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Abstract: The symmetric patterns that inequalities contain are reflected in researchers’ studies in
many mathematical sciences. In this paper, we prove an asymptotic expansion for the generalized
gamma function Γµ(v) and study the completely monotonic (CM) property of a function involving
Γµ(v) and the generalized digamma function ψµ(v). As a consequence, we establish some bounds

for Γµ(v), ψµ(v) and polygamma functions ψ
(r)
µ (v), r ≥ 1.
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1. Introduction

Stirling’s formula is given by

Γ(r + 1) ∼
√

2πr
( r

e

)r
, r −→ ∞ (1)

where Γ is the classical Gamma function [1]. An elementary and complete proof of this
formula is available at [2]. Moreover, many mathematicians have used the logarithm of
gamma function to deduce several useful properties of the gamma function, and their
powerful tool for such investigations was the digamma function

ψ(v) =
d

dv
ln Γ(v) = −

∞

∑
r=0

[
1

v + r
− 1

r + 1

]
− γ, v > 0

where γ = lim
r→∞

(
r
∑

k=1

1
k − log r

)
≈ 0.5772156649 is Euler–Mascheroni’s constant. For more

details on bounds of the functions Γ(v) and dr

dvr ψ(v), please refer to [3–7] and the references
therein. Many of such bounds deduced from the monotonicity properties of some functions
involving Γ or ψ. An infinitely differentiable real valued function M defined on v > 0 is said
to be CM if (−1)r M(r)(v) ≥ 0 for all r ≥ 0 on v > 0. For more details about CM functions
and their applications, we refer to [8–11]. According to Bernstein theorem [12], function M
is CM if and only if M(v) =

∫ ∞
0 e−vudν(u), where ν(u) is a non-negative measure on u ≥ 0

such that the integral converges for v > 0.
In 2007, Alzer and Batir [13] studied the completely monotonicity of the function

Sρ(v) = ln Γ(v) +
1
2

ψ(v + ρ) + v− 1
2

ln(2π)− v ln v, ρ ≥ 0; v > 0 (2)
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and deduced the following double inequality:

√
2π exp

[
− 1

2
ψ(a + v)− v

]
< v−vΓ(v) <

√
2π exp

[
− 1

2
ψ(b + v)− v

]
, v > 0 (3)

with the constants a = 1
3 and b = 0 being the best possible constants. In 2008, Batir [14]

modified Sρ(v) and deduced some bounds for Γ(v) in terms of digamma and polygamma
functions.

Euler [15] originally defined gamma function as Γ(v) = limµ→∞ Γµ(v), where

Γµ(v) =
µv µ!

(µ + v) · · · (v + 2)(v + 1)v
, v > 0, µ = 1, 2, · · ·

which satisfies the following recurrence relation.

Γµ(r + v) =
v µr Γµ(v)
v + n + µ

r−1

∏
s=1

[
s + v

s + µ + v

]
, v > 0, r ∈ N. (4)

In 2010, Krasniqi and Shabani [16] presented the strictly CM property of function ψ′µ
on (0, ∞), where the following is the case.

ψµ(v) = ln µ−
µ

∑
i=0

1
v + i

. (5)

Krasniqi and Merovci [17] introduced the following integral representations for ψµ

and its derivatives:

ψµ(v) = ln µ +
∫ ∞

0

(
e−(µ+1)u − 1

1− e−u

)
e−vudu, v > 0, µ ∈ N (6)

and

ψ
(r)
µ (v) = (−1)r

∫ ∞

0

(
e−(µ+1)u − 1

1− e−u

)
ure−vudu, v > 0, µ, r ∈ N. (7)

Nantomah, Prempeh and Twum [18] presented the following generalization of the
functions Γ and ψ:

Γµ,k(v) =
kµ+1 (1 + µ)! (µ k)

v
k−1

v(v + k)(v + 2k) · · · (v + µ k)
=
∫ µ

0

uv

u

(
1− uk

µ k

)µ

du, v, k > 0, µ ∈ N

and

ψµ,k(v) =
1
k

ln(k µ)−
µ

∑
i=0

1
v + ik

=
1
k

ln(k µ) +
∫ ∞

0

(
e−k(µ+1)u − 1

1− e−ku

)
e−vudu.

