
Citation: Li, W.-Y.; Lu, T.-C. JLcoding

Language Tool for Early

Programming Learning. Symmetry

2022, 14, 1405. https://doi.org/

10.3390/sym14071405

Academic Editors: Alexander

Shelupanov and Sergei D. Odintsov

Received: 25 May 2022

Accepted: 4 July 2022

Published: 8 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

JLcoding Language Tool for Early Programming Learning
Wei-Ying Li and Tzu-Chuen Lu *

Department of Information Management, Chaoyang University of Technology, Taichung 41349, Taiwan;
totoro@y-shun.com.tw
* Correspondence: tclu@cyut.edu.tw

Abstract: This paper proposes a symmetry language of block-based to design novel educational
programming called the JLcoding system. JLcoding system helps students convert from a block-based
language to a text-based programming language. The interface and function of the system are block-
based programs such as Scratch, but it is designed with text-based architecture. The system contains
graphic teaching to teach the basic knowledge of programming, such that students can maintain
interest and confidence when learning computational thinking. The system simultaneously combines
the advantages of block-based and text-based programming. This research engaged 41 students
who learned block-based programming language as the research objects. The experimental results
show that the students can obtain higher post-test scores than the pre-test scores after learning the
JLcoding system. The degree of learning progress was not affected by their gender. Additionally,
it was discovered that male students have higher confidence in their programming abilities, and
students who have learning interests are more motivated to continue learning the program.

Keywords: text-based programming; block-based programming; JLcoding; early programming
learning

1. Introduction
1.1. Background

Currently, many secondary schools have included computer science in their school
curricula [1–7]. Schools conduct this practice for several reasons. First, to prepare students
to study and advance their careers in computer learning [8,9]. Second, there is recognition
that the skills to express computational-based ideas play an important role for students
to be able to take part in the digital age [10]. Third, computer programming is a major
digital literacy competency of the twenty-first century, and the learning process of program-
ming is thought to develop computational thinking. The idea of computational thinking
was introduced by Jeannette Wing in a short article entitled “Computational Thinking”.
Computational thinking involves problem-solving, system design, understanding human
behavior, and delineating basic computer science concepts. According to Jeannette Wing,
the ability to think computationally will make students better at completing their daily
tasks. She also suggested that computational thinking should be integrated into subjects
in schools [11,12]. Finally, computer programming is considered to provide opportunities
for students to develop their intellectual abilities in overcoming challenging problems
in the digital age [13]. Besides computational thinking, creativity, critical thinking, and
problem-solving are important skills for students in the twenty-first century. These prac-
tices aim to make students take part in an active and participatory manner as knowledge
creators rather than just as passive consumers of information [14]. Students in the past were
considered only recipients of culture and knowledge. Apparently, in the current digital
age, students must be actively involved in social meaning-making activities [15]. The
current situation requires humans with deep knowledge, practical imagination, creative
participation, intellectual curiosity, and collaborative commitment [16].

Symmetry 2022, 14, 1405. https://doi.org/10.3390/sym14071405 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14071405
https://doi.org/10.3390/sym14071405
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-7305-4622
https://doi.org/10.3390/sym14071405
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14071405?type=check_update&version=1

Symmetry 2022, 14, 1405 2 of 36

Programming, however, is not easy to learn at both the elementary, middle, and
college levels [17–20]. Beginner programmers often make many mistakes writing the
programs [21]. The most challenging task for students in primary and secondary schools is
in understanding the fundamentals of programming, which will enable them to develop
algorithmic and computational thinking in programming [22–24], preventing them from
becoming stuck in negative attitudes toward programming [25].

Therefore, many school curricula choose to use block-based programming or pro-
gramming languages designed for educational purposes to ease the burden on students
to learn to program, such as Ozoblockly, Blockly, Snap, Scratch, Alice, Code Spells, or
Lego Mindstorms [1,9]. These programming languages make it easy for students to learn
programming by simply dragging and dropping their code blocks to form valid and mean-
ingful instructions to achieve the desired results [26]. The advantage of this method is
that the blocks are similar to jigsaw puzzles or Lego blocks that can be assembled spe-
cially to create a program for students who can easily create simple programs to boost
their motivation.

1.2. Motivation

Students’ perceptions of programming come with difficulties; however, educational
programming can be more accessible, less frustrating, and beneficial for young students, but
it might not achieve the objective of building students’ interest and confidence in the field of
computer programming. A student can perform well in computer science but not feel sure
of what he/she is learning [9]. The attention of the researchers then focused on educational
programming that was more effective in encouraging computational thinking [26].

Several researchers have researched and compared the educational programming that
is most widely used in the school curriculum. The researchers [13] compared Logo and
Scratch, and their findings show that students who used Scratch performed better on the
programmer’s competency assessment, but they lacked confidence in their programming
skills; however, students who used Logo had more positive self-confidence. These findings
show that students who used Scratch may not be aware that they are learning computer
programming [9]. The researchers [26] compared Scratch with the App Inventor. Their
findings show that there are clear differences between the two programming languages.
Students using Scratch scored higher on average in Parallelism, Synchronization, and
Flow Control, while students using App Inventor scored higher average scores on User
Interactivity and Data Representation. In addition, they also found that the overall scores
increased the size and type (genre) of the program. The researchers [27] compared the
interfaces of block-based and text-based programming in introductory programming. Their
findings show that a block-based programming interface can improve the performance
of introductory programming, especially in terms of the speed of attaining programming
goals. Nevertheless, to the question of whether there was an influence on students’ percep-
tions of programming difficulties, their findings did not provide enough survey evidence
to support this claim; however, there was little correlation between perceived difficulty
and goal completion. Similar research was also conducted by the researchers [10]. They
compared block-based programming with text-based programming for the same program-
ming environment. Their findings show that students who used block-based programming
showed greater learning outcomes and higher levels of interest, while students who used
text-based programming saw their programming experience as more comparable to pro-
fessional programmers and more effective at improving their programming skills; the
researchers did not find any significant differences between the two groups of students for
problems of self-confidence and pleasure.

Nevertheless, apart from the various studies stated, students still experience great
difficulties when switching from block-based to text-based programming [28]. Students
perceive block-based programming as not “real programming” when they switch to text-
based programming. Furthermore, block-based programming cause students to show bad
programming habits, making it difficult to switch to text-based programming [29]. The

Symmetry 2022, 14, 1405 3 of 36

inconclusive results of the above studies suggest the need for further studies on the effect
of block-based programming interfaces on students’ perceptions of programming.

1.3. Purpose

This paper proposes a symmetry language of block-based called JLcoding, to solve the
difficulties encountered by novice programmers in the past from block-based to text-based
programming and to make it easier for non-programmers to learn text-based programming.
The language combines the advantages of text-based and block-based programming. In [30],
the definition of symmetry is “In computer science, one type of symmetry is if the features of
a programming language operate equally on all of the things in the programming language”.
Hence, JLcoding is a transition from block-based to text-based programming. Its interface
and functions are similar to Scratch. The system contains graphic teaching to teach the
basic knowledge of programming so that students can maintain interest and confidence
when learning computational thinking. Additionally, JLcoding uses the principle of English
code, which is similar to text-based programming to allow the students to be familiar with
the correct programming environment. The JLcoding system provides many templates and
examples to demonstrate the basic knowledge about logic, control, and flow, which are
illustrated with a block-based graphic and text-based structure.

