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Abstract: A linear canonical S transform (LCST) is considered a generalization of the Stockwell
transform (ST). It analyzes signals and has multi-angle, multi-scale, multiresolution, and temporal
localization abilities. The LCST is mostly suitable to deal with chirp-like signals. It aims to possess
the characteristics lacking in a classical transform. Our aim in this paper was to derive the sampling
theorem for the LCST with the help of a multiresolution analysis (MRA) approach. Moreover, we
discuss the truncation and aliasing errors for the proposed sampling theory. These types of sampling
results, as well as methodologies for solving them, have applications in a wide range of fields where
symmetry is crucial.
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1. Introduction

R. G. Stockwell et al. in [1] studied the generalized version of the integral transform
called the Stockwell transform or S transform (ST).

S[ f ](ξ, ε) =
∫ ∞

−∞
f (t)

|ε|√
2π

e−
(t−ε)2ξ2

2 e−i2πξtdt.

The uniqueness of the ST lies in the fact that, on the one hand, it provides a frequency-
dependent resolution, while on the other hand, it maintains a direct relationship with the
classical Fourier spectrum. Hence, it is used in wider applications in electrocardiograms,
seismograms, power-quality, and sound analyses for detecting and interpreting events
in time series [2–5]. The LCST was developed by Zhang et al. [6] in 2011 to provide a
time linear canonical domain representation. The LCST aims to possess the characteristics
lacking in a classical transform. Various types of transformations have been constructed
using the LCT in recent times. For a further look at these constructions, we refer the readers
to [7–14] and the references therein.

We introduce the sampling theorem with error estimations in this work (based on the
LCST). The sampling theorem defines the rate at which a constant time signal is sampled so
that the data from the end signal is utilized. In other words, data loss during this process
should be zero [15–21]. It helps to recover the continuous-time signals from those of the
sampled signals (due to the availability of natural values of time signals at a predetermined
rate in reconstruction). However, there is a drawback, i.e., an infinite number of samples
is needed for the perfect reconstruction process. A nice and useful feature of sampling
is that it measures sampling frequencies at an accurate rate. To reduce the complexity of
computing the information, it is necessary to limit the sampling frequencies, which are
required to diminish the measured information. However, there is the threat of data loss
in the signal whenever we choose a low sampling frequency. Hence, the need of the hour
pertains to the trade-off between these two limits. The highlights of our contribution are:
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• To develop a sampling theorem in the linear canonical S transform domain via the
MRA approach.

• To introduce truncation and aliasing errors for sampling.

The findings of our work can be best utilized in symmetry. The remainder of the paper
is organized as follows. In Section 2, we discuss some preliminaries that are required in
subsequent sections. In Section 3, we introduce the sampling theorem for LCST associated
with the multiresolution analysis (MRA). In Section 4, we discuss the truncation and
aliasing errors for sampling.

2. Preliminaries
2.1. Linear Canonical Transform (LCT)

For a uni-modular matrix M = (A, B, C, D), the linear canonical transform of any
function f ∈ L2[R] is stated as

LM[ f
]
(w) =


∫
R

f (t)KM(t, w) dt, B 6= 0
√

D exp
{

iCDw2

2

}
f (Dw), B = 0,

(1)

where KM(t, w) is called the kernel of the LCT, which is shaped as

KM(t, w) =
1√

2iπB
exp

{
i(At2 − 2tw + Dw2)

2B

}
, B 6= 0.

note that for B = 0, the LCT defined by Equation (1) reduces to the chirp multiplication
operator and is of no use to us. Hence, for the sake of brevity, we set B 6= 0 in this paper,
unless stated otherwise.

The inversion formula for the LCT is given by

f (t) =
∫
R

LM[ f
]
(w)KM(t, w)dw, B 6= 0.

2.2. Linear Canonical S Transform (LCST)

The linear canonical S transform (LCST) is a hybrid of the S transform (ST), which is
an extension of the LCT and the ST, given by

SM[ f ](ξ, ε) =
∫ ∞

−∞
f (t)g(ξ − t, ε)KM(t, ε)dt

=
1√

2iπB

∫ ∞

−∞
f (t)g(ξ − t, ε)e

i(At2 − 2tε + Dε2)

2B dt (2)

where g(ξ − t, ε) is a Gaussian window scalable function of frequency ξ and time t, and is
given by

g(ξ − t, ε) =
|ξ|

2kπ
√

2π
e−

(ε−t)2ξ2

8π2k2 .

If we take M = (0, 1,−1, 0), the LCST given by Equation (2) reduces to the novel S
transform.

Let us assume that h(t, ξ, ε) = g(t− ε, ξ)KM(ξ, t), then we can introduce a new function
HM(ε, ξ, ξ ′), given by

HM(ε, ξ, ξ ′) =
∫
R

h(t, ξ, ε)KM(ξ ′, t)dt.

and, thus, with the help of this new function, the LCST defined in (2) can be written as

SM[ f ](ξ, ε) = SM
f (ξ, ε) =

∫
R

LM
f (ξ)HM(ε, ξ, ξ ′)dξ,
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where SM
f (ξ, ε) and LM

f (ξ) represent the LCST and LCT of the signal f (t). Now, we shall
introduce some notations and definitions that will be used in derivations conducted in later
sections.

2.3. Notations and Definitions

The notations used in this paper are presented here for a better understanding of the
proposed technique.

• L1[0, 2π]: denotes the space of absolutely integrable functions on [0, 2π].
• L2[R]: denotes the space of all square integral functions on R.
• `2[Z]: denotes the space of all square-summable sequences on Z.
• a[n]: represents the discrete signal.
• H: represents the finite-dimensional Hilbert space, whose every basis is a Riesz basis.
• χE(x): denotes the characteristic function of a subset E ⊂ R.

In the next section, the multiresolution analysis (MRA) associated with LCST is discussed,
which will give the time and frequency information simultaneously.

2.4. Multiresolution Analysis

A technique for the L2−estimation of the function with arbitrary accuracy is known
as MRA.

