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Abstract: In this work, we propose a symmetry approach and design a convolutional neural network
for mouse pose estimation under scale variation. The backbone adopts the UNet structure, uses the
residual network to extract features, and adds the ASPP module into the appropriate residual units
to expand the perceptual field, and uses the deep and shallow feature fusion to fuse and process the
features at multiple scales to capture the various spatial relationships related to body parts to improve
the recognition accuracy of the model. Finally, a set of prediction results based on heat map and
coordinate offset is generated. We used our own built mouse dataset and obtained state-of-the-art
results on the dataset.

Keywords: mouse key point detection; scale change; deep learning; CNN

1. Introduction

Quantifying behavior is particularly important for neuroscience applications [1]. Video
observation and recording is a simple, easy, and effective approach to detect behavior [2–4].
An important aspect of studying animal behavior based on the skeleton is the accurate
identification of key points of animal body parts. During video recording to study the
behavioral characteristics of mice in the laboratory, we found that scale change greatly
affects recognition accuracy [5,6]. Therefore, we improved the accuracy of mouse key point
recognition under scale changes by improving the model of the current key point detection
algorithm. The dataset is available at https://github.com/Martin-xu-ma/Dataset, accessed
on 5 July 2022.

Here, we propose a symmetric method and design a key point detection model as
shown in Figure 1. The model uses dilation convolution [7] instead of ordinary convolution
for feature extraction, and uses deep and shallow feature fusion to obtain multi-scale infor-
mation. Superior performance was achieved in scenarios targeting mouse scale variations.

The model body adopts a codec structure, and when the model is input, the image
is subtracted from the mean, subtracting the average of the three channels of the image
to speed up the training of the network. In the coding section, feature extraction and
data dimensionality reduction are performed using dilation convolution, and the sensory
field is enlarged to obtain more feature information. In the decoding section, transpose
convolution is used to increase the resolution [8–10]. A jump connection method is used to
fuse deep and shallow features. Unlike the common heat map-based forecasting methods,
we designed a model that uses heatmaps plus coordinate offsets to predict key points,
thereby improving the accuracy of key point coordinate prediction [11].

The rest of the organization of this paper is as follows: the second section introduces
three key point detection algorithms to compare with the design algorithm of this paper,
the third section introduces the two improved parts of the algorithm structure—the dilation

Symmetry 2022, 14, 1437. https://doi.org/10.3390/sym14071437 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14071437
https://doi.org/10.3390/sym14071437
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://github.com/Martin-xu-ma/Dataset
https://doi.org/10.3390/sym14071437
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14071437?type=check_update&version=1


Symmetry 2022, 14, 1437 2 of 14

convolution and deep and shallow feature fusion, and the design of the loss function—
the fourth section introduces the construction of the data set, the determination of the
evaluation index and the ablation experiment verifies the outstanding performance of the
proposed algorithm. Finally, we summarize our findings in Section 5.

Figure 1. The network architecture of this paper. The network first uses a conventional convolution
to connect a pooling layer for four-times down-sampling, followed by four blocks for two-times
down-sampling, and then two transposed convolutions for two-times up-sampling, respectively, and
finally completes the output of the prediction graph and offset graph.

2. Related Work

Before designing the model, we disassembled several typical single target key point
detection algorithms in detail to obtain inspiration for better design. The key point detection
algorithm is popular for key point detection of human bones. In the present study, key
point detection is used for mouse recognition based on the recognition of its behavior.
DeepPose [12,13] is the first application of deep learning to human pose estimation. The
author defines human pose estimation as the topic of regression at key points and uses a
convolutional neural network (CNN) for regression. The model includes Alexnet [14] and
an additional output layer for regression node coordinates, and it is trained using L2 loss
function. Further, the model uses cascaded regressors to refine the predictions. The images
are sheared around the predicted junctions and fed into the next stage, so that subsequent
posture regressors can see higher resolution images and learn their fine features.