Thus, the purposes of this study are shown below:

• Design a programming language to help the student transits from block-based to
text-based programming.

• Help the students who have never studied any programming to easily learn text-based
programming.

• The proposed system JLcoding can achieve the purposes with the advantages:
• Easy to learn: The students who have no programming experience can easily learn the

basic knowledge from JLcoding.
• Easy to transmit from the block-based to text-based programming skills. The students

who learn the block-based language can convert their experience to a text-based
environment quickly.

• Quick to produce diversity projects. JLcoding allows the student to generate a different
kind of produce.

• Provide object-oriented programming. Students can combine complex logic rules.
• Avoid debugging problems in block-based programs. JLcoding provides a friendly

debugging solution that allows the students to find the errors.
• Easy to link up with other high-level programming languages such as Python, Java,

and other text-based programming in the future.

To test the performance of the JLcoding, this study compares the experiences of begin-
ners when they learn block-based programming and JLcoding. Further, we investigate the
learning effectiveness, interest, and confidence of novice programmers learning text-based
programming through JLcoding. Thus, this paper is divided into sections. In Section 2, we
describe a brief previous work in the field. Section 3 describes the research methodology.
The study surveys to answer this hypothesis. Section 4 shows our experiments, results, and
discussions. Section 5 describes the conclusions and future work of the study.

1.4. Terminology

The following terms are frequently used throughout this paper and their meanings
are discussed when relevant. For clarity, a summary of definitions is provided here:

• Text-based programming: A general term for program editing software in the general
sense, which is used for program design by inputting text. It is then debugged and
compiled to produce programs that make the computer work. Although it is possible
to generate programs with various functions, it is also difficult to learn. Some famous
text-based programs are Java, C++, and Python.

• Block-based programming: A program editing software that does not require text
input. The user only needs to drag the blocks to make combinations to generate the

Symmetry 2022, 14, 1405 4 of 36

program. Although the works it can produce are limited to a certain range, it is favored
by novice programmers because of its ease of learning and operation. An example of a
block-based program is Scratch.

• JLcoding: A programming environment that combines the ease of learning of block-
based programming with the unrestricted functionality of text-based programming.
While facilitating the creation of novice programmers, it also maintains the diversity
of the works produced.

• N: the total number of test samples.
• Mean: the average of the score.
• SD: the standard deviation of the score.
• SE: the standard error of the score.
• SEM: the structural equation modeling.
• t: the test quantity.
• df: the degrees of freedom.
• p: the significance of the hypothesis.

2. Related Work
2.1. Introductory Programming Difficulties

Introductory programming is considered an important foundation in the field of
computer science [31]. However, many novice programmers have difficulty with this
subject. Difficulties are not only experienced by students at the secondary school level, but
also by first-year college students. The number of students who experience attrition in the
first year is very high [32–34]. Some researchers show that nearly a third of students fail or
drop out of this course [20,35,36]. The reasons for failure or dropout vary, ranging from
motivational factors, teaching methods, heavy demands, and inability to catch up [37–39].

2.2. Block-Based Programming

In recent years, block-based programming has taken an established position in com-
puter science education [29,40,41]. Block-based programming is becoming increasingly
popular not only in education [34] but also among end-users [40]. By removing many
difficulties common to novice programmers [20], this programming environment can at-
tract novice programmers of all ages, ranging from elementary school students to college
students [41,42]. This programming environment is usually provided as an introduction
before students are faced with more difficult text-based programming [43].

Block-based programming provides puzzle pieces for clues as to how and where
commands can be used. Programming activities are then similar to assembling a puzzle,
where the user drags the desired blocks into the coding area and combines them to form
a script. When two blocks cannot be combined to form a valid syntactic statement, the
programming environment prevents it from making mistakes but maintains the practice
of assembling instructions sequentially [10,41]. The use of block-based programming
has many benefits [34,42], such as reduced cognitive load [44], increased understanding
of programming structures [45], and increased efficiency in completing programming
tasks [27].

Although it has been firmly accepted in educational settings, there are still challenges
regarding students’ perceptions of the role of block-based programming in introductory
programming. The main question is whether block-based programming means “real
programming” [41]?

The biggest challenge that most novice programmers face is an understanding of the
fundamentals of programming, which will enable them to develop algorithmic and compu-
tational thinking in order to be able to design programs [22], and simultaneously prevent
misunderstandings and different prejudices against science education [25]. Students must
have confidence that they are using computers not only as users but also as creators [46].

Problem-solving skills are an integral part of understanding proper programming
concepts [47]; however, most students who study introductory programming tend to

Symmetry 2022, 14, 1405 5 of 36

develop superficial knowledge and fail to create problem-solving strategies by using
programming constructs [48]. Students without a programming strategy, such as using
loops appropriately in a program, will have difficulty combining conditionals and loops to
provide a viable solution [49].

Previous studies in science education have shown the types of problems students
experience when they face text-based programming, among others, control structures such
as variables and other data structures, various types of looping structures, conditional
use logical flow, and Boolean logic [50–52]. Departing from the difficulties of novice
programmers, [9] conducted research on how block-based programming, such as Scratch,
relates to text-based programming, such as Java, C++, and Python. Half of the students
were selected to complete student worksheets that showed a relationship between Scratch,
Java, C++, and Python. Their findings showed no significant difference between students
who completed and those who did not complete the worksheet in terms of beliefs and
perceptions; however, a study [8] that investigated misconceptions about loops, variables,
and Boolean logic found different results. Their results showed that students are generally
unfamiliar with the use of variables and harbor misconceptions about these variables.
Nevertheless, they also run into problems with how loops work and Boolean operators.

2.3. Confidence in Programming Abilities

Block-based programming is a programming environment that is taught as intro-
ductory programming for novice programmers. A programming environment such as
this has succeeded in lowering programming barriers and making it easier for students
to start programming [29,53,54]. Nevertheless, the mastery of text-based programming
remains the standard for advanced and professional programmers. This gap between
the two programming styles creates difficulties in teaching programming at the school
level [53,55]. Additionally, this gap also has an impact on students’ low self-confidence in
their programming skills [29,45].

Several researchers have conducted research related to aspects of self-confidence in
programming to [56] determine whether the basic concepts of programming could be
effectively taught to students with limited or no programming backgrounds. The results
of their research on students who used Alice showed an increase in attitude scores, but
the increase was not statistically significant. [57] Extending their research by investigating
the self-confidence aspect of attitudes, their results showed a significant increase in self-
confidence in their programming; however, their hypothesis that students who work in
pairs will be more confident than those who work individually is not significant. [13] We
compared the attitudes and learning outcomes of sixth-grade students in programming
using both Logo and Scratch. They hypothesized that students studying Scratch would
have a more positive attitude toward programming. Contrarily, their findings showed
that students who studied Logo on average had higher confidence in their ability to
program [10,41]. Compared block-based and text-based programming in introductory
programming classes in secondary schools. Their findings showed there was no significant
difference between students in the two conditions concerning self-confidence or pleasure.
Furthermore, students in block-based programming saw a significant increase in their
confidence in their programming skills. Such a thing is not found in students in text-
based programming.