Definition 1. A multiresolution analysis (MRA) associated with LCST, as defined in [22], is a
sequence of closed subspaces

{
VM

j : j ∈ Z
}

of L2[R], with the following properties:

(a) VM
j ⊂ VM

j+1 for all j ∈ Z;

(b)
⋃

j∈Z VM
j is dense in L2[R]

(c)
⋂

j∈Z VM
j = {0}, where 0 is the zero element of L2(R);

(d) f (t) ∈ VM
j if and only if f (2t)eiπA((2t)2−t2) 1

B ∈ VM
j+1 for all j ∈ Z;

(e) There exists a function ϕ in L2[R], such that φM(t) = ϕ(t)e
iπAt2

B belongs to VM
0 .

The function in (d) is known as a scaling factor of the given MRA
{

VM
j : j ∈ Z

}
,

assuming that the set of functions is a Riesz basis of the subspace VM
0 . In (e), ϕ ∈ L2[R] is

such that
{

ϕM
0,λ = ϕ(t− λ)e−iπA(t2−λ2) 1

B

}
λ∈Z

, obtained by modulation of ϕ(t), forms an

orthonormal basis for subspace VM
0 . The modulated function mentioned in (e) is known

as the scaling function of the MRA subspace
{

VM
j : j ∈ Z

}
. Let us accept that sequence{

ϕM
0,λ : λ ∈ Z

}
is a Riesz basis:

VM
0 =

{
∑

λ∈Z
a[n]ϕM

0,λ(t) : a[n] ∈ `2[Z]
}

.

Theorem 1. Let ϕ(t) ∈ L2[R] and VM
0 = span

{
ϕM

0,λ = ϕ(t− λ)e−iπA(t2−λ2) 1
B

}
λ∈Z

, then{
ϕM

0,λ

}
λ∈Z

is a Riesz basis of the subspace VM
0 of L2[R], if there exist constants 0 < A ≤ B < +∞,

such that
A ≤ H2

ϕ,M(ξ, ε) ≤ B, ∀ξ, ε ∈ [0, 2πB],

where

Hϕ,M(ξ, ε) =

(
∞

∑
−∞

∣∣∣∣Φ( ξ

B
+ 2πk, εB + 2πk

)∣∣∣∣2
)1/2

(3)



Symmetry 2022, 14, 1416 4 of 16

satisfying the condition

0 ≤ ‖Hϕ,M(ξ, ε)‖k ≤ ‖Hϕ,M(ξ, ε)‖k+1 < ∞. (4)

where Φ
(

ξ
B , εB

)
denotes the ST of the canonical scaling function ϕ(t), where the argument is

scaled by ( 1
B ) and B with respect to frequency and time axis.

Proof. The proof of the theorem is present in [22].

It is clear that ϕ(t) is orthonormal if A = B = 1, i.e.,HΦ,M(ξ, ε) = 1, where ξ ∈ R and
each VM

k is called a multiscale subspace of LCST. Let {ϕM
0,λ : λ ∈ Z} be the orthonormal

basis of VM
0 then ϕ(t) is orthonormal. Assume that the LCT scaling function ϕ(t) is an MRA

of {VM
k : k ∈ Z}, then {ϕM

0,λ : λ ∈ Z} is the Riesz basis of VM
1 [22]. As ϕM

0,λ ⊂ VM
0 ⊂ VM

1 is
true for all λ ∈ Z, there is a sequence g[λ] ∈ `2[Z], satisfying

ϕM
0,λ(t) =

∞

∑
λ=−∞

g[λ]ϕM
1,λ(t).

for simplicity,

φM
k,λ(t) = 2

k
2 φ(2kt− λ)e

iπA[t2−( λ
2k )2 ]

B .

Suppose p[n] ∈ `2[Z]; if {φM
0,λ(t) : λ ∈ Z} is the Riesz basis of SM

0 , φ(t) is the canonical
function of MRA {VM

k : k ∈ Z}. Hence, for any f (t) ∈ VM
k+1 = SM

k ⊕VM
k , then there exits

b[λ] and c[λ] in `2[Z], such that

f (t) = ∑
λ∈Z

b[λ]ΦM
k,λ(t) + ∑

λ∈Z
c[λ]ΦM

k,λ(t),

where {c[λ] : λ ∈ Z} are the LCST coefficients of f (t) in SM
k . Subsequently,

Φ
(

ξ

B
, εB
)
= Λ

(
ξ

2B

)
Φ
(

ξ

2B
,

εB
2

)
(5)

and

Ψ
(

ξ

B
, εB
)
= Γ

(
ξ

2B

)
Φ
(

ξ

2B
,

εB
2

)
. (6)

Here, Φ
(

ξ
B , εB

)
and Ψ

(
ξ
B , εB

)
are the STs of ϕ(t) and φ(t), respectively, with the

arguments scaled by 1
B and B for the frequency and time axis, respectively, where

Λ
(

ξ

2B

)
=

1√
2

∑
λ∈Z

g[λ]ei2πλ ξ
B eiπ λ2

2B

and

Γ
(

ξ

2B

)
=

1√
2

∑
λ∈Z

p[λ]ei2πλ ξ
B eiπ λ2

2B

are defined in L∞[I]. For any τ ∈ Z+ ∪ {0}, iterating (5), we have

Φ
(

2τξ

B
, 2τεB

)
= Υτ(ξ)Φ

(
ξ

B
, εB
)

, (7)

where Υ0(ξ) = 1 and Υτ(ξ) = Πτ−1
τ=0Λ

(
2τ ξ

B

)
τ ≥ 1. It can be verified that

Υτ(ξ) = Υτ(ξ + 2πB) ∈ L∞[I].