CPM [15,16] uses a serialized convolution architecture to express spatial information
and texture information. Its network structure is divided into multiple stages. The initial
stage uses the original image as the input, while the latter stage combines the feature
maps of the previous stage as the input, mainly integrating spatial information, texture
information, and center constraints. For the problem where the network is difficult to train,
each stage of CPM outputs a confidence map and calculates the corresponding loss to solve
the problem of gradient disappearance through relay supervision.

The Stacked Hourglass network [17,18] was the top network in the MPII pose esti-
mation competition in 2016. A single hourglass module is the smallest design to capture
information at various scales, and it integrates information at different scales. By stacking a
single hourglass module, the latter hourglass modules can further process the advanced
features, thus obtaining the spatial structure relationship between the joint points. Likewise,
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relay supervision is applied to each hourglass stage to eliminate the vanishing gradient
problem caused by the very deep network.

From the perspective of the development trend of the key point detection algorithm
for obtaining a large receptive field and high resolution, a large receptive field implies that
the network can learn the space between the key point, while high resolution can help to
improve prediction accuracy; moreover, the characteristics of the fusion between different
scales at different levels to predict the key can also be very supportive [19]. On the basis of
the above ideas, we designed the mouse key point detection model.

3. Network Architecture
3.1. Dilated Convolution

Our designed model adopts dilated convolution to expand the network receptive field.
Dilated convolution was first proposed to solve the problem of increasing receptive field in
image segmentation while retaining the original size of the featured image. Unlike normal
convolution kernels, dilated convolution between convolution kernels places them into the
“empty” area, as shown in Figure 2; in this way, in the case of no additional parameters
being introduced, the receptive field of the network is expanded, providing the figure size
because of the receptive field increasing and decreasing. At the same time, the dilated
convolution retains the internal space of the data structure, which helps in the acquisition
of long-distance information.
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Figure 2. Realization of normal convolution and empty convolution.

Multiscale information can be obtained by setting the dilated convolution to different
dilation rates. The Atrous Spatial Pyramid Pooling (ASPP) module [20–22] is designed
based on this idea in DeepLabV3 to merge multiscale context information. This module is
also adopted in our designed model. By using dilated convolution with different dilation
rates, the receptive field is expanded, and multiscale information is captured to implicitly
establish the spatial connection between mouse key points. Figure 3 shows the application
of the ASPP module in our designed model.
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Figure 3. Application of the ASPP module in the designed model. Here, we take block2 as an exam-
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ture graph in block2, the setting of the convolution kernel, and the position of the aspp module to 
replace the ordinary convolution. 
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the expansion rate is (1,2,4), multiscale information can be captured to the maximum ex-
tent. The ASPP module includes one 1 × 1 convolution, three 3 × 3 dilated convolutions 
with different expansion rates, and a global average pooling. The purpose of this arrange-
ment is to obtain an image-level feature and better capturing of global information. The 
last 1 × 1 convolution is used to fuse multiscale features and output prediction results. 
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The CNN extracts target features through layer-by-layer abstraction. Shallow fea-
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suitable for constructing a key point detection network. The model with the encoder–de-
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Figure 3. Application of the ASPP module in the designed model. Here, we take block2 as an example
to show where empty convolution replaces ordinary convolution. We show the size of the feature
graph in block2, the setting of the convolution kernel, and the position of the aspp module to replace
the ordinary convolution.

In our designed model, the 3 × 3 convolution of each residual unit in the block3 module
is replaced by the ASPP module. When the ASPP module is added at this position and the
expansion rate is (1,2,4), multiscale information can be captured to the maximum extent.
The ASPP module includes one 1 × 1 convolution, three 3 × 3 dilated convolutions with
different expansion rates, and a global average pooling. The purpose of this arrangement is
to obtain an image-level feature and better capturing of global information. The last 1 × 1
convolution is used to fuse multiscale features and output prediction results.