2.4. Scratch

In recent years, there has been a shift in the computational curriculum from focusing
on information and communications technology to broader ones such as informatics, digital
literacy, and computer science [58,59]. The aim of this shift is for students to master the
skills and knowledge needed in an increasingly digital world, with learning content that
focuses on computer programming, robotics, and computational thinking [60].

Symmetry 2022, 14, 1405 6 of 36

The most widely used educational programming tool is Scratch. Scratch has been
used by more than 53 million projects since its launch in 2007 [61] and has become the most
popular programming environment in basic education [62].

In Taiwan, Scratch is the most popular block-based programming because it supports
the Chinese language and provides a lot of teaching materials; therefore, the education
bureaus of many cities in Taiwan have assigned Scratch as the recommended tool to learn
the basic knowledge of science and technology. For example, Taipei city has expressed
Scratch as the proper tool to teach the elementary or junior high school students in the
syllabus of information technology courses for elementary schools in the science and
technology field in Taipei City. There are more than one million users in Taiwan that use
Scratch to develop projects; therefore, this study selects Scratch as the template to compare
with the proposed language.

Scratch uses block-based programming, similar to a jigsaw snippet. This programming
implements a block-like structure in which each block is different in shape and color
to provide clues as to how instructions can be structured and to differentiate between
concepts [63]. In addition, this programming language also encourages students to create
media-rich content according to their desires [29].

The coding area in the center of Scratch’s screen is the main area that connects the
block palette on the left-hand side and the stage area on the right-hand side. The user only
needs to put the character into the stage area, then drag the code block from the block
palette into the coding area. Finally, click the green flag (compile) to execute the program
to control the characters in the stage area. The interface of Scratch is shown in Figure 1.

Symmetry 2022, 14, x FOR PEER REVIEW 6 of 37

confidence in their programming skills. Such a thing is not found in students in text-based
programming.

2.4. Scratch
In recent years, there has been a shift in the computational curriculum from focusing

on information and communications technology to broader ones such as informatics, dig-
ital literacy, and computer science [58,59]. The aim of this shift is for students to master
the skills and knowledge needed in an increasingly digital world, with learning content
that focuses on computer programming, robotics, and computational thinking [60].

The most widely used educational programming tool is Scratch. Scratch has been
used by more than 53 million projects since its launch in 2007 [61] and has become the
most popular programming environment in basic education [62].

In Taiwan, Scratch is the most popular block-based programming because it supports
the Chinese language and provides a lot of teaching materials; therefore, the education
bureaus of many cities in Taiwan have assigned Scratch as the recommended tool to learn
the basic knowledge of science and technology. For example, Taipei city has expressed
Scratch as the proper tool to teach the elementary or junior high school students in the
syllabus of information technology courses for elementary schools in the science and tech-
nology field in Taipei City. There are more than one million users in Taiwan that use
Scratch to develop projects; therefore, this study selects Scratch as the template to compare
with the proposed language.

Scratch uses block-based programming, similar to a jigsaw snippet. This program-
ming implements a block-like structure in which each block is different in shape and color
to provide clues as to how instructions can be structured and to differentiate between
concepts [63]. In addition, this programming language also encourages students to create
media-rich content according to their desires [29].

The coding area in the center of Scratch’s screen is the main area that connects the
block palette on the left-hand side and the stage area on the right-hand side. The user only
needs to put the character into the stage area, then drag the code block from the block
palette into the coding area. Finally, click the green flag (compile) to execute the program
to control the characters in the stage area. The interface of Scratch is shown in Figure 1.

Figure 1. The interface of Scratch.

The blocks in the block palette have different colors for convenient memory and dis-
crimination. It contains Motion, Looks, Sound, Events, Control, Sensing, Operators, Vari-
ables (Lists), and Function Blocks—as shown in Figure 2. Users can generate different
types of programs by putting different types of blocks into the coding area for combina-
tion. Each block can be treated as a puzzle. The program can be executed when the user

Figure 1. The interface of Scratch.

The blocks in the block palette have different colors for convenient memory and
discrimination. It contains Motion, Looks, Sound, Events, Control, Sensing, Operators,
Variables (Lists), and Function Blocks—as shown in Figure 2. Users can generate different
types of programs by putting different types of blocks into the coding area for combination.
Each block can be treated as a puzzle. The program can be executed when the user can
successfully combine it with other blocks. The definitions of each block are shown below:

• Motion: Control the position, angle, rotation, and movement of the character.
• Looks: Control the shape, color, size, and special effects of the character, and display

the text.
• Sound: Control the sound playback and volume.
• Events: Set the program to be executed when some event is triggered.
• Control: Set conditions and loops.
• Sensing: Obtain mouse and keyboard information, distinguish touching.
• Operators: Set logic operator, arithmetic operator, string operator, and obtain a ran-

dom number.

Symmetry 2022, 14, 1405 7 of 36

• Variables: Generate variables to store the information.
• Function Blocks: Customized block.

Symmetry 2022, 14, x FOR PEER REVIEW 7 of 37

can successfully combine it with other blocks. The definitions of each block are shown
below:
• Motion: Control the position, angle, rotation, and movement of the character.
• Looks: Control the shape, color, size, and special effects of the character, and display

the text.
• Sound: Control the sound playback and volume.
• Events: Set the program to be executed when some event is triggered.
• Control: Set conditions and loops.
• Sensing: Obtain mouse and keyboard information, distinguish touching.
• Operators: Set logic operator, arithmetic operator, string operator, and obtain a ran-

dom number.
• Variables: Generate variables to store the information.
• Function Blocks: Customized block.

Figure 2. Different types of Scratch blocks.

The stage area is used to set characters and display the results of the program. The
user can set the name, coordinates, size, and angle of the character in the area. Scratch is
object-oriented programming. Every character has its coding area to prevent all programs
from being set in the same area. Figure 3 shows an example program of the apple. The
user can switch the size of the stage area, and the green flag button is “Compile” to execute
the program, while the red button is used to stop the program.

Figure 2. Different types of Scratch blocks.

The stage area is used to set characters and display the results of the program. The
user can set the name, coordinates, size, and angle of the character in the area. Scratch is
object-oriented programming. Every character has its coding area to prevent all programs
from being set in the same area. Figure 3 shows an example program of the apple. The user
can switch the size of the stage area, and the green flag button is “Compile” to execute the
program, while the red button is used to stop the program.

Symmetry 2022, 14, x FOR PEER REVIEW 8 of 37

Figure 3. The stage area and object-oriented nature of Scratch.

3. JLcoding
Compared to Scratch, which has a longer history, JLcoding is a programming lan-

guage that is still new. JLcoding was launched in 2017 and is an open-source language
that combines the interactivity and syntax of “scripting” languages, such as Python,
Matlab, and R, but with the speed of “compiled” languages such as Fortran and C [64].
Much of the motivation for the development and use of JLcoding is devoted to solving
two language problems that both beginners and professional programmers encounter. In
scripting languages such as Python, the user types the code line by line into the editor,
and the language interprets and runs it, then returns the result immediately; however, in
languages such as C and Fortran, code must be compiled before it can be executed. Script-
ing languages such as Python are easier to use, whereas languages such as C and Fortran
produce faster code. As a result, programmers often develop algorithms in a scripting
language, then translate them into C or Fortran. JLcoding can solve the two language
problems because it runs similar to C but reads similar to Python [64–66].

