704 9.77
retail 88,162 10.30 16,470 440 (%0.5) 581 2.00
BMS1 59,602 2.51 497 60 (%0.1) 3991 0.88
BMS2 77,512 4.62 3,340 77 (%0.1) 24,143 5.22

We tested the algorithms using different hiding scenarios: hiding 1 2-itemset (HS_2.1),
hiding 2 2-itemset(HS_2.2), hiding 3 2-itemset(HS_2.3), hiding 1 3-itemset(HS_3.1), hiding
2 3-itemset(HS_3.2), and hiding 1 4-itemset(HS_4.1). The sensitive itemsets chosen had
support counts close to the minimum support count since those itemsets were more logically
hidden and indistinguishable compared to the rest. For ease of use in tables, our approach
is named HISB (Hiding Itemsets with SiBlings) during this section.

The results of evaluation for the T10I4100K dataset are given in Table 7. Columns
represent hiding scenarios, side effects as the number of lost itemsets, and running time in
seconds for algorithm IPA and HISB. Both algorithms performed well in terms of number of
lost itemsets. In defined scenarios, no itemset was lost. Our approach performed better in
terms of runtime in four scenarios. It should be noted that IPA needs prior itemset mining,
which costs an additional 9.15 s.

Symmetry 2022, 14, 1453 10 of 13

Table 7. Results of the T10I4100K dataset.

Hiding Scenario Number of Lost Itemsets (IPA/HISB) Algorithm IPA (Seconds) Algorithm HISB (Seconds)

HS_2.1 0/0 5.72 4.04
HS_2.2 0/0 6.75 5.2
HS_2.3 0/0 7.62 6.03
HS_3.1 0/0 6.78 5.54
HS_3.2 0/0 9.51 10.31
HS_4.1 0/0 9.01 10.5

The results of evaluation for the T40I10100K dataset are given in Table 8. IPA per-
formed better in terms of number of lost itemsets. On the other hand, our approach
performed better in terms of runtime even though prior itemset mining consumption was
not included for IPA.

Table 8. Results of the T40I10100K dataset.

Hiding Scenario Number of Lost Itemsets (IPA/HISB) Algorithm IPA (Seconds) Algorithm HISB (Seconds)

HS_2.1 0/1 13.64 13.31
HS_2.2 0/1 27.59 14.59
HS_2.3 0/2 62.49 22.88
HS_3.1 0/0 95.61 18.92
HS_3.2 0/0 1,110.97 31.32
HS_4.1 0/1 408.48 24.02

The results of evaluation for the Mushroom dataset are given in Table 9. Both algo-
rithms performed well regarding the number of lost itemset where no itemset was lost.
On the other hand, our approach performed better in terms of runtime even though prior
itemset mining consumption was not included for IPA.

Table 9. Results of the Mushroom dataset.

Hiding Scenario Number of Lost Itemsets (IPA/HISB) Algorithm IPA (Seconds) Algorithm HISB (Seconds)

HS_2.1 0/0 8.98 1.56
HS_2.2 0/0 18.45 2.6
HS_2.3 0/0 22.45 4.23
HS_3.1 0/0 23 2.67
HS_3.2 0/0 25.78 4.96
HS_4.1 0/0 17.44 6.11

The results of evaluation for the BMS1 dataset are given in Table 10. IPA performed
better in terms of number of lost itemsets. The runtime performance of hiding processes
was close in five of six scenarios.

Table 10. Results of the BMS1 dataset.

Hiding Scenario Number of Lost Itemsets (IPA/HISB) Algorithm IPA (Seconds) Algorithm HISB (Seconds)

HS_2.1 0/0 1.07 1.06
HS_2.2 0/0 1.14 1.17
HS_2.3 0/1 1.18 1.18
HS_3.1 0/0 1.2 1.36
HS_3.2 0/1 1.47 1.39
HS_4.1 0/2 2.96 1.57

The results of evaluation for the BMS2 dataset are given in Table 11. Both algorithms
performed well in terms of number of lost itemsets. The runtime performance of hiding
processes was similar in four scenarios.

Symmetry 2022, 14, 1453 11 of 13

Table 11. Results of the BMS2 dataset.

Hiding Scenario Number of Lost Itemsets (IPA/HISB) Algorithm IPA (Seconds) Algorithm HISB (Seconds)

HS_2.1 0/0 1.07 1.06
HS_2.2 0/0 1.14 1.17
HS_2.3 0/1 1.18 1.18
HS_3.1 0/0 1.2 1.36
HS_3.2 0/1 1.47 1.39
HS_4.1 0/2 2.96 1.57

The results of the evaluation for the Retail dataset are given in Table 12. Both algo-
rithms performed well in terms of number of lost itemsets. The runtime performance of
hiding processes was close.

