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Abstract: Models of dynamic systems are considered with regard to the tasks of diagnosing real-time
complex information processing and control systems. The problem of diagnosing is one of the most
important in the practice of development technical systems. It is important to note that symmetry
principles are used in this work, in particular, to formulate the basic approach to diagnosing complex
systems. This approach assumes that the components of a system are allocated to the levels based
on inclusion relations. In this case, level-based diagnostic tools with their own models can be
synthesized, and the relations between them are characterized by the symmetry feature. Problems
of both functional and test-based diagnostic methods are discussed. Particular diagnostic methods
may also involve symmetry principles since, in a certain sense, they operate with symmetric notions
of observability and controllability of a dynamic system. The implementation of the proposed
methods is illustrated by an example of their application to a navigation system of an autonomous
underwater vehicle.

Keywords: fault detection; fault isolation; parallel model; interval observers; Luenberger observers;
symmetry; autonomous underwater vehicles

1. Introduction

Problems of diagnostics and fault tolerance remain high on an important place in
the development of real-time complex information processing and control systems. The
methods of functional and test-based diagnostics are a basis of the solutions applied in
practice to synthesize DT. It is important to note that the diagnostic methods considered in
this work operate with symmetric notions of observability and controllability of dynamic
systems. Most interesting among researchers, however, seemed the technique of functional
diagnostics. Numerous approaches are described in [1], including based on dynamic model.
The technique of test-based diagnostics is less popular, but more significant in practical
applications. A good overview of this area can be found in [2].

Although the research in both fields have been conducted for several decades and
the results obtained are presented in numerous publications, practice brings forward new
challenges that require in-depth study. Indeed, any of the known methods is characterized
by some limitations, for example, applicability only to linear objects [3] or insufficient
efficiency under model uncertainties [4]. In our opinion, one of the most significant
factors that motivates new research is the increasing complexity and model uncertainty of
diagnosed systems, multiplicity of causes of hardware and software faults and failures, as
well as errors in the organization of computations.

A solution to the problem of diagnosing such complex systems is made possible
due to a hierarchical approach [2], such that the components of the systems are allocated
to different levels of complexity, and the DT are developed individually for each level,
for example, the levels of distributed systems, local systems, dynamic units, inertialess
converters. Further, DT are synthesized for each level with the aim to detect failures
in information exchanges between the components. The relation between models of
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different levels is characterized by symmetry features that simplify the implementation of
this approach.

Problems of functional and test-based diagnostics are discussed below. The main
contribution of this article is characterized by two components. First, the algorithm for
synthesizing a top-level diagnostic model for a complex information processing system.
Secondly, analysis of the effectiveness of various diagnostic models for control systems
under conditions of model uncertainty. It is important that in most cases a dynamic system
is used as these diagnostic models.

The proposed methods are applied to the navigation system of an autonomous under-
water vehicle (AUV), as a component of a real-time complex information processing and
control system [5]. The functional and test-based diagnostic techniques are used for the
levels of dynamic units and distributed computing systems, respectively.

The article contains the following sections: Section 2 is devoted to the methodology
for diagnosing the level of a distributed computing system within the test-based approach;
Section 3 considers the level of dynamic units within the framework of the functional
approach to diagnostic systems with model uncertainties, and Section 4 is the conclusion.

2. Test-Based Diagnostics of a Real-Time Distributed Computing System

The object of diagnostics in this section is a real-time distributed information process-
ing system, or rather, a distributed computing system as its main component. A distinctive
feature of such systems is a periodic flow of input data. The discussion focuses on the for-
mation of top-level diagnostic models. This level presents a distributed computing system
as a composition of software modules (SM) which are located on different processors. SMs
exchange necessary data with each other asynchronously, i.e., when ready. In this case, the
class of faults includes all possible failures in addressing the exchanges between the SMs of
the system.