Nantomah, Merovci and Nasiru [19] presented bounds

1
(k + v + µ k)

− v−1 ≤ ψµ,k(v)− k−1 ln
(

v k µ

v + k + µ k

)
≤ 0, µ ∈ N, v, k > 0 (8)

and

1
(k + µ k + v)2 −

1
v2 ≤ −ψ′µ,k(v) + k−1

[
v−1 − 1

(v + k + µ k)

]
≤ 0, µ ∈ N, v, k > 0. (9)

Recently, several inequalities involving the generalized gamma function have been
presented [17–19].
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Research involving Gamma function is conducted by many authors currently. Re-
sults concerning extensions of Gamma function involving Mittag–Leffler function are
presented in [20]. Other extensions of Gamma function are investigated in [21] using the
two-parameter Mittag–Leffler matrix function and some important properties of these ex-
tended matrix functions are proved. A new series representation of the extended k−gamma
function is provided in [22] and particular cases involving the original gamma function are
discussed as corollaries.

In the following, we will present the asymptotic expansion Γµ(r + 1) ∼ µr+1 rr+ 1
2 eµ+1 µ!

(r+µ+1)r+µ+ 3
2

for large values of r and we will discuss the property of completely monotonicity of the
function

Sα,µ(v) = ln Γµ(v) + 1/2 ψµ(α + v)− v ln
(

µ v
v + µ + 1

)
+ (µ + 1) ln(v + µ + 1)− ln

(
µ!
√

µ eµ+1
)

,

for µ ∈ N, v > 0 and different values of α ≥ 0. As a consequence, we establish some
bounds for Γµ(v), ψµ(v) and ψ

(r)
µ (v), r ≥ 1.

2. An Asymptotic Expansion for Γµ(v)

Theorem 1. For all µ ∈ N,

Γµ(r + 1) ∼ µr+1 rr+ 1
2 e1+µ µ!

(r + µ + 1)
3
2+µ+r

, r −→ ∞. (10)

Proof. For µ = 1, we have

lim
r→∞

Γ1(1 + r)

rr+ 1
2 e2

(r+2)r+ 5
2

=
1
e2 lim

r→∞

[ r!
(r + 2)!

(r + 2)2
(

1 + 2r−1
) 1

2+r]
= 1.

Similarly, for µ = 2, we have lim
r→∞

Γ2(r+1)

2r+2 rr+ 1
2 e3

(r+3)r+
7
2

= 1. Now, for µ ≥ 3, taking logarithm for

both sides of (4) at v = 1 yields the following.

ln Γµ(r + 1) = ln
(

µ2

(1 + µ)(2 + µ)

)
+

r

∑
s=2

ln
(

µ s
µ + 1 + s

)
. (11)

The function Aµ(v) = µ v
µ+v+1 is strictly increasing on v > 0 and, hence, Aµ(v) >

Aµ(2) ≥ 1 for all µ ≥ 3. Using the relation between the integral and the Riemann sums, we
have ∫ r

2
ln
(

v µ

µ + v + 1

)
dv <

r

∑
s=2

ln
(

s µ

µ + s + 1

)
<
∫ r+1

2
ln
(

µ v
µ + v + 1

)
dv

and hence, we have the following:

ln uµ(r) < ln Γµ(1 + r) < ln uµ(1 + r), (12)

where

uµ(r) =
[

r µ

1 + r + µ

]r[ (3 + µ)µ+3

4(1 + r + µ)1+µ(µ + 1)(µ + 2)

]
.