3.1. Environment of JLcoding
Figure 4 shows the starting view of the JLcoding. The beginning of JLcoding is the

object. The system includes many examples, functions, and templates to help the students
quickly understand the logic of coding. The coding environment of JLcoding is shown in
Figure 5.

The coding area in Figure 5a is the main area to type the codes. The function area in
Figure 5a gives the entire function used in the coding area. This method finds the keyword
from the function area. The code structure of the keyword will be shown in the coding
area. The stage area in Figure 5b shows the running results of the codes. For example, in
Figure 6, we select the keyword “if” from the function area. The coding area will automat-
ically show the structure of “if”.

Figure 3. The stage area and object-oriented nature of Scratch.

3. JLcoding

Compared to Scratch, which has a longer history, JLcoding is a programming language
that is still new. JLcoding was launched in 2017 and is an open-source language that
combines the interactivity and syntax of “scripting” languages, such as Python, Matlab,
and R, but with the speed of “compiled” languages such as Fortran and C [64]. Much

Symmetry 2022, 14, 1405 8 of 36

of the motivation for the development and use of JLcoding is devoted to solving two
language problems that both beginners and professional programmers encounter. In
scripting languages such as Python, the user types the code line by line into the editor,
and the language interprets and runs it, then returns the result immediately; however,
in languages such as C and Fortran, code must be compiled before it can be executed.
Scripting languages such as Python are easier to use, whereas languages such as C and
Fortran produce faster code. As a result, programmers often develop algorithms in a
scripting language, then translate them into C or Fortran. JLcoding can solve the two
language problems because it runs similar to C but reads similar to Python [64–66].

3.1. Environment of JLcoding

Figure 4 shows the starting view of the JLcoding. The beginning of JLcoding is the
object. The system includes many examples, functions, and templates to help the students
quickly understand the logic of coding. The coding environment of JLcoding is shown in
Figure 5.

Symmetry 2022, 14, x FOR PEER REVIEW 9 of 37

Figure 4. The starting view of JLcoding.

(a) Coding window of JLcoding

(b) the stage area of JLcoding

Figure 5. Coding environment of JLcoding.

Figure 4. The starting view of JLcoding.

Symmetry 2022, 14, x FOR PEER REVIEW 9 of 37

Figure 4. The starting view of JLcoding.

(a) Coding window of JLcoding

(b) the stage area of JLcoding

Figure 5. Coding environment of JLcoding.

Figure 5. Cont.

Symmetry 2022, 14, 1405 9 of 36

Symmetry 2022, 14, x FOR PEER REVIEW 9 of 37

Figure 4. The starting view of JLcoding.

(a) Coding window of JLcoding

(b) the stage area of JLcoding

Figure 5. Coding environment of JLcoding. Figure 5. Coding environment of JLcoding.

The coding area in Figure 5a is the main area to type the codes. The function area in
Figure 5a gives the entire function used in the coding area. This method finds the keyword
from the function area. The code structure of the keyword will be shown in the coding area.
The stage area in Figure 5b shows the running results of the codes. For example, in Figure 6,
we select the keyword “if” from the function area. The coding area will automatically show
the structure of “if”.

Symmetry 2022, 14, x FOR PEER REVIEW 10 of 37

Figure 6. Keywords in the function area.

3.2. Coding Example of JLcoding
According to the definition of a 12-year national basic education syllabus in Taiwan

for junior high school students to learn computer science courses, the students need to
understand computer data forms, variables, input/output, arithmetic operations, logical
operations, selection structures, and repetition in the field of programming; therefore, this
study considers all requirements in the syllabus to design the JLcoding language. After
learning the courses, the student has the basic knowledge required to write the program.
Typically, the structure of JLcoding is similar to a text-based program such that the stu-
dent can learn the basic logical structure of text-based programming at the same time.

This sub-section shows some coding examples by using JLcoding and compares them
with the coding environment of Scratch.

3.2.1. Set Variable
The first example demonstrates how to move the object—a bee—from left to right. In

Scratch, the block functions “set x to” and “set y to” are used to move the bee from the
position (0, 0) to the position (100, 100)—as shown in Figure 7.

Figure 7. Move a bee from left to right by using Scratch.

Instead of the block function, JLcoding uses the object-orient concept to design the
attribute of the object. Figure 8a shows the beginning position of the bee. The initial posi-
tion of the bee is set to be (900, 200). JLcoding uses “bee. x” and “bee. y” to set the position
of the object bee. Figure 8b shows how to code the moving operator in the coding area.
Figure 8c is the final running result.

Figure 6. Keywords in the function area.

3.2. Coding Example of JLcoding

According to the definition of a 12-year national basic education syllabus in Taiwan
for junior high school students to learn computer science courses, the students need to
understand computer data forms, variables, input/output, arithmetic operations, logical
operations, selection structures, and repetition in the field of programming; therefore, this
study considers all requirements in the syllabus to design the JLcoding language. After
learning the courses, the student has the basic knowledge required to write the program.
Typically, the structure of JLcoding is similar to a text-based program such that the student
can learn the basic logical structure of text-based programming at the same time.

This sub-section shows some coding examples by using JLcoding and compares them
with the coding environment of Scratch.

Symmetry 2022, 14, 1405 10 of 36

3.2.1. Set Variable

The first example demonstrates how to move the object—a bee—from left to right. In
Scratch, the block functions “set x to” and “set y to” are used to move the bee from the
position (0, 0) to the position (100, 100)—as shown in Figure 7.

Symmetry 2022, 14, x FOR PEER REVIEW 10 of 37

Figure 6. Keywords in the function area.

3.2. Coding Example of JLcoding
According to the definition of a 12-year national basic education syllabus in Taiwan

for junior high school students to learn computer science courses, the students need to
understand computer data forms, variables, input/output, arithmetic operations, logical
operations, selection structures, and repetition in the field of programming; therefore, this
study considers all requirements in the syllabus to design the JLcoding language. After
learning the courses, the student has the basic knowledge required to write the program.
Typically, the structure of JLcoding is similar to a text-based program such that the stu-
dent can learn the basic logical structure of text-based programming at the same time.

This sub-section shows some coding examples by using JLcoding and compares them
with the coding environment of Scratch.

3.2.1. Set Variable
The first example demonstrates how to move the object—a bee—from left to right. In

Scratch, the block functions “set x to” and “set y to” are used to move the bee from the
position (0, 0) to the position (100, 100)—as shown in Figure 7.

Figure 7. Move a bee from left to right by using Scratch.

Instead of the block function, JLcoding uses the object-orient concept to design the
attribute of the object. Figure 8a shows the beginning position of the bee. The initial posi-
tion of the bee is set to be (900, 200). JLcoding uses “bee. x” and “bee. y” to set the position
of the object bee. Figure 8b shows how to code the moving operator in the coding area.
Figure 8c is the final running result.

Figure 7. Move a bee from left to right by using Scratch.

Instead of the block function, JLcoding uses the object-orient concept to design the
attribute of the object. Figure 8a shows the beginning position of the bee. The initial
position of the bee is set to be (900, 200). JLcoding uses “bee. x” and “bee. y” to set the
position of the object bee. Figure 8b shows how to code the moving operator in the coding
area. Figure 8c is the final running result.