Within the context of the present topic, we should mention an important direction
in the simulation of complex systems, which has become widespread recent years. This
approach assumes the use of discrete event system [6] as a model of diagnosed system. In
this case, the behavior of the diagnosed system is described as a sequence of events. This
models is quite often used in solving diagnostic problems [7,8]. The model considered
below can also be attributed to the class of discrete event models because the system
behavior is represented as a sequence of exchange events between local systems or SM.
A feature of the considered approach is that a diagnostic dynamic model is built into the
system software, executed in parallel with the main functional algorithms, and is intended
to make test-based diagnostics simpler.

An approach for complex distributed computing system diagnosis based on dynamic
finite-state-machine models is also known [9]. However, in this case, the asymptotic
complexity of the test design algorithm is characterized by the exponential dependence on
the model dimension. When the proposed dynamic model is used, the researchers choose
the algorithms for processing test sequences in each SM, and they do so in such a way as to
simplify both the algorithm for constructing the test and the test itself. In particular, the
researcher selects a linear model that allows using the algorithms for constructing the tests
with asymptotic complexity, characterized by the polynomial dependence on the model
dimension. Reducing the complexity of the algorithms used for constructing the tests
becomes especially important in the case of real-time distributed computing systems.

2.1. Synthesis of a Periodically Non-Stationary Model of a Distributed System: Problem Statement
of Test-Based Diagnostics

The process of the synthesis of the proposed dynamic model (co-called parallel model)
involves two stages. At the first stage, the model structure is formed, which is a set of
computational paths (routes) that cover all the edges of the graph of intermodule links of
the initial system. At the same time, the computational path is a sequence of triggered SMs
connecting a certain input to the output. Then, each of the obtained paths is compared to the
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chain lj = {vi}
nj
i=1 in which the number of dynamic links vi is equal to the number of SMs

through which the given path passes; nj is the total number of links in the j-th chain. Thus,
the model structure is a set of independent chains

{
lj
}m

j=1, where m is the total number
of independent chains in the model. At the second stage of the model construction, the
type of dynamic links is determined. Here, we take into account the facts that the desired
dynamic model of the system is used further to design the tests and that the procedure for
designing the tests is simplified if the system model is, first, linear, and second, controllable
and observable [1].

Let the dynamic link be described by a discrete linear dynamic system defined in the
binary field F = {0, 1}:

xi,j(k + 1) = fi,jxi,j(k) + gi,jui,j(k),
yi,j(k) = hi,jxi,j(k), i = 1, nj, j = 1, m,

(1)

where xi,j(k) ∈ Fn, ui,j(k) ∈ Fq, yi,j(k) ∈ Fp are the vectors of state, input, and output,
respectively, for the i-th link of the model of the j-th chain; n is the state vector dimension,
q is the input vector dimension, p is the output vector dimension, fi,j ∈ Fn×n, gi,j ∈ Fn×q,
hi,j ∈ Fp×n are the matrices of dynamics, input, and output, respectively, and nj, m are the
number of links in the j- chain and the number of chains in the system model, respectively.
It is important that the links must be such that the system model becomes observable and
controllable. Since the information is transmitted sequentially from link to link, we assume
that yi,j(k) = ui+1,j(k + 1), except for the first link in the chain because the test from the DT
arrives at its input.

The dynamic description of a chain is obtained by the following rules. Assume that
only one exchange takes place in the system at each time point. In practice, this assumption
is not always true; however, there are works that show that this does not prevent the use
of such models when constructing tests. Taking into account the above assumption, the
general state vector xj(k) of the chain is formed from the state vectors of the links (1) xi,j(k),
i = 1, nj. Information transfer between the SMs and DTs is described using block matrices
Fj(j(k)), Gj(j(k)), Hj(j(k)) made up of the matrices, input and output of the links described
by model (1). For ease of description, let us relate each sequence of matrices in an interval,
equal to the period of processing of regular data in the original system, with a sequence of

indices, the set of which will be denoted by Γj = {γs}
Nj
s=1, where Nj = nj + 1 is the number