Sequence uµ(r) satisfies

uµ(r + 1) =
[

1
r + µ + 1

+ 1
]−(r+2+µ)[ r µ

r + µ + 1

][
r−1 + 1

]r [
r−1 + 1

]
uµ(r)
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and using inequality (r−1 + 1)r < e < (r−1 + 1)r+1 for r ∈ N, we have the following.

uµ(r + 1) < 2
[

µ r
µ + r + 1

]
uµ(r). (13)

Substituting (13) into (12) yields

Γµ(1 + r) = uµ(r)θµ(r),

where

1 < θµ(r) < 2
[

µ r
r + 1 + µ

]
.

Let

aµ(r) =
Γµ(r + 1)

(r µ)
2r+1

2 (µ + r + 1)−µ−r− 3
2

, r, µ ∈ N.

Using (4) at v = 1, we have

ln aµ(r) = −(r + 1/2) ln r + ln
( √

µ

1 + µ

)
+

r

∑
s=1

ln
(

s
s + 1 + µ

)
+ (3/2 + µ + r) ln(µ+ 1+ r)

and then
ln aµ(r)− ln aµ(1 + r) = H(r)− H(1 + µ + r), (14)

where H(v) = (v + 1
2 ) ln

(
1 + 1

v

)
, v > 0 is decreasing function on v > 0 and consequently(

ln aµ(r)
)

r∈N is decreasing. Using (14), we obtain the following.

ln aµ(1)− ln aµ(r) =
r−1

∑
m=1

[H(m)− H(m + µ + 1)]. (15)

Using well-known series ln
(

1+y
1−y

)
= 2

(
y + y3

3 + y5

5 + · · ·
)

, |y| < 1 and letting y = 1
2v+1 ,

we obtain the following.

H(v)− 1 =
∞

∑
τ=1

1
1 + 2τ

(
1

2v + 1

)2τ

<
∞

∑
τ=1

1
3

(
1

2v + 1

)2τ

=
1

12v(1 + v)
. (16)

As H(v) is decreasing, we have the following.

H(v) > lim
v→∞

H(v) = 1. (17)

Substituting (16) and (17) into (15) produces

ln aµ(1)− ln aµ(r) <
1

12

r−1

∑
τ=1

[
1
τ
− 1

(τ + 1)

]
<

1
12

and then (ln aµ(r))r∈N is bounded from below by (ln aµ(1)− 1
12 ). Hence, (ln aµ(r))r∈N is

convergent to some constant and depends on µ. Then, the following is obtained.

Γµ(1 + r) ∼
Cµ(r µ)r+ 1

2

(µ + r + 1)µ+r+3/2 . (18)

Using Stirling’s Formula (1), we obtain lim
r→∞

24r(r!)4

πr[(2r)!]2 = 1 and lim
r→∞

π(r+µ)[(2r+2µ)!]2

24(r+µ) [(r+µ)!]4
= 1.
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Multiplying these two limits produces the following.

lim
r→∞

(
r!

(µ + r)!

)4( (2µ + 2r)!
(2r)!

)2

= 24µ. (19)

Letting v = 1 in (4) and using relation (2r + 2µ)! = (2r + µ + 1)!
2µ

∏
s=2+µ

(2r + s), we

have

Γµ(2r + 1) =

(2r)! µ1+2r µ!
2µ

∏
s=µ+2

(s + 2r)

(2r + 2µ)!
. (20)

Now, using (4) at v = 1 and inserting (20) into (19) yields

lim
r→∞

(
Γµ(r + 1)

)4

(
Γµ(2r + 1)

)2 (r + µ + 1)4

(
2µ

∏
s=µ+2

(2r + s)

)2

= 24µ µ2 (µ!)2 (21)

and using (18), we obtain the following:

C2
µ lim

r→∞

(
2r + µ + 1

2r + 2µ + 2

)4r
(

2µ

∏
s=µ+2

s + 2r
r + 1 + µ

)2

= (µ!)2 22µ−2 µ

which leads to
Cµ =

√
µ µ! eµ+1, µ ≥ 3,

which completes the proof.

In the next part, we provide a double inequality involving Γµ(v + 1).