Symmetry 2022, 14, x FOR PEER REVIEW 11 of 37

(a) Beginning position of the bee

(b) move the bee to the position (1200, 600)

(c) the final position of the bee

Figure 8. The coding example of JLcoding to move the bee.

3.2.2. Input and Output
In Scratch, the event block creates a way to interact with the program and the user.

The user uses the mouse and keyboard to control the object. The square in the code area
on the left of Figure 9 indicates that when the space key of the keyboard is clicked, the
program says “Hello!” for 5 s. The user uses the space key as the input to control the
program execution, and the text will appear on the upper right of the duck for 5 s to
achieve the output.

On the other hand, JLcoding does not use the events box for input; it uses buttons
instead. Users can interact by setting the object as a button and entering the program that
will be executed when the button is pressed in the coding area. The example in Figure 10

Figure 8. Cont.

Symmetry 2022, 14, 1405 11 of 36

Symmetry 2022, 14, x FOR PEER REVIEW 11 of 37

(a) Beginning position of the bee

(b) move the bee to the position (1200, 600)

(c) the final position of the bee

Figure 8. The coding example of JLcoding to move the bee.

3.2.2. Input and Output
In Scratch, the event block creates a way to interact with the program and the user.

The user uses the mouse and keyboard to control the object. The square in the code area
on the left of Figure 9 indicates that when the space key of the keyboard is clicked, the
program says “Hello!” for 5 s. The user uses the space key as the input to control the
program execution, and the text will appear on the upper right of the duck for 5 s to
achieve the output.

On the other hand, JLcoding does not use the events box for input; it uses buttons
instead. Users can interact by setting the object as a button and entering the program that
will be executed when the button is pressed in the coding area. The example in Figure 10

Figure 8. The coding example of JLcoding to move the bee.

3.2.2. Input and Output

In Scratch, the event block creates a way to interact with the program and the user.
The user uses the mouse and keyboard to control the object. The square in the code area
on the left of Figure 9 indicates that when the space key of the keyboard is clicked, the
program says “Hello!” for 5 s. The user uses the space key as the input to control the
program execution, and the text will appear on the upper right of the duck for 5 s to achieve
the output.

Symmetry 2022, 14, x FOR PEER REVIEW 12 of 37

shows that after clicking the duck button, the program says “Hello!” for a period of time.
When the user presses the button with the mouse, the text will appear above the duck as
output.

Figure 9. Input and output by using Scratch.

Figure 10. Input and output by using JLcoding.

3.2.3. Arithmetic
Figure 11 shows an example of how to calculate the required variables in Scratch. The

program moves the blue duckling to the back of the duckling team while maintaining the
same distance as the other ducklings. The code in Figure 11a shows the code in the fourth
duckling that obtains the X-coordinate and Y-coordinate of the duckling. After obtaining
the coordinates of the fourth duckling, use “ message1” to drive the code in Figure 11b to
obtain the coordinates of the third duckling. Similarly, “message 2” is performed after the
coordinates are obtained to drive the code in Figure 11c to calculate the moving position

Figure 9. Input and output by using Scratch.

Symmetry 2022, 14, 1405 12 of 36

On the other hand, JLcoding does not use the events box for input; it uses buttons
instead. Users can interact by setting the object as a button and entering the program that
will be executed when the button is pressed in the coding area. The example in Figure 10
shows that after clicking the duck button, the program says “Hello!” for a period of time.
When the user presses the button with the mouse, the text will appear above the duck
as output.

Symmetry 2022, 14, x FOR PEER REVIEW 12 of 37

shows that after clicking the duck button, the program says “Hello!” for a period of time.
When the user presses the button with the mouse, the text will appear above the duck as
output.

Figure 9. Input and output by using Scratch.

Figure 10. Input and output by using JLcoding.

3.2.3. Arithmetic
Figure 11 shows an example of how to calculate the required variables in Scratch. The

program moves the blue duckling to the back of the duckling team while maintaining the
same distance as the other ducklings. The code in Figure 11a shows the code in the fourth
duckling that obtains the X-coordinate and Y-coordinate of the duckling. After obtaining
the coordinates of the fourth duckling, use “ message1” to drive the code in Figure 11b to
obtain the coordinates of the third duckling. Similarly, “message 2” is performed after the
coordinates are obtained to drive the code in Figure 11c to calculate the moving position

Figure 10. Input and output by using JLcoding.

3.2.3. Arithmetic

Figure 11 shows an example of how to calculate the required variables in Scratch. The
program moves the blue duckling to the back of the duckling team while maintaining the
same distance as the other ducklings. The code in Figure 11a shows the code in the fourth
duckling that obtains the X-coordinate and Y-coordinate of the duckling. After obtaining
the coordinates of the fourth duckling, use “ message1” to drive the code in Figure 11b to
obtain the coordinates of the third duckling. Similarly, “message 2” is performed after the
coordinates are obtained to drive the code in Figure 11c to calculate the moving position
of the blue duckling. Figure 11c will calculate the X coordinate as (the 4th duckling’s X
coordinate)—(the distance between the 3rd duckling’s X coordinate and the 4th duckling’s
X coordinate), and the Y coordinate using the same coordinates as the 4th duckling. When
the calculation is complete, the “go to” block function will move the blue duckling to the
calculated coordinates, as shown in Figure 11d.

Compared with Scratch, the code is much easier to use in JLcoding. Since the coordi-
nates of all objects have already been acquired, the user only needs to input the calculation
formula into a coding area to calculate the position of the blue duckling. The code is shown
in Figure 12. The algorithm in JLcoding is almost the same as Scratch. The program sets
the X coordinate of the blue duckling to be (the X coordinate of the 4th duckling)—(the
difference between the X coordinate of the 3rd duckling and the X coordinate of the 4th
duckling), and the Y coordinate of the blue duckling will be the same as that of the 4th

Symmetry 2022, 14, 1405 13 of 36

duckling. The execution results are shown in Figure 13, in which the blue duckling moves
to the correct position.

Symmetry 2022, 14, x FOR PEER REVIEW 13 of 37

of the blue duckling. Figure 11c will calculate the X coordinate as (the 4th duckling’s X
coordinate) − (the distance between the 3rd duckling’s X coordinate and the 4th duck-
ling’s X coordinate), and the Y coordinate using the same coordinates as the 4th duckling.
When the calculation is complete, the “go to” block function will move the blue duckling
to the calculated coordinates, as shown in Figure 11d.

(a) Obtain the position of the fourth duckling

(b) obtain the position of the third duckling

Figure 11. Cont.

Symmetry 2022, 14, 1405 14 of 36
Symmetry 2022, 14, x FOR PEER REVIEW 14 of 37

(c) calculate the position of the blue duckling

(d) the results

Figure 11. Arithmetic by using Scratch.

Compared with Scratch, the code is much easier to use in JLcoding. Since the coordi-
nates of all objects have already been acquired, the user only needs to input the calculation
formula into a coding area to calculate the position of the blue duckling. The code is shown
in Figure 12. The algorithm in JLcoding is almost the same as Scratch. The program sets
the X coordinate of the blue duckling to be (the X coordinate of the 4th duckling) − (the
difference between the X coordinate of the 3rd duckling and the X coordinate of the 4th
duckling), and the Y coordinate of the blue duckling will be the same as that of the 4th
duckling. The execution results are shown in Figure 13, in which the blue duckling moves
to the correct position.