of exchange sessions. The values of index sequences are obtained as a result of a cyclic shift
of the initial sequence in an interval equal to Nj. For example, for N = 3, we have a set
Γ = {γ1,γ2,γ3} = {1, 2, 3; 2, 3, 1; 3, 1, 2} consisting of three sequences. Then

xj(k + 1) = Fj(γs(j(k)))xj(k) + Gj(γs(j(k)))uj(k),
yj(k) = Hj(γs(j(k)))xj(k),

(2)

where xj(k) ∈ FNn, uj(k) ∈ FNq, yj(k) ∈ FNp are the vectors of state, input, and output,
respectively, Fj(γs(j(k))) ∈ FNn×Nn, Gj(γs(j(k))) ∈ FNn×Nq,Hj(γs(j(k))) ∈ FNp×Nn are
the matrices of dynamics, input, and output, respectively; j(k) = 1, N is information
exchange counter. In these equations the matrices depend on the current value of the
information exchange counter, i.e., the model is non-stationary. Moreover, it is periodically
non-stationary since the data processing sequence in the system is periodic due to the
periodicity of the input data flow.

In terms of model (2), the class of faults considered here is defined as all possible
distortions of the model matrices. Based on the assumptions made, it is necessary to
develop a test that detects the specified class of faults.
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2.2. Application Results

The main task of the AUV navigation system is to generate navigation parameters
(local coordinates, speed, and under keel clearance) and orientation parameters (yaw,
pitch, and roll) to ensure safe motion on the route. The structure of the navigation system
under consideration is shown in Figure 1. The core of any modern navigation system is a
strapdown inertial navigation system (SINS) [10]. The SINS is of vital importance because
it is able to generate all the necessary navigation and orientation parameters independently,
except under keel clearance, which is measured by the echo sounder. The navigation system
also uses a water speed log.
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Figure 1. Structure of the AUV navigation system.

To eliminate the SINS errors that grow with time, it is necessary to have coordinate
correction tools. Preferably, there should be several tools based on different principles of
operation. The most accurate coordinate correction is provided by using data from a global
navigation satellite system (GNSS). However, GNSS signals are unavailable for AUVs in
submerged position. Therefore, at the moment, such promising methods of correction as
map-aided navigation (with the use of geophysical fields) [11] and sonar navigation [12] are
most appropriate in this case. An important part of the navigation system is a digital signal
processing (DSP) system. The DSP system collects and processes the data from different
parts of the AUV navigation system, transmits them to consumers, diagnoses, and records
all data.

When developing the DT, the navigation system can be considered both as an inde-
pendent system, and as a part of the AUV’s complex distributed information processing
and control system. The first case is considered in this paper.

The initial information for synthesizing a parallel model and tests for the computing
system of AUV navigation system is the information graph of the software presented in
Figure 2. Software modules responsible for the implementation of a specific functional
task are at the graph vertices. Computational flows/paths that carry data from a particular
member of information exchange are highlighted in different colors. Fault detection in the
addressing of intermodule exchanges is the main task of the test-based diagnosis method
within the problem statement under consideration.
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At the first stage of the parallel model synthesis based on the information graph of soft-
ware, a set of independent computational paths was found that provided 100% coverage of
its edges. For the considered graph, which consists of 25 SM, the number of computational
paths is 36, while the path with a minimum length consists of two SM, and that, with the
maximum length of eight SM. The number of computational paths corresponds to the
number of independent chains in the resulting parallel model. Every independent chain is
described by dynamic system (2). The dimension of the state vector of the resulting parallel
model is 192, which directly depends on the lengths of the computational paths, and so
does the test lengths.

At the second stage, synthesis of the input test actions and reference responses of the
model to these actions is performed according with the algorithm in [13].

The resulting number of test and reference sequences is 684 for a complete check of
the graph for the absence of failures in the addressing of intermodule exchanges. This fact
was confirmed by practical experiments.

3. Functional Diagnostics of Dynamic Systems with Model Uncertainties

This section is devoted to functional diagnostics of systems with model uncertainty.
We consider the level of dynamical units in terms of the hierarchical approach.