Some Bounds for the Function Γµ(v)

Theorem 2. Assume that µ ∈ N and v ∈ (0, ∞). Then, we have

exp
[
− λ(µ + 1 + v) + λ(v)

]
<

Γµ(1 + v)(
µ1+vv

1
2 +v eµ+1 µ!

(µ+v+1)µ+v+3/2

) < exp
[
− β(µ + v + 1) + β(v)

]
, (22)

where β(v) = 1
12v and λ(v) = β(v)− 1

360v3 − 1
120v4 .

Proof. Let

Wµ(v) = −H(v + µ + 1) + H(v) + ∆
[

β(v + µ + 1)− β(v)
]
,

where ∆g(v) = g(v)− g(v + 1). Then W ′′µ (v) = −
(1+µ)(2+µ+2v)Dµ(v)

6v3(1+v)3(1+µ+v)3(2+µ+v)3 < 0, where

Dµ(v) = 4 + 12µ + 13µ2 + 6µ3 + µ4 + (14 + 29µ + 19µ2 + 4µ3)v + (19 + 23µ + 7µ2)v2 + (12 + 6µ)v3 + 3v4.

Hence, W ′µ(v) is decreasing on v > 0 with lim
v→∞

W ′µ(v) = 0; thus , W ′µ(v) > 0 for all v > 0.

Hence, Wµ(v) is increasing on v > 0 with lim
v→∞

Wµ(v) = 0. Then, we have the following.

H(v)− H(v + µ + 1) < ∆
[

β(v)− β(v + µ + 1)
]
. (23)



Symmetry 2022, 14, 1412 6 of 13

Similarly, we obtain the following.

∆
[
λ(v)− λ(v + µ + 1)

]
< H(v)− H(v + µ + 1). (24)

Combining (23) with (24) provides the following:

∆
[
λ(v)− λ(v + µ + 1)

]
< H(v)− H(v + µ + 1) < ∆

[
β(v)− β(v + µ + 1)

]
(25)

and using (14), we obtain the following.

exp

(
∆
[
λ(v)− λ(v + µ + 1)

])
<

aµ(v)
aµ(v + 1)

< exp

(
∆
[

β(v)− β(v + µ + 1)
])

.

It follows that

aµ(v + 1) exp
[
λ(v + 2 + µ)− λ(1 + v)

]
< aµ(v) exp

[
λ(v + µ + 1)− λ(v)

]
and consequently, function

Tµ(v) = aµ(v) exp
[
λ(v + µ + 1)− λ(v)

]
is strictly decreasing on v > 0 with lim

v→∞
Tµ(v) = Cµ. Thus, we have the following.

aµ(v) > Cµ exp
[
λ(v)− λ(1 + v + µ)

]
. (26)

In a similar way, function

Lµ(v) = aµ(v) exp
[

β(v + µ + 1)− β(v)
]

is strictly increasing on v > 0 with lim
v→∞

Lµ(v) = Cµ. Then,

aµ(v) < Cµ exp
[

β(v)− β(µ + v + 1)
]
. (27)

Combining (26) with (27), we obtain

exp
[
λ(v)− λ(v + µ + 1)

]
<

aµ(v)
Cµ

< exp
[

β(v)− β(v + µ + 1)
]
,

which completes the proof.

Corollary 1.

Γµ(v) ∼
(

µv vv− 1
2 eµ+1 µ!

(v + 1 + µ)1/2+v+µ

)
exp

[
λ(v)− λ(v + µ + 1)

]
, v −→ ∞ (28)

where λ(v) = 1
12v −

1
360v3 − 1

120v4 .

Proof. Using inequality (22) and relation (4) at r = 1, we obtain the following.

1 <
Γµ(v)(

µv vv− 1
2 e1+µ µ!

(1+v+µ)v+µ+ 1
2

)
exp

[
λ(v)− λ(1 + v + µ)

]
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< exp
[ 1

360v3 +
1

120v4 −
1

360(1 + v + µ)3 −
1

120(1 + v + µ)4

]
.

Hence, we have

lim
v→∞

[
Γµ(v)(

µv vv− 1
2 e1+µ µ!