now let us define Dτ = sup Υτ(ξ)
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Dτ =
τ−1⋂
τ=0

sup Λ
(

2τξ

B

)
; τ ≥ 1. (8)

since, sup Λ
(

2ξ
B

)
= 1

2 sup Λ
(

ξ
B

)
,; therefore, from (8), we have

Dτ =
τ−1⋂
τ=0

τ

2
sup Λ

(
ξ

B

)
and can be defined as

Φ̃τ

(
2τξ

B
, 2τεB

)
= ∑

k∈Z
Φ
(

2τξ

B
+ 2τ+1kπ, 2τεB + 2τ+1kπ

)
. (9)

adding (5) and Poisson’s summation formula of the ST results, we have

Φ̃τ

(
2τξ

B
, 2τεB

)
= Υτ(ξ) ∑

k∈Z
Φ
(

ξ

B
+ 2τ+1kπ, εB + 2τ+1kπ

)

Φ̃τ

(
2τξ

B
, 2τεB

)
= Υτ(ξ)Φ̃

(
ξ

B
, εB
)

, (10)

where Φ̃
(

ξ
B , εB

)
represents the discrete-time ST of ϕ[λ], being the sampled form of ϕ(t)

with the argument scaled by 1
B and B for the frequency and time axis.

As the sampling interval (or sampling theorem) plays an important role in MRA, the
sampling theorem of LCST (based on the approach of the canonical scaling function of
MRA) is discussed in the next section.

3. Sampling Theorem of LCST

In this section, the sampling procedure in the sequence of subspace VM
0 for the stable

generator function ϕ(t) is a set of L2[R] and a Gaussian function g(t, ξ),; its function space
is defined as

f (t) = ∑
λ∈Z

f [λ]ϕ(t− λ)g(t, ξ)e−iπA(t2−(λ)2) 1
B ,

where f [λ] ∈ `2[Z] and g(t, ξ) ≤ 1,∈ R. We consider f (t) as a pointwise convergent
because∣∣∣∣∣∑

λ∈Z
f [λ]ϕ(t− λ)g(t, ξ)e−iπA(t2−(λ)2) 1

B

∣∣∣∣∣
2

≤
(

∑
λ∈Z
| f [λ]|2 ∑

λ∈Z
|ϕ(t− λ)|2 ∑

λ∈Z
|g(t, ξ)|2

)
.

hence, without loss of generality, any continuous function f (t) ∈ VM
0 can be considered for

the sampling. Now, let us begin by presenting the sampling theorem for the LCST.

Theorem 2. Suppose generator functions ϕ(t) and g(t, ξ) belonging to L2[R] are the canonical
scaling signals of MRA {VM

k : k ∈ Z} related to the LCST and its sampling sequence ϕ(λ), which
is an integer of ϕ(t) belonging to `2[Z]. Then a continuous function s(t), which is a set of L2[R],
can be defined with s(t)e−i A

2B t2 ∈ VM
0 , such that

f (t) = ∑
η∈Z

f [η/2τ ]s(2τt− η)g(t, ξ)e
−iπA

B (t2−(η/2τ)2), (11)
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where τ ∈ Z+ ∪ {0}, and for all f (t), g(t, ξ), are sets of VM
0 . Equation (11) holds if

1
√

2πΦ̃
(

ξ
B , εB

)χDτ (ξ) ∈ L2(I). (12)

moreover, the function s(t) in (11) satisfies

S
(

ξ

B
, εB
)
=

Φ
(

ξ
B , εB

)
√

2πΦ̃
(

ξ
B , εB

) , ξ, ε ∈ Dτ , (13)

where S
(

ξ
B , εB

)
and Φ

(
ξ
B , εB

)
represent the ST of s(t)and ϕ(t) with the argument scaled by 1

B
and B for the frequency and time axis, respectively.

Proof. Let us assume that (12) is true; hence, Φ̃
(

ξ
B , εB

)
6= 0, holds for a.e ξ, ε in Dτ , by [22];

we have a sequence a[n] ∈ `2[Z], such that

1
√

2πΦ̃
(

ξ
B , εB

)χDτ (ξ, ε) = ∑
λ∈Z

∑
λ∈Z

a[λ]eiπA λ2
B e−i2πξ ′ λ

B H∗M(µ, ξ, ξ ′), (14)

holds in the L2[I] sense. As Φ̃
(

ξ
B , εB

)
is periodic with period 2πB, (14) can be written as

∫
R

∣∣∣∣∣∣
Φ
(

ξ
B , εB

)
√

2πΦ̃
(

ξ
B , εB

)χDτ (ξ, ε)

∣∣∣∣∣∣
2

dξ = ∑
k∈Z

∑
k∈Z

∫
I

∣∣∣∣∣∣
Φ
(

ξ
B + 2kπ, εB + 2kπ

)
√

2πΦ̃
(

ξ
B , εB

)
∣∣∣∣∣∣
2

χDτ (ξ, ε)dξ.

now applying (3), the above equation becomes

∫
R

∣∣∣∣∣∣
Φ
(

ξ
B , εB

)
√

2πΦ̃
(

ξ
B , εB

)χDτ (ξ, ε)

∣∣∣∣∣∣
2

dξ =
∫

I

H2
ϕ,M(ξ, ε)

|
√

2πΦ̃
(

ξ
B , εB

)
|2

χDτ (ξ, ε)dξ. (15)

from (4) and (15), we can establish

∫
R

∣∣∣∣∣∣
Φ
(

ξ
B , εB

)
√

2πΦ̃
(

ξ
B , εB

)χDτ (ξ, ε)

∣∣∣∣∣∣
2

dξ =
∫

I

1

|
√

2πΦ̃
(

ξ
B , εB

)
|2

χDτ (ξ, ε)dξ‖H2
ϕ,M(ξ, ε)‖2,

which implies that
Φ
(

ξ
B ,εB

)
√

2πΦ̃
(

ξ
B ,εB

)χDτ (ξ, ε) ∈ L2[R]. Thus, we can obtain

S
(

ξ

B
, εB
)

= S{s(t)}
(

ξ

B
, εB
)