3.2. Encoding and Decoding Structure

The CNN extracts target features through layer-by-layer abstraction. Shallow features
have a higher resolution and contain more location and detail information, while deep
features have stronger semantic information due to pooling and other down-sampling
operations [23–25]. While designing the key point detection model in mice, we considered
the simultaneous use of both shallow and deep features in the network, so that we can fully
obtain the location of mouse key points and semantic information.

The codec structure is a commonly used structure that combines deep and shallow
features, and a typical representative of the codec structure is the UNet model. In the
encoder–decoder structure, encoding is responsible for reducing the spatial dimension of
feature maps to obtain deeper semantic information, while decoding is responsible for
restoring image details and dimensions [26,27]. Skip connections are used to fuse deep and
shallow features during encoding and decoding [28,29]. In the mouse key point detection
task, it is necessary to integrate features of different levels, and a certain resolution is
required for the output. However, to obtain deeper semantic information, the network
needs a certain depth; hence, the structure of encoding first and then decoding is very
suitable for constructing a key point detection network. The model with the encoder–
decoder structure implemented here is shown in Figure 4.
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In our designed model, the residual network is used as the encoding network, and four
residual modules are selected to extract features. Each residual module contains residual
units of 3, 4, 6, and 3. The first residual block does not perform down-sampling, and the
remaining three residual modules perform two-times down-sampling. After encoding, the
designed model uses transposed convolution to decode and restore high-resolution images.
To achieve a high-resolution output, the designed model uses two transposed convolutions,
wherein each transposed convolution performs two-times up-sampling. Thus, the overall
network performs 8 times down-sampling, and the output size of the confidence map is
80 × 60. Moreover, in the process of encoding and decoding, skip connections are used to
combine shallow features and deep features, so that the network can simultaneously utilize
deep semantic information and shallow spatial information.

3.3. Loss Function

The fused feature map outputs class probabilities and coordinate offsets through
1 × 1 convolution. The designed module uses the heatmap coordinate deviation method
proposed by Google at IEEE conference on Computer Vision and Pattern Recognition
(CVPR) 2017 to predict key points. Compared to simple heatmap-based prediction methods,
coordinate shifting provides more accurate location predictions, but heatmaps suffer from
theoretical errors due to down-sampling.

Finally, the losses of two parts need to be calculated when calculating the loss function.
Sigmoid Cross Entropy loss is used for the category probability part, and Huber loss is used
for the coordinate prediction part. Huber loss is less sensitive to outliers in the data than
square error loss, which can solve the problem of singularities data biased model training in
regression problems, and is more robust to outliers. The complete loss calculation formula
is as follows:

losssigmoidcrossentropy
= ycla ×−log

(
1

1+e−xcla

)
− log

(
e−xcla

1+e−xcla

)
× (1 − ycla)

= xcla − xcla × ycla + log(1 + e−xcla)
(1)
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losshuber =

{
1
2
(
yreg − xreg

)2 f or
∣∣yreg − xreg

∣∣ ≤ δ

δ
∣∣yreg − xreg

∣∣− 1
2 δ2 otherwise

(2)

where ycla is the category label, yreg is the real coordinate offset, xcla is the predicted
category probability, xreg is the predicted coordinate offset, and δ is a hyperparameter used
to judge whether it is a relatively singular data point. When the prediction deviation is less
than δ, the mean square error (MSE) is adopted. When the prediction error is greater than
δ, the linear error is used.

4. Experiments
4.1. Preparation of Datasets

For the mouse key point detection task under scale changes, a related dataset is pro-
duced here. By analyzing the action characteristics of mouse behavior and in combination
with the need to measure mouse movement parameters and behavioral parameters in an
open field experiment, we determined that the mouse nose tip, left ear, right ear, and tail
root could be used as key points to prepare the dataset. To enable the designed algorithm
to process images of different scales, we set the camera height to three levels at 60, 70, and
80 cm when shooting videos so as to collect mouse images of different scales. To prevent the
convolutional neural network from overfitting a certain background color during training
and to verify the robustness of the algorithm under different background colors, we used
an experiment box with four background colors of white, light gray, dark gray, and black.
An example dataset is shown in Figure 5.
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Figure 5. Images of mice at different scales.