(v+1+µ)1/2+µ+v

)
exp

[
λ(v)− λ(v + 1 + µ)

]
]
= 1.

This completes the proof.

Corollary 2. Let µ and s be positive integers. Then,

ln Γµ(v) ∼ −(µ + 1) ln(v + µ + 1) +
(2v− 1

2

)
ln
(

µ v
v + 1 + µ

)
+ ln

(√
µ µ! e1+µ

)
+
[
λ(v)− λ(v + 1 + µ)

]
, (29)

ψµ(v) ∼ −
1
2

(
1
v
− 1

v + 1 + µ

)
+ ln

(
µ v

v + 1 + µ

)
+
[
λ′(v)− λ′(v + 1 + µ)

]
, v −→ ∞ (30)

and

ψ
(s)
µ (v) ∼ (−1)s−1(s− 1)!

(
1
vs −

1
(µ + 1 + v)s

)
− (−1)ss!

2

(
1

vs+1 −
1

(µ + 1 + v)s+1

)
+ λ(s+1)(v)− λ(s+1)(µ + 1 + v), v −→ ∞ (31)

where

λ(s)(v) = (−1)s
[

s!
12v1+s −

(2 + s)!
720v3+s −

(3 + s)!
720v4+s

]
s ∈ N.

In the next section, we will generalize some results presented by Alzer and Batir [13].

3. Study of a CM Function Involving Γµ and ψµ Functions

Theorem 3. Suppose that µ ∈ N and v > 0. Then, the function

Sα,µ(v) = ln Γµ(v) + 1/2 ψµ(α + v)− v ln
(

µ v
v + µ + 1

)
+ (µ + 1) ln(v + µ + 1)− ln

(√
µ µ! e1+µ

)
, α ≥ 0

is CM on v > 0 if and only if α ≥ 1
3 . Moreover, −Sα,µ(v) is CM on v > 0 if and only if α = 0.

Proof. From (6), (7) and identity ln( h
d ) =

∫ ∞
0

e−dt−e−ht

t dt for h, d > 0 (see [1]), we have

S′α,µ(v) = ψµ(v)− ln
(

µ v
v + 1 + µ

)
+

1
2

ψ′µ(α + v) =
∫ ∞

0

e−(µ+v+1)u

u(eu − 1)
ϕ(u)du,

where

ϕ(u) = e(2+µ)u + 1− e(1+µ)u − eu − u
[
e(2+µ)u − eu]− 1

2
u2
[
eu − e(2+µ)u

]
e−αu.

Let α ≥ 1
3 , then we obtain

ϕ(u) ≤ e(2+µ)u − e(1+µ)u − eu + 1− u
[
e(2+µ)u − eu]+ 1

2
u2[e(µ+ 5

3 )u − e
2
3 u]

and hence,

ϕ(u) ≤
∞

∑
r=3

fµ(r)
(r + 2)!

ur+2 < 0,
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where

fµ(r) = −(µ + 1)2+r − 1 + (µ + 2)2+r +

[
1− (µ + 2)1+r

]
(2 + r)

+
[
(µ + 5/3)r − (2/3)r] (1 + r)(2 + r)

2

=
r

∑
s=1

[
− (r + 2)

(
1+r

s

)
+
(

2+r
s

)
+ (r

s)(2/3)r−s (2 + r)(1 + r)
2

]
(1 + µ)s

=
r

∑
s=1

3r−s (2 + r)(1 + r)
(2 + r− s)

(r
s)

[
− 3r−s + 2r−s + 2r−s−1(r− s)

]
(µ + 1)s

= −
r

∑
s=1

3r−s (1 + r)(2 + r)
(2 + r− s)

(r
s)

[
r−s

∑
l=2

(r−s
l
)
2r−s−l

]
(1 + µ)s.