Figure 11. Arithmetic by using Scratch.

Symmetry 2022, 14, 1405 15 of 36Symmetry 2022, 14, x FOR PEER REVIEW 15 of 37

Figure 12. Arithmetic in JLcoding’s coding area.

(a) blue duckling in the wrong position (b) blue duckling set in the correct position

Figure 13. Arithmetic by using JLcoding

3.2.4. Conditional
Conditional is a selection structure that determines the items to be executed accord-

ing to the conditions specified in the code. Figure 14 shows a conditional decision to de-
cide whether the bees or the butterflies will be moved to the flower.

The code in Figure 14a uses an “if/else” block as the main body and makes choices
based on whether the size of the bee is greater than 50. If the condition rule is true, then
“go to flower” will be executed. The bee will move to the flower. Otherwise, it will choose
not to execute the go to block of the bee and only execute “broadcast message1” to drive
the code of the butterfly in Figure 14b to move the butterfly to the flower. The final result
is shown in Figure 14c.

Figure 12. Arithmetic in JLcoding’s coding area.

Symmetry 2022, 14, x FOR PEER REVIEW 15 of 37

Figure 12. Arithmetic in JLcoding’s coding area.

(a) blue duckling in the wrong position (b) blue duckling set in the correct position

Figure 13. Arithmetic by using JLcoding

3.2.4. Conditional
Conditional is a selection structure that determines the items to be executed accord-

ing to the conditions specified in the code. Figure 14 shows a conditional decision to de-
cide whether the bees or the butterflies will be moved to the flower.

The code in Figure 14a uses an “if/else” block as the main body and makes choices
based on whether the size of the bee is greater than 50. If the condition rule is true, then
“go to flower” will be executed. The bee will move to the flower. Otherwise, it will choose
not to execute the go to block of the bee and only execute “broadcast message1” to drive
the code of the butterfly in Figure 14b to move the butterfly to the flower. The final result
is shown in Figure 14c.

Figure 13. Arithmetic by using JLcoding.

3.2.4. Conditional

Conditional is a selection structure that determines the items to be executed according
to the conditions specified in the code. Figure 14 shows a conditional decision to decide
whether the bees or the butterflies will be moved to the flower.

The code in Figure 14a uses an “if/else” block as the main body and makes choices
based on whether the size of the bee is greater than 50. If the condition rule is true, then
“go to flower” will be executed. The bee will move to the flower. Otherwise, it will choose
not to execute the go to block of the bee and only execute “broadcast message1” to drive
the code of the butterfly in Figure 14b to move the butterfly to the flower. The final result is
shown in Figure 14c.

In the JLcoding, the user inputs three strings, “if”, “else” and “end”, as the structure.
The selection condition rule (bee.width > 50) is used to decide whether the bee or the
butterfly will move to the flower. According to the “if it is true” of the selection condition,
choose to use “bee.moveTo(flower)” to move the bee to the flower, or choose to use “but-
terfly.moveTo(flower)” to move the butterfly to the flower. Figure 15 shows the codes and
Figure 16 shows the execution results.

Symmetry 2022, 14, 1405 16 of 36

Symmetry 2022, 14, x FOR PEER REVIEW 16 of 37

(a) the code of the bee

(b) the code of the butterfly

Figure 14. Cont.

Symmetry 2022, 14, 1405 17 of 36

Symmetry 2022, 14, x FOR PEER REVIEW 17 of 37

(c) the results

Figure 14. “If” condition rule to move the bee or the butterfly to flower by using Scratch.

In the JLcoding, the user inputs three strings, “if”, “else” and “end”, as the structure.
The selection condition rule (bee.width > 50) is used to decide whether the bee or the but-
terfly will move to the flower. According to the “if it is true” of the selection condition,
choose to use “bee.moveTo(flower)” to move the bee to the flower, or choose to use “but-
terfly.moveTo(flower)” to move the butterfly to the flower. Figure 15 shows the codes and
Figure 16 shows the execution results.

Figure 15. Conditional in JLcoding’s coding area.

Figure 14. “If” condition rule to move the bee or the butterfly to flower by using Scratch.

Symmetry 2022, 14, x FOR PEER REVIEW 17 of 37

(c) the results

Figure 14. “If” condition rule to move the bee or the butterfly to flower by using Scratch.

In the JLcoding, the user inputs three strings, “if”, “else” and “end”, as the structure.
The selection condition rule (bee.width > 50) is used to decide whether the bee or the but-
terfly will move to the flower. According to the “if it is true” of the selection condition,
choose to use “bee.moveTo(flower)” to move the bee to the flower, or choose to use “but-
terfly.moveTo(flower)” to move the butterfly to the flower. Figure 15 shows the codes and
Figure 16 shows the execution results.

Figure 15. Conditional in JLcoding’s coding area. Figure 15. Conditional in JLcoding’s coding area.

Symmetry 2022, 14, x FOR PEER REVIEW 18 of 37

(a) before (b) after

Figure 16. Select to move butterfly to flower by using JLcoding.

3.2.5. For Loop
The second example demonstrates how to generate several objects by using the “For

loop.” In the Scratch environment, the block function “repeat” is used to perform the “For
loop” operator. For each loop, the system generates one duck and moves it to a different
position. Figure 17 shows the “repeat” example using Scratch.

Similar to Scratch, JLcoding uses the For loop structure, which contains for and ends
keywords to perform the “For loop” operator, which is the same as the text-based lan-
guage. The user types the keyword “for” in the function area, and JLcoding will generate
the structure automatically. JLcoding uses “clone” to generate a new object and uses “ob-
ject. x” to change the position. Figure 18 shows the running results using JLcoding.

Figure 17. Generate 10 ducks by using Scratch.

Figure 16. Select to move butterfly to flower by using JLcoding.

Symmetry 2022, 14, 1405 18 of 36

3.2.5. For Loop

The second example demonstrates how to generate several objects by using the “For
loop.” In the Scratch environment, the block function “repeat” is used to perform the “For
loop” operator. For each loop, the system generates one duck and moves it to a different
position. Figure 17 shows the “repeat” example using Scratch.

Symmetry 2022, 14, x FOR PEER REVIEW 18 of 37

(a) before (b) after

Figure 16. Select to move butterfly to flower by using JLcoding.

3.2.5. For Loop
The second example demonstrates how to generate several objects by using the “For

loop.” In the Scratch environment, the block function “repeat” is used to perform the “For
loop” operator. For each loop, the system generates one duck and moves it to a different
position. Figure 17 shows the “repeat” example using Scratch.

Similar to Scratch, JLcoding uses the For loop structure, which contains for and ends
keywords to perform the “For loop” operator, which is the same as the text-based lan-
guage. The user types the keyword “for” in the function area, and JLcoding will generate
the structure automatically. JLcoding uses “clone” to generate a new object and uses “ob-
ject. x” to change the position. Figure 18 shows the running results using JLcoding.

Figure 17. Generate 10 ducks by using Scratch.

Figure 17. Generate 10 ducks by using Scratch.

Similar to Scratch, JLcoding uses the For loop structure, which contains for and ends
keywords to perform the “For loop” operator, which is the same as the text-based language.
The user types the keyword “for” in the function area, and JLcoding will generate the
structure automatically. JLcoding uses “clone” to generate a new object and uses “object. x”
to change the position. Figure 18 shows the running results using JLcoding.