= χDτ (ξ, ε)
Φ
(

ξ
B , εB

)
√

2πΦ̃
(

ξ
B , εB

)χDτ (ξ, ε), (16)

where S is the ST operator. Further simplifying, we have

Φ
(

ξ

B
, εB
)

χDτ (ξ, ε) =
√

2πS
(

ξ

B
, εB
)

Φ̃
(

ξ

B
, εB
)

. (17)
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now inserting (14) into (17),we obtain

S
(

ξ

B
, εB
)
= Φ

(
ξ

B
, εB
)

∑
λ∈Z

∑
λ∈Z

f [λ]eiπA λ2
B e−i2πξ ′ λ

B H∗M(µ, ξ, ξ ′). (18)

next, by the relation between LCST and ST, we have

SM{s(t)e−iπA t2
B }(ξ, ε) =

√
2πAMeiπA λ2

B S{s(t)}
(

ξ

B
, εB
)

. (19)

substituting, (16) and (18) into (19) the LCST of the modulated signal can be written as

SM{s(t)e−iπA t2
B }(ξ, ε) =

√
2πΦ

(
ξ

B
, εB
)

∑
λ∈Z

∑
λ∈Z

a[λ]KM(ξ, λ)

=
√

2πÃM(ξ, ε)Φ
(

ξ

B
, εB
)

,

where ÃM(ξ, ε) represents the DTLCST of a[λ]. Implementing the semi-discrete canonical
convolution theorem [23], we have

s(t)e−iπA t2
B = ∑

λ∈Z
ϕ(t− λ)a[λ]e−iA π

B (t
2−λ2),

where s(t)e−iπA t2
B ∈ VM

0 as ϕ(t− λ)e−iA π
B (t

2−λ2) is the Riesz basis of VM
0 . Now, adding (17)

and (8) results in

Υτ(ξ)Φ
(

ξ

B
, εB
)

χDτ(ξ, ε) = Υτ(ξ)
√

2πS
(

ξ

B
, εB
)

Φ̃
(

ξ

B
, εB
)

. (20)

implementing (7) and (9) in (20) and scaling by 2τ , we have

Φ
(

ξ

B
, εB
)
=
√

2πS
(

ξ

2τ B
,

εB
2τ

)
Φ̃τ

(
ξ

B
, εB
)

. (21)

making use of Poisson’s summation formula of the ST from [16] in (21), we have

Φ̃τ

(
ξ

B
, εB
)
=

1
2τ ∑

λ∈Z
ϕ

[
λ

2τ

]
e−i2πξ

η
2τ B . (22)

applying IST on both sides of (22)

ϕ(t) = ∑
λ∈Z

ϕ

[
λ

2τ

]
S(2τt− λ). (23)

now for any function f (t) ∈ VM
0 , there is a sequence d[k] ∈ `2[Z], such that

f (t) = ∑
k∈Z

d[k]ϕ(t− k)e−iπA(t2−k2) 1
B . (24)

from (24) and (23), we have

f (t) = ∑
k∈Z

d[k] ∑
λ∈Z

ϕ

[
λ

2τ

]
S{2τ(t− k)− λ}e−iπA(t2−k2) 1

B . (25)

setting λ = 2τk + η in (25), we have

f (t) = ∑
λ∈Z

S(2τt + η) ∑
k∈Z

d[k]ϕ
[

λ

2τ
− k
]

e−iπA(t2−k2) 1
B . (26)
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using (24) above can be rewritten as

f (t) = ∑
k∈Z

d[k]ϕ(λ− k)e−iπA(t2−k2) 1
B . (27)

therefore, { f [λ] : λ ∈ Z} is well defined as d[λ], ϕ[λ] ∈ `2Z. This satisfies the condition of
convergence, i.e.,

f [n]→ 0as[n]→ ∞.

Let ÃM(ξ, ε) represent the discrete-time LCST of d[k]. ÃM(ξ, ε) and Φ̃
(

ξ
B , εB

)
belong

to L1[I], thus,

ÃM(ξ, ε)Φ̃
(

ξ

B
, εB
)

2πe−iπA ξ2
B√

1− iA
B

∈ L1[I]. (28)

evaluating the Fourier coefficients in (28), we have

1
2πB

∫
I
ÃM(ξ, ε)Φ̃

(
ξ

B
, εB
)

2πe−iπA ξ2
B√

1− iA
B

eiπ ξ
B dξ.

substituting the expression of ÃM(ξ, ε) in terms of d[k] in the above expression results in

1

B
√

1− iA
B

∫
I
∑
k∈Z

d[k]Φ̃
(

ξ

B
, εB
)

KM(ξ, k)e−iπA ξ2
B ei2π ξ

B . (29)

substituting the expression of KM(ξ, k) in (29), it can be solved as

∑
k∈Z

d[k]ϕ[λ− k]eiπA k2
B = f [n]eiπA λ2

B .

as λ→ λ
2τ in (27) gives

f
[

λ

2τ

]
= ∑

k∈Z
d[k]ϕ

(
λ

2τ
− k
)

e
−iπ

(
(

λ

2τ
)2−k2

)
. (30)

however, if (30) is substituted in (26), we have (11). This actually proves the proposed

sampling theorem presented in (11). Let us suppose that s(t) ∈ L2[R] with s(t)e−iπA t2
B ∈

VM
0 , such that (11) holds in L2[R]. It is clear that ϕ(t)e−iπA t2

B ∈ VM
0 ; therefore, taking

ϕ(t)e−iπA t2
B for f (t) in (11) gives

ϕ(t)e−iπA t2
B = ∑

λ∈Z
ϕ

[
λ

2τ

]
S(2τt + m)e−iπA t2

B . (31)

with the help of LCST, (31) becomes

Φ
(

ξ

B
, εB
)
=
√

2πΦ̃
(

ξ

B
, εB
)

S
(

ξ

2τ B
,

εB
2τ

)
. (32)

modifying by using the scaling operation, we have

Φ
(

2τξ

B
, ε2τ B

)
=
√

2πΦ̃
(

2τξ

B
, ε2τ B

)
S
(

ξ

B
, εB
)