In summary, the mouse key point detection dataset prepared here contains labels of
three heights and four backgrounds. In the training set, only the 70 cm shooting height
was selected, and 675 images of each background color were selected, resulting in a total
of 2700 images. In the test set, 100 images of each combination were selected, resulting in
a total of 1200 images. The quantity statistics of key points in the data set are shown in
Table 1.
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Table 1. Distribution of key points in the dataset.

Key Points Training Sets
Test Sets

60 cm 70 cm 80 cm Sum

Nose 2291 381 375 375 1131
Left ear 2698 400 400 400 1200

Right ear 2699 400 400 400 1200
Tailbase 2598 400 400 398 1198

4.2. Evaluation Index

In the present experiment, the evaluation of the key point detection effect in mice
refers to the performance indices of the human bone key point detection algorithm. The
performance indices of the prevalent human key point detection algorithms include Object
Keypoint Similarity (OKS) for multiple people and Percentage of Correct Keypoint (PCK)
for a single person. The algorithm used in the designed model performs key point detection
on a single mouse; therefore, PCK index is adopted.

The PCK index calculates the proportion by which the normalized distance between
the detected key points and their corresponding labels is smaller than the set threshold.
The formula for calculating the PCK index is as follows:

PCKk
i =

∑p δ

(
dpi

dde f
p

≤ Tk

)
∑p 1

(3)

PCKk
mean =

∑p ∑i δ

(
dpi

dde f
p

≤ Tk

)
∑p ∑i 1

(4)

where i represents the key point of type i, k represents the Kth threshold Tk, p represents the
Pth image, dpi represents the Euclidean distance between the predicted value and the true

value of the key point of type i in the ith image, and dde f
p represents the scale factor of the

pth image. The calculation method used for this factor is different according to different
datasets. PCKk

i indicates the PCK indicator for key points of category i under threshold Tk,
and PCKk

mean indicates the average PCK indicator for all key points under threshold Tk.
Before using the PCK indicator, it is necessary to determine the scale factor and

threshold value to be used. The position error of the same degree of angle error in images
of different scales is different, and therefore, the scale factor is used to solve this problem.
Figure 6 shows the histograms of the interaural distances used at different scales in the
dataset. The interaural distances at different scales show obvious differences, and they are
normally distributed at the same scale, which is relatively stable and meets the requirements
of the scale factor. Finally, there is an issue regarding the non-visibility of mouse ears in the
images; in this case, the median of the inter-ear distance at this camera height is used as a
scale factor, i.e., 15.29 at 60 cm, 12.85 at 70 cm, and 10.81 at 80 cm.



Symmetry 2022, 14, 1437 8 of 14

Symmetry 2022, 14, x FOR PEER REVIEW 7 of 14 
 

 

4.2. Evaluation Index 
In the present experiment, the evaluation of the key point detection effect in mice 

refers to the performance indices of the human bone key point detection algorithm. The 
performance indices of the prevalent human key point detection algorithms include Ob-
ject Keypoint Similarity (OKS) for multiple people and Percentage of Correct Keypoint 
(𝑃𝐶𝐾) for a single person. The algorithm used in the designed model performs key point 
detection on a single mouse; therefore, 𝑃𝐶𝐾 index is adopted. 

The 𝑃𝐶𝐾 index calculates the proportion by which the normalized distance between 
the detected key points and their corresponding labels is smaller than the set threshold. 
The formula for calculating the 𝑃𝐶𝐾 index is as follows: 

𝑃𝐶𝐾 = ∑ 𝛿 𝑑𝑑 𝑇∑ 1  
(3)

𝑃𝐶𝐾 = ∑ ∑ 𝛿 𝑑𝑑 𝑇∑ ∑ 1  
(4)

where 𝑖 represents the key point of type 𝑖, 𝑘 represents the Kth threshold 𝑇 , 𝑝 represents 
the Pth image, 𝑑   represents the Euclidean distance between the predicted value and 
the true value of the key point of type 𝑖 in the 𝑖th image, and 𝑑  represents the scale 
factor of the 𝑝th image. The calculation method used for this factor is different according 
to different datasets. 𝑃𝐶𝐾  indicates the 𝑃𝐶𝐾 indicator for key points of category 𝑖 under 
threshold 𝑇 , and 𝑃𝐶𝐾  indicates the average 𝑃𝐶𝐾 indicator for all key points under 
threshold 𝑇 . 