Consequently, −S′α,µ(v) is CM on (0, ∞) for α ≥ 1
3 . Thus, Sα,µ(v) is decreasing and

using asymptotic (29) and (30), we have lim
v→∞

Sα,µ(v) = 0 and then Sα,µ(v) > 0. Then,

Sα,µ(v) is a CM function on v > 0 for α ≥ 1
3 . Conversely, if function Sα,µ(v) is CM, then we

obtain for v > 0, µ ∈ N that

v2

(1 + µ)
Sα,µ(v) =

v2

(1 + µ)

[
ln

 Γµ(v)

vv− 1
2 µv e1+µ µ!

(v+1+µ)1/2+µ+v

− 1
2

ln
(

µ v
v + 1 + µ

)
+

1
2

ψµ(α + v)

]
> 0.

(32)
From (29), we have

lim
v→∞

v2

(1 + µ)
ln

 Γµ(v)

µv vv− 1
2 e1+µ µ!

(µ+v+1)µ+v+ 1
2

 =
1

12
. (33)

Using asymptotic (30), we have lim
v→∞

v2

(1+µ)

[
ln
(

v µ
µ+1+v

)
− ψµ(v)

]
= 1

2 and using (5),

we obtain lim
v→∞

v2

(1+µ)

[
ψµ(v)− ψµ(α + v)

]
= −α.

Hence, we conclude that

lim
v→∞

v2

(µ + 1)

[
ln
(

µ v
v + µ + 1

)
− ψµ(v + α)

]
=

1
2
− α.

From (32), we conclude that 1
12 −

1
2 (

1
2 − α) ≥ 0 and then α ≥ 1

3 . Now, for α = 0, we
obtain the following.

S′0,µ(v) =
∫ ∞

0

e−(v+1+µ)u

u(eu − 1)

(
∞

∑
r=2

[
r

∑
s=1

(r + 2)(r + 1)(r− s)
2(2 + r− s)

(r
s)(µ + 1)s

]
ur+2

(r + 2)!

)
du

Therefore, S′0,µ(v) is CM function on u > 0. Thus, S0,µ(v) is an increasing function
on v > 0 with lim

v→∞
S0,µ(v) = 0 and hence, S0,µ(v) < 0. Then, −S0,µ(v) is CM on v > 0.

Conversely, if we assume that −Sα,µ(v) is CM on v > 0 with α > 0, then Sα,µ(v) < 0 on
v > 0. However, this contradicts lim

v→0
Sα,µ(v) = ∞; hence, α = 0.
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Corollary 3. Let µ ∈ N. Then

lim
v→0

v1+rψ
(r)
µ (v) = (−1)1+r r!, r = 0, 1, 2, · · · (34)

and
lim
v→0

vrψ
(r)
µ (b + v) = 0, r ∈ N, b > 0. (35)

Some Sharp Bounds for Γµ and ψ
(r)
µ Functions

Now, we will present some sharp bounds of Γµ and ψ
(r)
µ depending on Theorem (3).

Corollary 4. Let two real numbers a, b ≥ 0. For µ ∈ N and v > 0, we have(
vv µ

1
2+v µ! e1+µ

(v + 1 + µ)v+1+µ

)
exp

[
− 1

2
ψµ(a + v)

]
< Γµ(v) <

(
vv µ

1
2+v µ! e1+µ

(v + 1 + µ)v+1+µ

)
exp

[
− 1

2
ψµ(b + v)

]
(36)

with the constants a = 1
3 and b = 0 are best possible.

Proof. In inequality (36), the left-hand side is equivalent v2

(µ+1)Sa,µ(v) > 0, which leads

to a ≥ 1
3 as stated in the proof of Theorem (3). Using the increasing property of the

function ψµ(v) on v > 0, we have e−
1
2 ψµ(v+a) ≤ e−

1
2 ψµ(v+ 1

3 ) for a ≥ 1
3 . Then, a = 1

3 is the
best possible constant in (36). Moreover, Theorem (3) proves the right-hand side of the
inequality (36) at b = 0. If there exist b > 0 such that the upper bound of Γµ(v) in (36) is
valid for v ∈ (0, ∞), then we would have

lim
v→0

Γµ(v) ≤
(√

µ eµ+1 µ!
(µ + 1)µ+1

)
exp

[
− 1

2
ψµ(b)

]
lim
v→0

(
v

v + µ + 1

)v

and hence,

lim
v→0

Γµ(v) ≤
(√

µ µ! eµ+1

(µ + 1)µ+1

)
exp

[
− 1

2
ψµ(b)

]
which contradicts with lim

v→0
Γµ(v) = ∞. Then, b = 0 in (36) is the best possible constant.