. (33)
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applying (7) and (10) into LHS and RHS of (33), we obtain

Υτ(ξ)Φ
(

ξ

B
, εB
)
=
√

2πΥτ(ξ)Φ̃τ

(
ξ

B
, εB
)

S
(

ξ

B
, εB
)

.

solving the above equation yields

S
(

ξ

B
, εB
)
=

Φ
(

ξ
B , εB

)
√

2πΦ̃
(

ξ
B , εB

) , (34)

which proves the expression of the interpolation function, defined in (13), which is true
∀ξ, ε ∈ DJ , Therefore, (34) can be written as

S
(

ξ

B
, εB
)
=

Φ
(

ξ
B , εB

)
√

2πΦ̃
(

ξ
B , εB

)χDJ (ξ, ε). (35)

as S
(

ξ
B , εB

)
∈ L2[R], then by using (4), the bounds of the square summable function of (35)

can be defined as
0 ≤ ‖Hϕ,M(ξ, ε)‖k ≤ ‖Hϕ,M(ξ, ε)‖k+1 < ∞.

hence,

∫
R

∣∣∣∣S( ξ

B
, εB
)∣∣∣∣2dξ = ∑

k∈Z

∫
I

∣∣∣∣∣∣
Φ
(

ξ
B , εB

)
√

2πΦ̃
(

ξ
B , εB

)
∣∣∣∣∣∣
2

=
∫

I

H2
ϕ,M(ξ, ε)

|
√

2πΦ̃
(

ξ
B , εB

)
|2

χDJ (ξ, ε) < ∞.

therefore,

0 ≤ ‖Hϕ,M(ξ, ε)‖2
0

∫
I

1

|
√

2πΦ̃
(

ξ
B , εB

)
|2

χDJ (ξ, ε) < ∞. (36)

Expression (36) asserts that
1

|
√

2πΦ̃
(

ξ
B , εB

)
|2

χDJ (ξ, ε) represents a square integral

function. Thus,
1

√
2πΦ̃

(
ξ
B , εB

)χDJ (ξ, ε) ∈ L2[I], as L2[I] represents the space of all square

integral functions on I. Thus, the condition for the existence of the sampling theorem for
LCST, defined in (12), is proved.

4. Error Estimation

Error estimation is important to study. So, we devote this section to the study of
truncation and aliasing errors.

4.1. Truncation Error

The truncation error can be expressed as

ε(t) = ∑
|λ|≥N

f
[

λ

2τ

]
s(2τt− λ)g(t, ξ)e−iAπ(t2−( λ

2τ )
2) 1

B , (37)

where f (t) and g(t, ξ) are a set of VM
0 .
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Theorem 3. Let ϕ(t) ∈ L2[Z] be a continuous scaling function of MRA {VM
k : k ∈ Z} alongside

the LCST, then the sampling sequence {ϕ(λ) : λ ∈ Z} ∈ `2[Z] and
1√

2πΦ̃
(

ξ
B , εB

)χDτ ∈ L∞[I].

Then, the truncation error is bounded by

‖ε(t)‖L2 ≤ 2−τ/2

√√√√ ∑
|λ|≥N

∣∣∣∣ f [ λ

2τ

]
g
(

λ

2τ
, ξ

)∣∣∣∣2
∥∥∥∥∥∥Hϕ,M(ξ, ε)

Φ
(

ξ
B , εB

) χDτ

∥∥∥∥∥∥
∞

. (38)

Proof. By taking the LCST on both sides of (37), we have

EM(ξ, ε) = SM{e(t)}(ξ, ε)

=
√

2π2−τ ∑
|λ|≥N

f
[

λ

2τ

]
g
(

λ

2τ
, ξ

)
KM(2−τλ, ξ)S

(
ξ

2τ B
εB
2τ

)
.

using Parseval’s Theorem [24], we have

‖e(t)‖2
L2 =

1
22τ B

∫
R

∣∣∣∣∣∣ ∑
|λ|≥N

f
[

λ

2τ

]
g
(

λ

2τ
, ξ

)
eiπA( λ

2τ )
2 1

B ei2πξ λ
2τ B S

(
ξ

2τ B
,

εB
2τ

)∣∣∣∣∣∣
2

dξ. (39)

setting f̃ [λ] = f [λ]eiπB λ2
B , g̃(λ, ξ) = g(λ, ξ) and taking ξ ′ = ξ

2τ in (39). Moreover, since

ei2πξ λ
2τ B is 2πB periodic, we obtain

‖e(t)‖2
L2

=
1

2τ B ∑
k∈Z

∫
R

∣∣∣∣∣∣ ∑
|λ|≥N

f̃
[

λ

2τ

]
g
(

λ

2τ
, ξ ′
)

e−i2πξ ′( λ
2τ )

2 1
B

∣∣∣∣∣∣
2∣∣∣∣S( ξ ′

B
, ε′B

)∣∣∣∣2dξ ′

=
1

2τ B ∑
k∈Z

∫
I

∣∣∣∣∣∣ ∑
|λ|≥N

f̃
[

λ

2τ

]
g̃
(

λ

2τ
, ξ ′
)

e−i2πξ ′( λ
2τ )

2 1
B

∣∣∣∣∣∣
2∣∣∣∣S( ξ ′

B
+ 2kπ, ε′B + 2kπ

)∣∣∣∣2dξ ′

=
1

2τ B

∫
I

∣∣∣∣∣∣ ∑
|λ|≥N

f̃
[

λ

2τ

]
g̃
(

λ

2τ
, ξ ′
)

e−i2πξ ′( λ
2τ )

2 1
B

∣∣∣∣∣∣
2

∑
k∈Z

∣∣∣∣S( ξ ′

B
+ 2kπ, ε′B + 2kπ

)∣∣∣∣2dξ. (40)

making use of (4), (32), and by Parseval’s theorem of the DTST, (40) can be rewritten as