Before using the 𝑃𝐶𝐾 indicator, it is necessary to determine the scale factor and 
threshold value to be used. The position error of the same degree of angle error in images 
of different scales is different, and therefore, the scale factor is used to solve this problem. 
Figure 6 shows the histograms of the interaural distances used at different scales in the 
dataset. The interaural distances at different scales show obvious differences, and they are 
normally distributed at the same scale, which is relatively stable and meets the require-
ments of the scale factor. Finally, there is an issue regarding the non-visibility of mouse 
ears in the images; in this case, the median of the inter-ear distance at this camera height 
is used as a scale factor, i.e., 15.29 at 60 cm, 12.85 at 70 cm, and 10.81 at 80 cm. 

 
Figure 6. Histogram of the distance between the ears at different scales. Figure 6. Histogram of the distance between the ears at different scales.

The size of the threshold reflects the tolerance of the error. The size of the threshold in
the PCK indicator should change with the change in the scale factor. The histogram shown
in Figure 6 reveals that the scale factor is concentrated in [10,15] pixels. The minimum
unit is 1 pixel, and the corresponding distinguishable threshold is 0.1. When the threshold
exceeds 0.5, the left ear or the right ear cannot be distinguished; therefore, the allowable
threshold range is [0.0, 0.5]. In summary, the designed model adopts 0.0, 0.1, 0.2, 0.3, 0.4,
and 0.5 as thresholds.

4.3. Training Parameters

In order to ensure the objective consistency of the experiment, this experiment adopts
a consistent training platform, and the experimental configuration is shown in Table 2:

Table 2. Experimental environment configuration table.

The Project Type Description

CPU Inter Core I9-8950HK
GPU NVIDIA GeForce GTX 1080 8G

Memory 32GB
Operating environment Windows 10

Development environment Spyder

This algorithm directly uses the original map for training, and uses random scaling and
rotating for each image before training for data augmentation, so each iteration only trains
1 image, that is, batch size = 1, and a total of 1,030,000 iterations are iterated. The learning
rate for the first 10,000 iterations is 0.005, the learning rate for 10,000 to 430,000 iterations
is 0.02, the learning rate for 430,000 to 730,000 iterations is 0.002, and the learning rate for
730,000 to 1,030,000 iterations is 0.001.

Runtime: on the published mouse dataset, the PCK index of our algorithm is increased
by 29% higher than stackedhourglass, 17% higher than CPM and 10% higher than deeplab-
cut, but due to the addition of jump connections in the algorithm architecture to fuse deep
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and shallow feature information, the amount of parameters increases, and the training time
is deeper than deeplabcut increased by 1×.

4.4. Ablation Experiments

The main body of our network structure adopts the residual network structure; how-
ever, to maintain the recognition accuracy at different scales, we added the ASPP module
to the residual module to expand the receptive field and learn from the Unet structure for
deep and shallow feature fusion to achieve task requirements. In this section, we will show
the performance improvement after adding modules to the network.

a. Experimental results and analyses under different dilated convolution parameters.

We first verify the impact of dilated convolution on the performance of the algorithm.
For this purpose, the ASPP modules with different dilated convolution expansion rates
and position parameters are integrated into the network for comparison. Specifically, the
ASPP modules are integrated into block2 and block3 of the network to verify the effect
of dilated convolution location on model performance. We also design three dilation rate
combinations for each ASPP module, namely (1, 2, 4), (2, 4, 8), and (4, 8, 12), to verify the
dilation rate pair of the dilated convolution impact on model performance.