Symmetry 2022, 14, x FOR PEER REVIEW 19 of 37

Figure 18. Generate 10 ducks by using JLcoding.

3.3. Features of JLcoding
JLcoding is a programming language that helps the student transforms from blocks

to text-based programming. To avoid rejection by students who are learning text-based
programming for the first time, JLcoding uses the concept of object-oriented program-
ming similar to Scratch. Students put the character on the stage area and use the program
to control it. Similar to Scratch, the stage area of JLcoding is the whole screen. An addi-
tional window is added to the coding area to prevent the coding area from squeezing the
stage area. Thus, students can make more creations in the expanded stage area. The dia-
grams are shown in Figures 19 and 20.

Figure 19. The stage area of JLcoding. The user needs to move the bridge and jellyfish to save jelly-
fish.

Figure 18. Generate 10 ducks by using JLcoding.

3.3. Features of JLcoding

JLcoding is a programming language that helps the student transforms from blocks
to text-based programming. To avoid rejection by students who are learning text-based
programming for the first time, JLcoding uses the concept of object-oriented programming
similar to Scratch. Students put the character on the stage area and use the program to
control it. Similar to Scratch, the stage area of JLcoding is the whole screen. An additional

Symmetry 2022, 14, 1405 19 of 36

window is added to the coding area to prevent the coding area from squeezing the stage
area. Thus, students can make more creations in the expanded stage area. The diagrams
are shown in Figures 19 and 20.

Symmetry 2022, 14, x FOR PEER REVIEW 19 of 37

Figure 18. Generate 10 ducks by using JLcoding.

3.3. Features of JLcoding
JLcoding is a programming language that helps the student transforms from blocks

to text-based programming. To avoid rejection by students who are learning text-based
programming for the first time, JLcoding uses the concept of object-oriented program-
ming similar to Scratch. Students put the character on the stage area and use the program
to control it. Similar to Scratch, the stage area of JLcoding is the whole screen. An addi-
tional window is added to the coding area to prevent the coding area from squeezing the
stage area. Thus, students can make more creations in the expanded stage area. The dia-
grams are shown in Figures 19 and 20.

Figure 19. The stage area of JLcoding. The user needs to move the bridge and jellyfish to save jelly-
fish.

Figure 19. The stage area of JLcoding. The user needs to move the bridge and jellyfish to save jellyfish.

Symmetry 2022, 14, x FOR PEER REVIEW 20 of 37

Figure 20. The coding window in front of the stage area.

Instead of dragging the block to generate the program, JLcoding allows the students
to type some codes in the coding area to make students acquainted with the programming
environment of text-based programming. To reduce students’ difficulty in memorizing
codes, the function area provides hints to help students enter codes. Then, the students
click the triangle button in the middle of the coding area to compile and execute the pro-
gram.

Furthermore, JLcoding has built-in teaching courses and practice questions to pre-
vent students using the system for the first time from having no idea how to start the
programming procedure. The students can learn by themselves without using additional
software. The course content includes object naming, coordinate settings, length and
width settings, hexadecimal color code, object movement, rotation, collision, container,
copy, and other functions, as well as learning how to use functions, variables, expressions,
and conditional expressions. The course outline is shown in Table 1. Each course uses
vivid pictures to illustrate the learning objectives and allows students to think of how to
use the functions they learned when they practice after class. The textbook screen is shown
in Figures 21 and 22.

Table 1. Course outline of JLcoding.

Course Theme Content

Basic Course 1
Little blue duck leaving the

team

1. Understand JLcoding and
system.
2. Learn how to set the posi-
tion and coordinates of ob-
jects.

Basic Course 2 Pigs will set sail

1. Learn how to set the length
and width of object.
2. Learn how to set the sizes
of objects.

Basic Course 3 Missing turtle eggs 1. Learn how to set the color
of objects.

Figure 20. The coding window in front of the stage area.

Instead of dragging the block to generate the program, JLcoding allows the students
to type some codes in the coding area to make students acquainted with the programming
environment of text-based programming. To reduce students’ difficulty in memorizing
codes, the function area provides hints to help students enter codes. Then, the students click
the triangle button in the middle of the coding area to compile and execute the program.

Symmetry 2022, 14, 1405 20 of 36

Furthermore, JLcoding has built-in teaching courses and practice questions to pre-
vent students using the system for the first time from having no idea how to start the
programming procedure. The students can learn by themselves without using additional
software. The course content includes object naming, coordinate settings, length and width
settings, hexadecimal color code, object movement, rotation, collision, container, copy,
and other functions, as well as learning how to use functions, variables, expressions, and
conditional expressions. The course outline is shown in Table 1. Each course uses vivid
pictures to illustrate the learning objectives and allows students to think of how to use
the functions they learned when they practice after class. The textbook screen is shown in
Figures 21 and 22.

Based on the above description of JLcoding and Scratch, the comparison between the
two programming languages is shown in Table 2.

Symmetry 2022, 14, x FOR PEER REVIEW 21 of 37

2. Forward and turn of ob-
jects.

Basic Course 4 Trapped jellyfish 1. Movement and rotation of
objects.

Basic Course 5 Infinite bomb
1. Learn how to use the code
for copying objects.

Basic Course 6 Pirate’s gold coin
1. Learn how to set variables.
2. Arithmetic operations of
variables.

Basic Course 7 Delicious fish soup 1. Learn how to use the code
for If/else.

Figure 21. Built-in teaching of JLcoding.

Figure 22. Built-in practice questions of JLcoding.

Based on the above description of JLcoding and Scratch, the comparison between the
two programming languages is shown in Table 2.

Figure 21. Built-in teaching of JLcoding.

Symmetry 2022, 14, x FOR PEER REVIEW 21 of 37

2. Forward and turn of ob-
jects.

Basic Course 4 Trapped jellyfish 1. Movement and rotation of
objects.

Basic Course 5 Infinite bomb
1. Learn how to use the code
for copying objects.

Basic Course 6 Pirate’s gold coin
1. Learn how to set variables.
2. Arithmetic operations of
variables.

Basic Course 7 Delicious fish soup 1. Learn how to use the code
for If/else.

Figure 21. Built-in teaching of JLcoding.

Figure 22. Built-in practice questions of JLcoding.

Based on the above description of JLcoding and Scratch, the comparison between the
two programming languages is shown in Table 2.

Figure 22. Built-in practice questions of JLcoding.

Symmetry 2022, 14, 1405 21 of 36

Table 1. Course outline of JLcoding.

Course Theme Content

Basic Course 1 Little blue duck leaving the team 1. Understand JLcoding and system.
2. Learn how to set the position and coordinates of objects.

Basic Course 2 Pigs will set sail 1. Learn how to set the length and width of object.
2. Learn how to set the sizes of objects.

Basic Course 3 Missing turtle eggs 1. Learn how to set the color of objects.
2. Forward and turn of objects.

Basic Course 4 Trapped jellyfish 1. Movement and rotation of objects.
Basic Course 5 Infinite bomb 1. Learn how to use the code for copying objects.

Basic Course 6 Pirate’s gold coin 1. Learn how to set variables.
2. Arithmetic operations of variables.