The approach focuses on the use of so-called state observers. In scientific literature,
much attention is paid to the problem of constructing state observers [14], primarily as
an integral part of any control system that solves the problem of estimating the object’s
state vector. Then, based on this estimation, the required control is formed. The purpose
of the observers discussed below is different, namely, detection and isolation of faults in
control systems hardware, and in sensors or in an object under control itself. The problems
researchers face in both cases have much in common. The most acute among them is the
problem of adequacy of the used model of the system being diagnosed or an object under
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control. Unfortunately, in most cases, the system model is not fully known to the researcher,
which significantly complicates the fulfillment of diagnostics and estimation tasks. The
classical approach is to use Luenberger observers, where the basic assumption is the fact that
the model of the system being diagnosed is completely known. Compared to the classical
approach, interval observers [15,16] use additional knowledge about the disturbance,
measurement noise, as well as the uncertainties of the system model parameters. The facts
of the use of interval observers in diagnostic tasks are also known [17].

Further discussion is devoted to the application of interval observer theory in develop-
ing DT for the AUV navigation system. The development included an analysis of technical
solutions based on a bank of Luenberger observers and a bank of interval observers in
order to solve the problem of fault detection and isolation in dynamic components with
model uncertainties.

3.1. Functional Diagnostic Tools Based on State Observers: Problem Statement in the Case of
Model Uncertainties

Assume that there is a continuous linear stationary dynamic system with one input
and output, which can be defined on the set of real numbers R:

.
x(t) = F(Θ)x(t) + Gu(t) + d(t),

y(t) = Hx(t) + υ(t),
(3)

where x(t) ∈ Rn is the state vector, F(Θ) ∈ Rn×n is the dynamics matrix, Θ is the diagnosis
parameter vector, G ∈ Rn×1 is the input matrix, u(t) is the input signal (control), d(t) ∈
Rn×1 is the vector of disturbances, y(t) is the output signal, H ∈ R1×n is the output matrix,
υ(t) is the measurement noise. Besides the example of an indirect stabilization system
considered below, such a dynamic system can describe an autopilot, various engines,
sensors, etc.

Assume that the vectors d(t) and υ(t) are not defined, but they have guaranteed

intervals of values for d
_
(t) ≤ d(t) ≤

¯
d(t), where d

_
(t) ∈ Rn×1,

¯
d(t) ∈ Rn×1 are bounding

vectors of appropriate dimension, and |υ(t)|≤ V for ∀t ≥ 0. In addition, the initial

conditions x(0) are unknown and belong to the guaranteed interval x
_0
≤ x(0) ≤ ¯

x0 for

∀t ≥ 0.
The class of faults being considered includes parametric faults [2] that can be described

as deviations of the diagnosed parameters’ vector Θi = (Θ+∆Θi) from the nominal values,
where ∆Θi is the fault magnitude, i = 1, k, k is the number of considered faults in the system.

The task of fault isolation based on state observers consists in synthesizing a bank of
observers, each of which is tuned to a corresponding fault. In other words, its dynamics
matrix corresponds to F(Θi). Therefore, if a fault with vector Θi occurs in the system, the
residual between the output signal of the system being diagnosed and the output signal of
the observer with the dynamics matrix F(Θi) will tend to zero at d(t) = 0, in contrast to
the residuals formed by the rest of the observers in the bank. Thus, faults can be isolated in
the system being diagnosed by estimating the values of the residuals’ vector.

It is intuitively clear that with an increase in the level of uncertainty in the model
of a system under diagnostics (initial conditions, disturbances, measurement noise) or a
decrease in the fault level, the efficiency of diagnostics will reduce. The reason is that it is
difficult to notice minor deviations in the operation of the system, especially in the presence
of disturbances. However, it is interesting to quantify the reduction in efficiency. For this
purpose, it is necessary for system (3) to synthesize a bank of Luenberger observers, as well
as a bank of interval observers. The next step is to obtain a quantitative estimation of the
efficiency of performing the fault isolation task (probability of incorrect determination of
the system technical state) in the presence of uncertainties (initial conditions, disturbances,
measurement noise) in the models of the system being diagnosed.
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3.2. Application Results