‖e(t)‖2
L2

= 2−τ
∫

I

∣∣∣∣∣∣ 1√
2π

∑
|λ|≥N

f̃
[

λ

2τ

]
g̃
(

λ

2τ
, ξ ′
)

e−i2πξ ′( λ
2τ )

2 1
B

∣∣∣∣∣∣
2

H2
ϕ,M(ξ ′, u)

B|Φ̃
(

ξ ′
B , ε′B

)
|2

χDτ (ξ
′, ε′)dξ ′

≤
∫

I

∣∣∣∣∣∣ 1√
2π

∑
|λ|≥N

f̃
[

λ

2τ

]
g̃
(

λ

2τ
, ξ ′
)

e−i2πξ ′( λ
2τ )

2 1
B

∣∣∣∣∣∣
2

dξ ′
1

2τ B

∥∥∥∥∥∥Hϕ,M(ξ ′, u)

Φ̃
(

ξ ′
B , ε′

) χDτ (ξ
′, ε′)

∥∥∥∥∥∥
2

∞

= 2−τ ∑
|λ|≥N

∣∣∣∣ f̃ [ λ

2τ

]
g̃
(

λ

2τ
, ξ ′
)∣∣∣∣2
∥∥∥∥∥∥Hϕ,M(ξ ′, u)

Φ̃
(

ξ ′
B , ε′

) χDτ (ξ
′, ε′)

∥∥∥∥∥∥
2

∞

,

which validates (38).
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4.2. Aliasing Error

The aliasing error for any signal f (t) is a set of VM
1 defined by

‖ea(t)‖2
L = f (t)− ∑

η∈Z
f
[ m

2τ

]
s(2τt− η)g(t, ξ)e−iπA(t2−( η

2τ )
2)) 1

B . (41)

Theorem 4. If ϕ(t) is the canonical scaling function of an MRA {VM
k : k ∈ Z}, with the sampling

sequence ϕ[n] ∈ `2[Z] and 1√
2πΦ̃

(
ξ
B ,εB

)χDτ (ξ, ε) ∈ L2[I] for some τ ∈ Z∪ {0}, then the aliasing

error is bounded by

‖ea(t)‖2
L

≤
√

2π2(τ+δτ)
1
2

√
∑

η∈Z
|d[n]|2

∥∥∥∥∥∥∥
 Φ̃

(
ξ
B + π, εB + π

)
Φ̃
(

2ξ
B + π, 2εB + π

)∆{W
(

ξ

B

)
}


δJ{

Γ
(

ξ

B

)}1−δJ

×Hϕ,M

(
ξ

2τ+δτ−1 ,
ε

2τ+δτ−1

){
Πτ−1

τ=1Λ
(

ξ

2τ B

)}1−δτ−δτ−1
∥∥∥∥∥

∞

, (42)

where LCST coefficients of f (t) in WM
0 are denoted by {d[λ] : λ ∈ Z} and W

(
ξ
B

)
is defined in

([22], Theorem 3) as

W
(

ξ

B

)
=


Λ
(

ξ
B

)
Λ
(

ξ
B + π

)
Γ
(

ξ
B

)
Γ
(

ξ
B + π

)
.


Proof. Let us suppose that WM

0 = VM
0 ⊕ VM

1 is the direct complement of VM
0 and VM

1 ,
from (11), it will be required to show that (42) satisfies for any f (t) ∈ WM

0 . Let ϕ(t) ∈
L2[R], ϕ(t) be set to WM

0 begin the LCST coefficients of MRA {Vk}k∈Z, as ϕ0,λ(t) = ϕ(t−
λ)e−iπA(t2−λ2) 1

B from the Riesz basis of WM
0 , and d[λ] ∈ `2[Z], such that,

f (t)g(t, ξ) = ∑
λ∈Z

d[λ]ϕ(t− λ)e−iπA(t2−λ2) 1
B .

let SM
f (ξ, ε) denote the LCST OF f (t), D̃M(ξ, ε) denote the discrete-time LCST of the

product d[λ], and GM(ε, ξ) be the LCST coefficients of g(t, ξ).
Taking LCST on both sides of (41) and using (6), we have

SM
f (ξ, ε)GM(ε, ξ) =

√
2πD̃M(ξ, ε)Ψ(ξ, ε)

=
√

2πD̃M(ξ, ε)Φ
(

ξ

2B
,

εB
2

)
Γ
(

ξ

2B

)
. (43)

taking the LCST on both (41) and (32) gives

EM
a (ξ, ε) = SM

f (ξ, ε)GM(ε, ξ)−
√

2π2−τ ∑
λ∈Z

f
[

λ

2τ

]
g
(

λ

2τ
, ξ

)
KM

(
ξ,

λ

2τ

)
S
(

ξ

2τ B
,

εB
2τ

)
= SM

f (ξ, ε)GM(ε, ξ)−
√

2π2−τ ∑
λ∈Z

f
[

λ

2τ

]
g
(

λ

2τ
, ξ

)
KM

(
ξ,

λ

2τ

)

×
Φ
(

ξ
2τ B , εB

2τ

)
√

2πΦ̃ ξ
2τ B , εB

2τ

ℵDτ

(
ξ

2τ
,

ε

2τ

)
, (44)
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where EM
a (ξ, ε) denotes the LCST of ea(t). Now, by the Poisson summation formula [25],

2−τ ∑
λ∈Z

f
[

λ

2τ

]
g
(

λ

2τ
, ξ

)
KM

(
ξ,

λ

2τ

)
= eiπA ξ2

B ∑
λ∈Z

SM
f (ξ + 2τ+1λπB, ε + 2τ+1λπB)

×e−iπA(ξ+2τ+1λπB)2 1
B . (45)

by inserting (43) into (45), we obtain

2−τ ∑
λ∈Z

f
[

λ

2τ

]
g
(

λ

2τ
, ξ

)
KM

(
ξ,

λ

2τ

)
=
√

2πeiπA ξ2
B ∑

λ∈Z
D̃M(ξ + 2τ+1λπB, ε + 2τ+1λπB)