Table 3 shows that when the ASPP module is located in block2, the performance
gradually improves with the increase in the expansion rate. This may be because the
receptive field is small at the bottom layer of the network, and the dilated convolution
adopts sparse sampling. When the expansion rate increases, the feature information of a
large receptive field can be obtained; thus, the performance of the algorithm is gradually
improved. When the ASPP module is located in block3 and the inflation rate is (1, 2, 4), the
algorithm performance is significantly improved; however, when the inflation rate is (2, 4,
8) and (4, 8, 12), the performance of the PCK indicator begins to decline. The reason may be
that in block3, the receptive field has reached a large size and the feature map has become
very small. The mouse key points are concentrated in the adjacent positions on the feature
map, and the dilated convolution adopts sparse sampling; thus, when the expansion rate is
too large, the spatial connection is broken.

Table 3. Performance comparison of the ASPP modules with different parameters and algorithms at
different thresholds. B2 refers to the aspp module added in block2, r1 refers to the void rate (1, 2, 4),
r2 refers to the void rate (2, 4, 8), r3 refers to the void rate (4, 8, 12).

0 0.1 0.2 0.3 0.4 0.5

Cpm 0 0.2404 0.5874 0.7327 0.7661 0.7739
Hourglass 0 0.2007 0.4506 0.5284 0.5409 0.5437
Deeplabcut 0 0.0944 0.3683 0.6598 0.8344 0.9111

B2r1 0 0.1113 0.4395 0.7064 0.8386 0.9021
B2r2 0 0.1364 0.4707 0.7501 0.8896 0.9444
B2r3 0 0.1842 0.5576 0.8088 0.9224 0.9571
B3r1 0 0.229 0.6204 0.8374 0.9302 0.9628
B3r2 0 0.1954 0.5428 0.7957 0.9101 0.955
B3r3 0 0.1903 0.5363 0.7821 0.9023 0.9494

To summarize, when the ASPP module is located in block3 and the expansion rate is
(1, 2, 4), the network achieves the highest PCK index. Moreover, the PCK index at each
scale is improved, which confirms that the ASPP module can effectively improve prediction
accuracy for many scales.

We have determined the best parameters and positions to add the ASPP module. Com-
pared with several other algorithms, our model has achieved corresponding improvements
at different scales. Table 3 shows the specific PCK performance index when the threshold
is 0.4.
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b. Experimental results and analysis after deep and shallow feature fusion.

After adding the ASPP module to the designed model, the performance of the algo-
rithm significantly improved; however, the performance improvement in terms of high-
accuracy recognition was still not obvious. Therefore, we considered the fusion of deep and
shallow features to obtain shallow position information and deep semantic information.
We believed that the fusion could further improve the performance of the algorithm.

We first included the ASPP module in the network structure. According to the experi-
mental results, when the ASPP module is added in block3 and the expansion rate is (1, 2,
4), the model performance is the best; however, when the fault tolerance threshold is small,
there is no obvious improvement in model performance. A possible reason for this finding
is that the deep feature receptive field is large, which improves the accuracy of key point
recognition. However, because of low resolution and less detailed information, when the
fault tolerance threshold is small, the recognition accuracy is not significantly improved. To
solve this problem, we used deep and shallow feature fusion based on the ASPP module to
further improve the performance of the designed model.

The results show that when the ASPP module is located in block3 and the expansion
rate is (1, 2, 4), the effect of adding dark and light feature fusion becomes worse under
80 cm height and black background. The reason for this finding may be the use of the
ASPP module with the best performance. The module parameters render the receptive field
larger and improve recognition accuracy. However, when the deep and shallow features
are fused, the details of the shallow layers are more obvious. On a black background, the
background color is similar to the body color of the mouse, which may be learned in the
network. To reduce the sharpness of irrelevant information, we adjusted the parameters of
the ASPP module and conducted the experiments. The experimental results showed that
when the ASPP module is added in block2 and the void ratio is (1, 2, 4), the best model
performance can be obtained with deep and shallow feature fusion. Figure 7 shows the
change of recognition accuracy before and after adjustment, and Figure 8 shows some
recognition errors, showing the limitations of the algorithm.

c. Experimental results and analysis between different models.