Table 12. Results of Retail dataset.

Hiding Scenario Number of Lost Itemsets (IPA/HISB) Algorithm IPA (Seconds) Algorithm HISB (Seconds)

HS_2.1 0/0 36.21 33.21
HS_2.2 0/0 38.59 38.54
HS_2.3 0/0 43.36 52.48
HS_3.1 0/0 39.15 34.89
HS_3.2 0/0 43.92 42.98
HS_4.1 0/0 45.11 44.52

5.3. Discussion

First of all, we can say that using sibling itemsets constraints to lessen the runtime of
the hiding process is effective. Even though the comparison tables do not include itemset
mining time consumption before the hiding process, our approach performed faster in
most cases. To add this, in some cases, the number of border itemsets or the length of some
border itemsets constructed by the IPA algorithm caused distinctive runtime differences in
the hiding process. Experiments on the Mushroom dataset revealed that eliminating prior
mining was advantageous when the dataset is dense. Although this dataset has fewer items
and transactions, the number of frequent itemsets for the given support threshold was over
3.5 million. We also observed that unsolvable constraints caused another disadvantage.
However, this was not common in most cases. Secondly, the number of lost itemsets caused
by our approach is tolerable when considering the number of frequent itemsets.

At this juncture, we would like to mention that we have also implemented the al-
gorithm given in [22]. It promises optimum results since it is a full exact approach and
uses relaxation techniques for CSP. However, we could not finish experiments because of
insufficient time or hardware limitations that caused crashes. The reason for this problem
is that the proposed approach generates constraints for all non-sensitive frequent item-
sets. Considering our experiments, it should generate constraints for over 1 million and
3 million frequent itemsets for T40I10D100K and Mushroom datasets, respectively, which
is not feasible.

6. Conclusions

This paper presents a methodology for hiding sensitive itemsets in transactional
datasets. We focused on reducing the number of constraints for exact itemset hiding. Using
sibling itemset notion and defining relaxation variables for constraints, we benefited from
the exact nature of algorithms to obtain an ideal solution or minimally affected dataset.
We showed that sibling itemsets are an efficient solution for reducing constraints for exact
approaches. Given a comparison with a reference algorithm, we also discuss the need
for prior computation of frequent itemsets. Experiments revealed that eliminating prior
mining of frequent itemsets on the dataset combined with a sibling itemset approach is
time-efficient where side effects such as lost itemsets are tolerable. We also mention some
symmetric and asymmetric properties appearing in itemset hiding.

Symmetry 2022, 14, 1453 12 of 13

To sum up, our approach is especially applicable where prior mining of frequent
itemsets is costly. This is also valid for frequently updated databases. Therefore, we
can say that skipping prior mining while using constraints is one of the most important
contributions of our approach. Additionally, using fewer constraints makes our approach
even better in terms of runtime. Moreover, we added relaxation variables to make our
approach more efficient when initial constraints cause a CSP that is not feasible. Although
this is not common, it may result in additional runtime since the constraint solver needs to
be run more than once. It can be concluded that our methodology serves an exact approach
with fewer constraints so that the hiding process consumes less time.

Author Contributions: Conceptualization, B.Y. and A.K.; methodology, B.Y. and A.K.; software,
B.Y.; validation, B.Y., A.K. and R.Y.; investigation, B.Y.; writing—original draft preparation, B.Y.;
writing—review and editing, B.Y., A.K. and R.Y. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Datasets used in this study are obtained from Frequent Itemset Mining
Dataset Repository [35].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Feng, K.; Tian, J. Forecasting Reference Evapotranspiration Using Data Mining and Limited Climatic Data. Eur. J. Remote Sens.

2021, 54 (Suppl. 2), 363–371. [CrossRef]
2. Raja, K.; Patrick, M.; Gao, Y.; Madu, D.; Yang, Y.; Tsoi, L.C. A Review of Recent Advancement in Integrating Omics Data with

Literature Mining towards Biomedical Discoveries. Int. J. Genom. 2017, 2017, 6213474. [CrossRef] [PubMed]
3. Neto, C.; Brito, M.; Lopes, V.; Peixoto, H.; Abelha, A.; Machado, J. Application of Data Mining for the Prediction of Mortality and

Occurrence of Complications for Gastric Cancer Patients. Entropy 2019, 21, 1163. [CrossRef]
4. Hong, J.; Park, S. The Identification of Marketing Performance Using Text Mining of Airline Review Data. Mob. Inf. Syst. 2019,

2019, 1790429. [CrossRef]
5. Amanowicz, M.; Jankowski, D. Detection and Classification of Malicious Flows in Software-Defined Networks Using Data