×e−iπA(ξ+2τ+1λπB)2 1
B Ψ(ξ + 2τ+1λπB, ε + 2τ+1λπB).

upon further simplification, we have

2−τ ∑
λ∈Z

f
[

λ

2τ

]
g
(

λ

2τ
, ξ

)
KM

(
ξ,

λ

2τ

)
=
√

2πeiπA ξ2
B ∑

λ∈Z
D̃M(ξ, ε) ∑

λ∈Z

×Ψ
(

ξ

B
+ 2τ+1λπ, εB + 2τ+1λπ

)
. (46)

inserting (43) and (46) into (44) yields

EM
a (ξ, ε)

=
√

2πD̃M(ξ, ε)Γ
(

ξ

2B

)
Φ
(

ξ

2B
,

εB
2

)

−
√

2πD̃M(ξ, ε) ∑
λ∈Z

Ψ
(

ξ

B
+ 2τ+1λπ, εB + 2τ+1λπ

) Φ
(

ξ
2τ B , εB

2τ

)
√

2πΦ̃ ξ
2τ B , εB

2τ

ℵDτ

(
ξ

2τ

)
. (47)

Case I. When τ = 0. Adding (47) and Parseval’s theorem of the LCT results in

‖ea(t)‖2
L2 = 2π

∥∥∥∥D̃M(ξ, ε)Γ
(

ξ

2B

)
Φ
(

ξ

2B
,

εB
2

)

−D̃M(ξ) ∑
λ∈Z

Ψ
(

ξ

B
+ 2λπ, εB + 2λπ

) Φ
(

ξ
B , εB

)
√

2πΦ̃
(

ξ
B , εB

)
∥∥∥∥∥∥

2

L2

. (48)

using (5) and (48), it can be written as

‖ea(t)‖2
L2 = 2π

∥∥∥∥D̃M(ξ, ε)Γ
(

ξ

2B

)
Φ
(

ξ

2B
,

εB
2

)

−
∑λ∈Z Ψ

(
ξ
B + 2λπ, εB + 2λπ

)
Φ̃
(

ξ
B , εB

) Φ
(

ξ

2B
,

εB
2

)
Λ
(

ξ

2B

)∥∥∥∥∥∥
2

L2

.
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assuming that Iη = [0, 2η+1πB], then

‖ea(t)‖2
L2 = 2π ∑

k∈Z

∫
I

∣∣∣∣Φ( ξ

2B
+ 2πk,

εB
2

+ 2πk
)∣∣∣∣2∣∣∣∣Γ( ξ

2B

)∣∣∣∣∣∣D̃M(ξ, ε)
∣∣2

−
∑λ∈Z Ψ

(
ξ
B + 2λπ, εB + 2λπ

)
Φ̃
(

ξ
B , εB

) Λ
(

ξ

2B

)∣∣∣∣∣∣
2

dξ

‖ea(t)‖2
L2 = 2π

∫
I1

H2
ϕ,M

(
ξ

2
,

ε

2

)∣∣D̃M(ξ, ε)
∣∣2∣∣∣∣Γ( ξ

2B

)

−
∑λ∈Z Ψ

(
ξ
B + 2λπ, εB + 2λπ

)
Φ̃
(

ξ
B , εB

) Λ
(

ξ

2B

)∣∣∣∣∣∣
2

dξ. (49)

then (5) and (6) yield

∑
λ∈Z

Ψ
(

ξ

B
+ 2λπ, εB + 2λπ

)
= ∑

λ∈Z
Γ
(

ξ

2B
+ 2πλ

)
Φ
(

ξ

2B
+ πλ,

εB
2

+ 2πλ

)
= ∑

k∈Z
Γ
(

ξ

2B
+ πλ

)
Φ
(

ξ

2B
+ πλ,

εB
2

+ πλ

)
+ ∑

k∈Z
Γ
(

ξ

2B
+ π(2k + 1)

)
Φ
(

ξ

2B
+ π(2k + 1),

εB
2

+ π(2k + 1)
)

= Γ
(

ξ

2B

)
Φ̃
(

ξ

2B
,

εB
2

)
+ Φ̃

(
ξ

2B
+ π,

εB
2

+ π

)
Γ
(

ξ

2B
+ π

)
. (50)

and

Φ̃
(

ξ

B
, εB
)

= ∑
λ∈Z

Φ
(

ξ

B
+ 2λπ, εB + 2λπ

)
= Φ̃

(
ξ

2B
,

εB
2

)
Λ
(

ξ

2B

)
+ Φ̃

(
ξ

2B
+ π,

εB
2

+ π

)
Λ
(

ξ

2B
+ π

)
. (51)

upon substituting (50) and (51) in (49), we have

‖ea(t)‖2
L2 = 2π

∫
I1

H2
ϕ,M

(
ξ

2
,

ε

2

)
|D̃M(ξ, ε)|2

∣∣∣∣∣∣
Φ̃
(

ξ
2B + π, εB

2 + π
)

Φ̃
(

ξ
2B , εB

)
×
{

Γ
(

ξ

2B

)
Λ
(

ξ

2B
+ π

)
− Γ

(
ξ

2B
+ π

)
Λ
(

ξ

2B

)}∣∣∣∣2dξ

≤ 2π

∥∥∥∥∥∥H2
ϕ,M

(
ξ

2
,

ε

2

) Φ̃
(

ξ
2B + π, εB

2 + π
)

Φ̃
(

ξ
B , εB

) ∆{W(
ξ

2B
)}

∥∥∥∥∥∥
2 ∫

I1

|D̃M(ξ, ε)|2dξ

= 4π

∥∥∥∥∥∥H2
ϕ,M

(
ξ

2
,

ε

2

) Φ̃
(

ξ
2B + π, εB

2 + π
)