Remark 1. If we let µ→ ∞ in (36), then we obtain (3).

Corollary 5. Assume that a, b ∈ [0, ∞) and µ ∈ N. Then, for all v ∈ (0, ∞), we have

1
2

ψ′µ(a + v) < −ψµ(v) + ln
(

v µ

v + 1 + µ

)
<

1
2

ψ′µ(b + v), (37)

with constants a = 1
3 and b = 0 being the best possible.

Proof. In inequality (37), the left-hand side is equivalent

v3

(1 + µ)
S′a,µ(v) =

v3

(1 + µ)
σµ(v) +

v3

2(1 + µ)

[
ψ′µ(a + v)− (1 + µ)

v(v + 1 + µ)

]
< 0, (38)

where

σµ(v) = ψµ(v)− ln
(

µ v
v + 1 + µ

)
+

(1 + µ)

2v(v + 1 + µ)
.
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Using asymptotic expansions (30) and (31), we have

lim
v→∞

v3

(µ + 1)
σµ(v) =

−1
6

and lim
v→∞

v3

(1 + µ)

[
ψ′µ(v)−

(1 + µ)

(v + 1 + µ)v

]
= 1.

Using relation (5), we have

lim
v→∞

v3

(1 + µ)

[
ψ′µ(v + a)− ψ′µ(v)

]
= −2a.

Hence, we conclude from inequality (38) that −1
6 + 1

2 (−2a + 1) ≤ 0 or a ≥ 1
3 .

Then, the left-hand side of the inequality (37) is satisfied only if a ≥ 1
3 . Using the

decreasing property of ψ′µ(v) on (0, ∞), we obtain a = 1
3 in (37), and it is the best possible

constant. Moreover, Theorem (3) proves the right-hand side of the inequality (37) for b = 0.
If there exist b > 0 such that the upper bound of (37) valid for v > 0, then we obtain

lim
v→0

v

[
ln
(

µ v
v + µ + 1

)
− ψµ(v)

]
<

1
2

lim
v→0

vψ′µ(v + b)

which leads to
− lim

v→0
v ψµ(v) <

1
2

lim
v→0

v ψ′µ(v + b). (39)

From (34) and (35), we have lim
v→0

v ψµ(v) = −1 and lim
v→0

v ψ′µ(v + b) = 0, which

contradict inequality (39). Hence, b = 0 is the best possible constant in (37).

Remark 2. Substituting k = 1 in (8), we obtain

0 ≤ −ψµ(v) + ln
(

v µ

v + 1 + µ

)
.

Using the completely monotonicity property of ψ′µ(v) and inequality (37), we have

0 <
1
2

ψ′µ(1/3 + v) < −ψµ(v) + ln
(

v µ

v + 1 + µ

)
.

Then, the lower bound of (37) improves its counterpart in (8) at k = 1 for all v ∈ (0, ∞).

Corollary 6. Suppose that a, b ∈ [0, ∞) and µ ∈ N. Then, for all v ∈ (0, ∞) and r = 2, 3, · · · ,
we have

(−1)r+1

2
ψ
(r)
µ (a + v) <

[
(r− 2)!

(1 + v + µ)r−1 −
(r− 2)!

vr−1

]
+ (−1)rψ

(r−1)
µ (v) <

(−1)1+r

2
ψ
(r)
µ (b + v), (40)

with the constants a = 1
3 and b = 0 being the best possible.

Proof. In inequality (40), the left-hand side is equivalent

vr+2

(1 + µ)
(−1)rS(r)

a,µ(v) =
v2+r

(1 + µ)
Fµ(v) +

v2+r

2(1 + µ)

[
(−1)rψ

(r)
µ (a + v)

+

(
1
vr −

1
(1 + v + µ)r

)
(r− 1)!