As shown in Table 4, the detection accuracy of our designed algorithm for the four key
points achieved the highest level; the average PCK was 9%, 6%, and 2% higher than those
of CPM, Stacked Hourglass, and DeepLabCut, respectively. A comparison of detection
speed and model size revealed the detection speed and model size of our designed model
are better than those of CPM and Stacked Hourglass, which can meet the requirement
of real-time detection, but slightly inferior to that of DeepLabCut. Table 5 shows the
performance comparison of the four models for identifying different key points and at
different scales. From the detection accuracy of different key points, the detection accuracy
of the left ear and the right ear is significantly higher than that of the nose tip and the tail
root. This is because the left and right ears of the mouse remain relatively stable and do
not change greatly when the posture changes. However, the nose tip and tail root are often
occluded and deformed, which are relatively difficult to detect. The issue of low accuracy
of the nose tip and tail root will be investigated in our future work.
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Table 4. Experimental results and analysis under different dilation ratios (Tk = 0.4).

Algorithm
PCKat Different Camera Heights

60 cm 70 cm 80 cm

Block3_(1,2,4) 95.32% 96.57% 87.16%
Cpm 84.63% 80.57% 64.59%

Hourglass 64.71% 60.89% 36.62%
deeplabcut 93.74% 91.37% 65.12%

Table 5. Comparison of four models (Tk = 0.4) Tk refer to threshold value.

Algorithm
PCK

Nose Leftear Rightear Tailbase 60 cm 70 cm 80 cm Average

CPM 75.77% 75.75% 81.42% 73.46% 84.63% 80.57% 64.59% 76.61%
Hourglass 48.54% 58.58% 64.83% 44.07% 64.71% 60.89% 36.62% 64.71%

DeeplabCut 86.25% 90.13% 89.96% 85.94% 93.74% 91.37% 65.12% 91.66%
Ours 92.74% 96.25% 96.00% 90.23% 96.71% 96.06% 88.67% 93.82%

We then verified the PCK indicators of each algorithm under different thresholds.
As shown in Figure 9, different thresholds represent different tolerances for errors. The
smaller the threshold, the more refined are the requirements for the prediction results.
Figure 9 shows that our designed algorithm achieved the highest accuracy under differ-
ent thresholds, indicating that the prediction results of the designed algorithm have a
high accuracy.
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4.5. Discussion Section

According to the Figure 9, it can be intuitively seen that the overall performance of the
algorithm in this paper has achieved superior performance at various thresholds, because it
is easier to obtain global information after adding the ASPP module to feel the field increase,
and after adding the jump connection, the semantic information and location information
are integrated. The algorithm mainly focuses on the effect of solving the scale change on the
recognition accuracy of mice, so some other factors that may affect the recognition accuracy
are discussed. In order to cope with the impact of complex background on the performance
of the algorithm, we used four different colors of background to verify the performance of
the algorithm, and the experimental results showed that the recognition accuracy on the
black background was low, and the analysis was due to the confusion caused by the black
background being similar to the color of the mice themselves. Therefore, when the color
contrast between the background and the experimental object is obvious, the recognition
accuracy of the scale change is higher.

5. Conclusions

By combining with the existing key point detection algorithms, we designed a mouse
key point detection model with dilated convolution and deep and shallow feature fusion.
A mouse key point detection dataset was established, and by using this dataset, the best
performance of the model was obtained by adjusting the dilated convolution parameters
and fusion of deep and shallow features. The average PCK index of our designed model for
mouse key point detection reached 93.82% under the threshold of 0.4, which is higher than
the average PCK index of CPM (76.61%), Stacked Hourglass (64.71%), and DeepLabCut
(83.44%). Our designed model achieved excellent performance in mouse key point detection
for scale changes and laid a good foundation for our future studies on mouse behavior
detection based on key point detection.
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