Φ̃
(

2ξ
B , 2εB

) ∆{W(
ξ

2B
)}

∥∥∥∥∥∥
2

∑
λ∈Z
|d[λ]|2.
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Case II. When τ = 1. Adding (47) and Parseval’s theorem of the LCST gives

‖ea(t)‖2
L2 = 2π

∥∥∥∥D̃M(ξ, ε)Γ
(

ξ

2B

)
Φ
(

ξ

2B
,

εB
2

)

−D̃M(ξ, ε) ∑
λ∈Z

Ψ
(

ξ

B
+ 4λπ

)Φ
(

ξ
2B , εB

2

)
Φ̃
(

ξ
2B , εB

2

)ℵ2suppΛ( ξ
B )
(ξ, ε)

∥∥∥∥∥∥
2

L2

.

now by (6), it gives

‖ea(t)‖2
L2 = 2π

∥∥∥∥D̃M(ξ, ε)Γ
(

ξ

2B

)
Φ
(

ξ

2B
,

εB
2

)
− D̃M(ξ, ε)Γ

(
ξ

2B

)

× ∑
λ∈Z

Φ
(

ξ

2B
+ 2λπ,

εB
2

+ 2λπ

)Φ
(

ξ
2B , εB

2

)
Φ̃
(

ξ
2B , εB

2

)ℵ2suppΛ( ξ
B )
(ξ, ε)

∥∥∥∥∥∥
2

L2

.

using (37) and (51)

‖ea(t)‖2
L2 = 2π

∥∥∥∥D̃M(ξ, ε)Γ
(

ξ

2B

)
Φ
(

ξ

2B
,

εB
2

)
− D̃M(ξ, ε)Γ

(
ξ

2B

)

×Φ
(

ξ

2B
,

εB
2

)Φ
(

ξ
2B , εB

2

)
Φ̃
(

ξ
2B , εB

2

)ℵ2suppΛ( ξ
B )
(ξ, ε)

∥∥∥∥∥∥
2

L2

= 2π

∥∥∥∥D̃M(ξ, ε)Γ
(

ξ

2B

)
Φ
(

ξ

2B
,

εB
2

)
{1− ℵ2suppΛ( ξ

B )
(ξ, ε)}

∥∥∥∥2

L2

= 2π ∑
k∈Z

∫
I1

|D̃M(ξ, ε)|2
∣∣∣∣Γ( ξ

2B

)∣∣∣∣2∣∣∣∣Φ( ξ

2B
+ 2kπ,

εB
2

+ 2kπ

)∣∣∣∣2
×|1− ℵ2suppΛ( ξ

B )
(ξ, ε)|dξ

≤ 2π
∫

I1

|D̃M(ξ, ε)|2dξ

∥∥∥∥Γ
(

ξ

2B

)
Hφ,M

(
ξ

2
,

ε

2

)
(1− ℵsuppΛ( ξ

2B )
(ξ, ε))

∥∥∥∥2

∞

= 4π ∑
λ∈Z
|d[n]|2

∥∥∥∥Γ
(

ξ

B

)
Hφ,M(ξ, ε)ℵR⊕suppΛ( ξ

B )(ξ,ε)

∥∥∥∥2

∞
.

thus,

‖ea(t)‖2
L2 ≤ 4π ∑

λ∈Z
|d[n]|2

∥∥∥∥Γ
(

ξ

B

)
Hφ,M(ξ, ε)

∥∥∥∥2

∞
.

Case III. For τ ≥ 2. Using (47) and Parseval’s theorem for LCST gives

‖ea(t)‖2
L2

= 2π

∥∥∥∥∥D̃M(ξ, ε)Γ
(

ξ

2B

) j

∏
J=2

Λ
(

ξ

2J B

)
Φ
(

ξ

2J B
,

εB
2J

)

− D̃M(ξ, ε)Γ
(

ξ

2B

) τ

∏
τ=2

Λ
(

ξ

2τ B

)
Φ̃
(

ξ

2τ B
,

εB
2τ

)Φ
(

ξ
2τ B , εB

2τ

)
Φ̃
(

ξ
2τ B , εB

2τ

)ℵ∩τ
τ=12τsuppΛ( ξ

B )
(ξ, ε)

∥∥∥∥∥∥
2

L2

= 2π

∥∥∥∥∥D̃M(ξ, ε)Γ
(

ξ

2B

) τ

∏
τ=2

Λ
(

ξ

2τ B

)
Φ
(

ξ

2τ B
,

εB
2τ

)
(1− ℵ∩τ

τ=12τsuppΛ( ξ
B )
(ξ, ε))

∥∥∥∥∥
2

L2

.
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upon further simplification, we can write it as

‖ea(t)‖2
L2 = 2π

∫
Iτ

∣∣∣∣∣D̃M(ξ, ε)Γ
(

ξ

2B

) τ

∏
τ=2

Λ
(

ξ

2τ B

)∣∣∣∣∣
2

∑
k∈Z

∣∣∣∣Φ( ξ

2τ B
+ 2kπ,

εB
2τ

+ 2kπ

)∣∣∣∣2
×|1− ℵ∩τ

τ=12τsuppΛ( ξ
B )
(ξ, ε)|dξ.

using the same procedure as used in previous cases, we have

‖ea(t)‖2
L2 ≤ 2π2τ ∑

λ∈Z
|d[λ]|2

∥∥∥∥∥Γ
(

ξ

2τ B

)
Hϕ,M

(
ξ

2τ−1 ,
ε

2τ−1

) τ−1

∏
τ=1

Λ
(

ξ

2τ B

)∥∥∥∥∥
2

∞

.

by combining all three cases, (42) is validated.

5. Conclusions

In this work, a sampling theorem for LCST was proposed with help from the sampling
kernel in the multiresolution subspace. Moreover, for the proposed sampling theory, the
truncation and aliasing errors were determined with their bounds. In future works, we will
extend the current study to quaternion algebra, which will lead the researchers to focus on
quaternion-valued signals and their samplings.
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