]
> 0, (41)

where

Fµ(v) = (−1)rψ
(r−1)
µ (v)− (r− 1)!

2

[
1
vr −

1
(v + 1 + µ)r

]
+

[
(r− 2)!

(v + 1 + µ)r−1 −
(r− 2)!

vr−1

]
.
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Using the asymptotic expansion (31), we have

lim
v→∞

vr+2

(1 + µ)
Fµ(v) =

(1 + r)!
12

and

lim
v→∞

vr+2

(1 + µ)

[
(−1)rψ

(r)
µ (v) +

(
1
vr −

1
(v + 1 + µ)r

)
(r− 1)!

]
= − (1 + r)!

2
.

Using relation (5), we obtain

lim
v→∞

(−1)rv2+r

(1 + µ)

[
ψ
(r)
µ (a + v)− ψ

(r)
µ (v)

]
= (1 + r)! a.

Then, we conclude from inequality (3) that
[

1
12 + 1

2

(
a− 1

2

)]
(r + 1)! ≥ 0 or a ≥ 1

3 .

Since ψ′µ(v) is strictly CM function on v > 0, then for r = 0, 1, 2, . . ., function (−1)rψ
(r)
µ (v)

is increasing on v > 0; hence, the best possible constant in (40) is a = 1
3 . Moreover,

Theorem (3) proves the right-hand side of inequality (40) for b = 0. If there exist b > 0 such
that the upper bound of (40) is valid for v > 0, then we obtain the following.

lim
v→0

vr

[
(−1)rψ

(r−1)
µ (v)−

(
(r− 2)!

vr−1 − (r− 2)!
(v + 1 + µ)r−1

)]
< lim

v→0

[
− (−1)rvr

2
ψ
(r)
µ (b + v)

]
= 0. (42)

Using (34), we have

lim
v→0

vr

[
(−1)rψ

(r−1)
µ (v) +

(
(r− 2)!

(v + 1 + µ)r−1 −
(r− 2)!

vr−1

)]
= (r− 1)!, r = 2, 3, · · ·

which contradicts with inequality (42); hence, b = 0 is the best possible constant.

Remark 3. Inserting k = 1 in (9), we obtain the following.

0 ≤ ψ′µ(v)−
(

1
v
− 1

(1 + v + µ)

)
.

Using the completely monotonicity property of ψ′µ(v) and inequality (40), we have the follow-
ing.

0 <
−1
2

ψ′′µ(1/3 + v) < ψ′µ(v)−
(

1
v
− 1

(1 + v + µ)

)
.

Then, for r = 2, the lower bound of (40) improves its counterpart in (9) at k = 1 for all
v ∈ (0, ∞).

4. Conclusions

The main conclusions of this paper are stated in Theorems 1–3. We deduced the
following asymptotic expansions for the generalized gamma

Γµ(r + 1) ∼ µr+1 rr+ 1
2 e1+µ µ!

(r + µ + 1)
3
2+µ+r

, µ ∈ N; r −→ ∞.

and the bounds

exp
[ 1

360

(
30v3 − v− 3

v4 +
µ− 30(µ + v + 1)3 + v + 4

(µ + v + 1)4

)]
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<
Γµ(1 + v)(

µ1+vv
1
2 +v eµ+1 µ!

(µ+v+1)µ+v+3/2

) < exp
[ µ + 1

12v(µ + v + 1)

]
, µ ∈ N; v > 0.

Moreover, we proved that the function

Sα,µ(v) = ln Γµ(v) +
ψµ(α + v)

2
− v ln

(
µ v

v + µ + 1

)
+ (µ + 1) ln(v + µ + 1)− ln

(√
µ µ! e1+µ

)
, µ ∈ N

is CM on v > 0 if and only if α ≥ 1
3 , and −Sα,µ(v) is the CM function on v > 0 if and only

if α = 0.
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