As an example, we consider a dynamic model of a gearless tracking system of an indi-
rectly stabilized gravimeter platform, because it is sensitive to external disturbances in the
form of sea heaving. The system is described by the fourth-order differential equations [18]:

d
dt


α2(t).
α2(t)
β(t)
.
β(t)

 =


0 1 0 0

−Kmn
J − (Kmp+S∂)

J 0 K∂
J

0 0 0 1
0 0 − 1

TMTe
− 1

Te



α2(t).
α2(t)
β(t)
.
β(t)

+


0
0
0
Ky

TMTe

u(t) +


d1(t)

0
d2(t)

0

, (4)

y(t) =
[
1 0 0 0

][
α2(t)

.
α2(t) β(t)

.
β(t)

]T
+ υ(t), (5)

where α2(t) = θk(t)− α(t) is the angle of the platform rotation relative to the horizon,
θk(t) is the roll angle, α(t) is the stabilization error, β(t) is the torque motor rotor angle, J
is the platform’s moment of inertia, Kd f is the coefficient of dry friction on the stabilization
axis, Ke is the motor torque coefficient, Sv f is the coefficient of viscous friction on the axis
of rotation of the motor, Tm—motor electromechanical time constant, Te—electromagnetic
time constant of the torque motor control winding, Kg is the voltage gain, u is the motor
control voltage, d(t) =

[
d1(t) 0 d2(t) 0

]
is the vector of disturbances the components

of which are presented as a superposition of harmonic signals of different frequencies, υ(t)
is the additive Gaussian white noise in a limited band. For the disturbances, the lower

d
_
(t) = [d1(t) d2(t)]

T and the upper
¯
d(t) = [d1(t) d2(t)]

T intervals of values are defined

in the form of constrains on the amplitudes of the harmonic components.
In the process of simulation, the amplitudes of harmonics of the disturbance vector

components increased on a scale: 10%, 50%, and 100% from the initial values. A periodic
abrupt change in the motor torque coefficient Θ1 = Ke + ∆Ke,1 was considered as a fault.
The fault level value ∆Ke,1 increased on a scale: 10%, 50%, and 100% from the nominal
values Ke during simulation. The solution of the fault isolation task based on the bank of
interval observers is compared to the solution based on the use of the classical bank of
Luenberger observers to demonstrate its effectiveness. In both cases, the banks include two
observers: one with the parameters Θ of system (4) being diagnosed, and the other one
with the vector of parameters Θ1.

As a result, after a series of model experiments with different values of fault and
disturbance levels, an estimate of the probability of incorrect determination of the system
technical state was obtained for the synthesized banks of observers (Figure 3).
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An increase of the fault values results in a decrease in the probability of incorrect
determination of the system technical state, and an increase in the disturbance level leads
to its increase for both the bank of Luenberger observers and the bank of interval observers.
However, under the worst conditions, at low fault levels (10% deviation) and the maximum
level of disturbances (100% deviation), the bank of interval observers correctly determined
the system technical state (error probability of about 25%). Under the same conditions,
the bank of Luenberger observers worked with the error probability of about 50%, which
makes it impossible to carry out the fault isolation task.

4. Conclusions

The article presents the results of a study in the field of diagnostics of complex technical
systems based on functional and test-based diagnostic methods. The described approaches
are characterized by symmetry features, which make it possible to simplify the analysis of
systems being diagnosed, as well as the synthesis of diagnostic tools. It is important to note
that a dynamic system model was used as a diagnostic model in all of the considered cases.

The methods of functional and test-based diagnostics have been applied to the naviga-
tion system of an autonomous underwater vehicle. The results obtained have confirmed
their effectiveness in practice.

Further research is supposed to be continued in the direction of improving the tech-
nique of functional diagnostics based on the use of bank of interacting interval observers.
We assume that this structure of the bank of observers will help with sensitivity in case of
detection of small value failure.
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