Mining Techniques. Sensors 2021, 21, 2972. [CrossRef] [PubMed]
6. Sánchez-Aguayo, M.; Urquiza-Aguiar, L.; Estrada-Jiménez, J. Predictive Fraud Analysis Applying the Fraud Triangle Theory

through Data Mining Techniques. Appl. Sci. 2022, 12, 3382. [CrossRef]
7. Clifton, C. Privacy-Preserving Data Mining. In Encyclopedia of Database Systems; Liu, L., Özsu, M.T., Eds.; Springer: New York, NY,

USA, 2018; pp. 2819–2821. [CrossRef]
8. Zhang, L.; Wang, W.; Zhang, Y. Privacy Preserving Association Rule Mining: Taxonomy, Techniques, and Metrics. IEEE Access

2019, 7, 45032–45047. [CrossRef]
9. Mendes, R.; Vilela, J.P. Privacy-Preserving Data Mining: Methods, Metrics, and Applications. IEEE Access 2017, 5,

10562–10582. [CrossRef]
10. Verykios, V.S.; Elmagarmid, A.K.; Bertino, E.; Saygin, Y.; Dasseni, E. Association Rule Hiding. IEEE Trans. Knowl. Data Eng. 2004,

16, 434–447. [CrossRef]
11. Association Rule Hiding for Data Mining; Advances in Database Systems; Springer: Boston, MA, USA, 2010; Volume 41.
12. Atallah, M.; Bertino, E.; Elmagarmid, A.; Ibrahim, M.; Verykios, V. Disclosure Limitation of Sensitive Rules. In Proceed-

ings of the 1999 Workshop on Knowledge and Data Engineering Exchange (KDEX’99), Chicago, IL, USA, 7 November
1999; pp. 45–52. [CrossRef]

13. Saygin, Y.; Verykios, V.S.; Clifton, C. Using Unknowns to Prevent Discovery of Association Rules. ACM SIGMOD Rec. 2001, 30,
45. [CrossRef]

14. Lee, G.; Chang, C.-Y.; Chen, A.L.P. Hiding Sensitive Patterns in Association Rules Mining. In Proceedings of the 28th Annual
International Computer Software and Applications Conference, 2004. COMPSAC 2004, Hongkong, China, 28–30 September 2004;
pp. 424–429. [CrossRef]

15. Mannila, H.; Toivonen, H. Levelwise Search and Borders of Theories in KnowledgeDiscovery. Data Min. Knowl. Discov. 1997, 1,
241–258. [CrossRef]

16. Moustakides, G.V.; Verykios, V.S. A MaxMin Approach for Hiding Frequent Itemsets. Data Knowl. Eng. 2008, 65, 75–89. [CrossRef]
17. Sun, X.; Yu, P.S. Hiding Sensitive Frequent Itemsets by a Border-Based Approach. J. Comput. Sci. Eng. 2007, 1, 74–94. [CrossRef]

http://doi.org/10.1080/22797254.2020.1801355
http://doi.org/10.1155/2017/6213474
http://www.ncbi.nlm.nih.gov/pubmed/28331849
http://doi.org/10.3390/e21121163
http://doi.org/10.1155/2019/1790429
http://doi.org/10.3390/s21092972
http://www.ncbi.nlm.nih.gov/pubmed/33922723
http://doi.org/10.3390/app12073382
http://doi.org/10.1007/978-1-4614-8265-9_270
http://doi.org/10.1109/ACCESS.2019.2908452
http://doi.org/10.1109/ACCESS.2017.2706947
http://doi.org/10.1109/TKDE.2004.1269668
http://doi.org/10.1109/KDEX.1999.836532
http://doi.org/10.1145/604264.604271
http://doi.org/10.1109/CMPSAC.2004.1342874
http://doi.org/10.1023/A:1009796218281
http://doi.org/10.1016/j.datak.2007.06.012
http://doi.org/10.5626/JCSE.2007.1.1.074

Symmetry 2022, 14, 1453 13 of 13

18. Quoc Le, H.; Arch-Int, S.; Arch-Int, N. Association Rule Hiding Based on Distance and Intersection Lattice. In International
Conference on Software Technology and Engineering (ICSTE 2012); ASME Press: New York, NY, USA, 2015. [CrossRef]

19. Menon, S.; Sarkar, S.; Mukherjee, S. Maximizing Accuracy of Shared Databases When Concealing Sensitive Patterns. Inf. Syst. Res.
2005, 16, 256–270. [CrossRef]

20. Gkoulalas-Divanis, A.; Verykios, V.S. An Integer Programming Approach for Frequent Itemset Hiding. In Proceedings of the 2006
ACM CIKM International Conference on Information and Knowledge Management, Arlington, VA, USA, 6–11 November 2006;
pp. 748–757. [CrossRef]

21. Gkoulalas-Divanis, A.; Verykios, V.S. Hiding Sensitive Knowledge without Side Effects. Knowl. Inf. Syst. 2009, 20,
263–299. [CrossRef]

22. Ayav, T.; Ergenc, B. Full-Exact Approach for Frequent Itemset Hiding. Int. J. Data Warehous. Min. 2015, 11, 49–63. [CrossRef]
23. Lin, C.W.; Zhang, B.; Yang, K.T.; Hong, T.P. Efficiently Hiding Sensitive Itemsets with Transaction Deletion Based on Genetic

Algorithms. Sci. World J. 2014, 2014, 398269. [CrossRef]
24. Lin, J.C.-W.; Liu, Q.; Fournier-Viger, P.; Hong, T.-P.; Voznak, M.; Zhan, J. A Sanitization Approach for Hiding Sensitive Itemsets

Based on Particle Swarm Optimization. Eng. Appl. Artif. Intell. 2016, 53, 1–18. [CrossRef]
25. Bux, N.K.; Lu, M.; Wang, J.; Hussain, S.; Aljeroudi, Y. Efficient association rules hiding using genetic algorithms. Symmetry 2018,

10, 576. [CrossRef]
26. Agrawal, R.; Imieliński, T.; Swami, A. Mining Association Rules between Sets of Items in Large Databases. ACM SIGMOD Rec.

1993, 22, 207–216. [CrossRef]
27. Agrawal, R.; Srikant, R. Fast Algorithms for Mining Association Rules. In Proceedings of the 20th International Conference on

Very Large Data Bases (VLDB ’94), Santiago, Chile, 12–15 September 1994; pp. 487–499.
28. Zaki, M.J.; Parthasarathy, S.; Ogihara, M.; Li, W. New Algorithms for Fast Discovery of Association Rules. In Proceedings of the

Third International Conference on Knowledge Discovery and Data Mining, Newport Beach, CA, USA, 14–17 August 1997; AAAI Press:
Palo Alto, CA, USA, 1997; pp. 283–286.

29. Han, J.; Pei, J.; Yin, Y. Mining Frequent Patterns without Candidate Generation. SIGMOD Rec. 2000, 29, 1–12. [CrossRef]
30. Bustio-Martínez, L.; Cumplido, R.; Hernández-León, R.; Bande-Serrano, J.M.; Feregrino-Uribe, C. On the Design of Hardware-

Software Architectures for Frequent Itemsets Mining on Data Streams. J. Intell. Inf. Syst. 2018, 50, 415–440. [CrossRef]
31. Mahmood, S.; Shahbaz, M.; Guergachi, A. Negative and Positive Association Rules Mining from Text Using Frequent and

Infrequent Itemsets. Sci. World J. 2014, 2014, 973750. [CrossRef] [PubMed]
32. Naulaerts, S.; Meysman, P.; Bittremieux, W.; Vu, T.N.; Berghe, W.V.; Goethals, B.; Laukens, K. A Primer to Frequent Itemset

Mining for Bioinformatics. Brief. Bioinform. 2015, 16, 216–231. [CrossRef]
33. MiniZinc. Available online: https://www.minizinc.org/ (accessed on 16 June 2022).
34. PyMzn—PyMzn Documentation. Available online: http://paolodragone.com/pymzn/ (accessed on 16 June 2022).
35. FIMI. Frequent Itemset Mining Dataset Repository. Available online: http://fimi.uantwerpen.be/data/ (accessed on 16 June 2022).
36. Borgelts, C. Christian Borgelt’s Web Pages. Available online: http://www.borgelt.net/fpm.html (accessed on 16 June 2022).

http://doi.org/10.1115/1.860151_ch37
http://doi.org/10.1287/isre.1050.0056
http://doi.org/10.1145/1183614.1183721
http://doi.org/10.1007/s10115-008-0178-7
http://doi.org/10.4018/ijdwm.2015100103
http://doi.org/10.1155/2014/398269
http://doi.org/10.1016/j.engappai.2016.03.007
http://doi.org/10.3390/sym10110576
http://doi.org/10.1145/170036.170072
http://doi.org/10.1145/335191.335372
http://doi.org/10.1007/s10844-017-0461-8
http://doi.org/10.1155/2014/973750
http://www.ncbi.nlm.nih.gov/pubmed/24955429
http://doi.org/10.1093/bib/bbt074
https://www.minizinc.org/
http://paolodragone.com/pymzn/
http://fimi.uantwerpen.be/data/
http://www.borgelt.net/fpm.html

	Introduction
	Related Work
	Preliminaries
	Itemset Hiding Using Sibling Itemsets Constraints
	Experimental Analysis
	Evaluation Metrics of Itemset Hiding
	Hiding Failure
	Artifactual Patterns
	Dissimilarity
	Misses Cost

	Comparison
	Discussion

	Conclusions
	References