Basic Course 7 Delicious fish soup 1. Learn how to use the code for If/else.

Table 2. The comparison between Scratch and JLcoding.

Item Scratch JLcoding

Entry barrier

The difficulty of getting started is extremely low.
Students can execute the program and see the

effect without typing the code and dragging the
building blocks directly with the mouse; however,
when there are relatively problems, it is difficult to
debug, and it is inconvenient to perform complex

combinations of logical conditions.

There is a certain degree of difficulty in starting,
but JLcoding redefines the original complex code
into modern code that is easy to understand. With
the program assistance function that comes with
the JLcoding platform, it can greatly reduce the

cost of learning to write code.

Creative space

The number of functions is limited. The limitations
of the platform compress the space for creation.

The student cannot freely create their
own function.

A platform specially designed for teaching allows
students to freely use a variety of materials and

hundreds of rich built-in functions (APIs) to
support students in designing games, APPs, small

systems, etc. The platform can be connected to
hardware or AI. Students’ creative field further

expands to the Internet of Things (IOT) or
artificial intelligence.

Teaching support

The design focuses on easy operation for students
and supports a few necessary teaching auxiliary

functions for teachers. When teachers use the
program platform to teach, they usually need to

open other auxiliary tools such as PPT.

JLcoding integrates teaching, learning, and
practice. Teachers use the courseware and built-in
auxiliary tools to teach on the platform to improve

the teaching effect. Students use the student
courseware to learn and can also practice directly

on the platform, improving learning efficiency
and effectiveness.

Programming
environment

What you see is what you get (WYSIWYG), so that
students can quickly see the results of the program;
however, there is still the problem of separation of
teaching, learning, and practice, which reduces the

learning effect.

JLcoding achieves WYSIWYG and the integration
of teaching, learning and practice. The teaching

materials and courseware can be switched
between teaching and learning smoothly without

switching any software, and the programming
environment has function prompts and detailed

Chinese explanations. Remove language and
format barriers.

3.4. Compare with Khan Academy

Khan Academy [67] also provides some training courses for computer programming
learning. At the Khan Academy, JavaScript and HTML languages are the most popular
programming courses. The platform is a text-based programming training environment.
There are many lessons and exercises on the platform, and they also provide videos. For
formal programming, it may be a good idea to use the videos to learn some of the text-
based programming training; however, it requires the user to pay attention to more details,
such as typing relative parentheses and noticing the placement of semicolons [68]. The

Symmetry 2022, 14, 1405 22 of 36

users might easily forget the main learning content, which in turn can contribute to one
losing their self-confidence to learn. The design of JLcoding allows users to focus on the
logical thinking of programming without paying attention. The respective advantages are
compared in Table 3.

Table 3. Compare Scratch, JLcoding, and JavaScript.

Item Scratch JLcoding Khan Academy (JavaScript)

1. Programming
environment Block-Based programming Text-Based programming Text-Based programming

2. Programming type Drag the blocks Typing string Typing string

3. Creation Programmatically control the
placed objects

Programmatically control the
placed objects

Programmatically generate
controllable objects

4. Programming
paradigm Object-Oriented Programming Object-Oriented Programming Functional Programming

5. Memorizing codes Find in block palette Find in functional area Find in coding documentation

6. Separators Not using curly braces and
semicolons

Not using curly braces and
semicolons Need to be used correctly

7. Teaching Not provided Built-in Graphic teaching Built-in video teaching
8. Practice Free creation Built-in practice questions Built-in practice questions

4. Research Methods
4.1. Research Object

To understand students’ learning status and satisfaction with JLcoding, this study
selected secondary school 7th grade (12–13 years old) students for testing; however, due to
the limitations of school teaching equipment and overall teaching curriculum planning,
only 41 students were selected for the experiment. The students in this class understand
both Chinese and English, and all of them have basic English typing skills. All of them
agreed to the experiment and understood the entire experimental process.

4.2. Research Process

The flowchart of this research is shown in Figure 23. The experiment first went
through a “pre-test” process to understand the basic abilities of the students; then, we
taught JLcoding for seven weeks. Afterward, we conducted the “post-test” to analyze the
results of the pre-test and the post-test.

Consequently, the background information of the students was collected during the
pre-test in this study, and the JLcoding test was performed simultaneously. The JLcoding
test was used to obtain the students’ understanding of programming knowledge before
taking the JLcoding course and was recorded in the form of scores. Then, the students
learned JLcoding for 2.5 h per week. The courses are listed in order.

After completing the training courses, the students performed a post-test to evaluate
the effectiveness of the learning. The post-test questionnaire contains the same JLcoding
test as the previous test, and a text-based programming quiz is added to determine whether
JLcoding can connect to text-based programming. Finally, this study uses the “Program-
ming Confidence Questionnaire” to understand the degree of recognition of the students
with programming abilities and asked whether they were willing to continue improving
their programming abilities.

Symmetry 2022, 14, 1405 23 of 36
Symmetry 2022, 14, x FOR PEER REVIEW 24 of 37

Figure 23. The experimental flowchart.

4.3. Survey Design
The first step in data collection is to use a questionnaire to determine whether the

student has ever learned a programming language before. Figure 24 shows our prelimi-
nary questionnaire to collect information about students programming language back-
grounds. This questionnaire is essentially needed for the student selection process and
grouping in the early steps of the research. To compare the difference between pre-test
and post-test, the basic information included the student’s name, gender, past program-
ming experience, and whether they were interested in JLcoding.

Figure 23. The experimental flowchart.

4.3. Survey Design

The first step in data collection is to use a questionnaire to determine whether the
student has ever learned a programming language before. Figure 24 shows our preliminary
questionnaire to collect information about students programming language backgrounds.
This questionnaire is essentially needed for the student selection process and grouping in
the early steps of the research. To compare the difference between pre-test and post-test,
the basic information included the student’s name, gender, past programming experience,
and whether they were interested in JLcoding.

Symmetry 2022, 14, 1405 24 of 36
Symmetry 2022, 14, x FOR PEER REVIEW 25 of 37

Figure 24. Preliminary questionnaire.

In order to test whether the student who learned JLcoding can fit the requirement of
a 12-year national basic education syllabus, this study included a test to include all the
basic knowledge that they should know. For example, data forms, variables, input/output,
arithmetic operations, logical operations, selection structure, and repetition. Figure 25
shows the pre- and post-testing questions that were used in the experiments. The question
consists of 10 multiple-choice questions and 4 filling questions, which represent some of
the abilities that one must have when coding, such as name, variable, operator, if, loop,
and so on. The second part includes the fill-in questions. The student needs to fill in the
C++, Java, and Python program codes to answer the questions. The first question of part
(2) in Figure 25c is used to test the “input/output” ability of the student. The student needs
to imitate the code shown above to output their name on the screen. The second question
in Figure 25d is used to test the arithmetic operations ability. The student needs to type
the right code for computing the value of “a + b.” The third question is used to test the
logical ability of the student. The student needs to know how to write the structure of “if”
to obtain the true answer. The fourth question is used to test the repetition ability of the
student. They need to know how to write the “For loop” to print the number from 1 to 5.

Figure 24. Preliminary questionnaire.

In order to test whether the student who learned JLcoding can fit the requirement of
a 12-year national basic education syllabus, this study included a test to include all the
basic knowledge that they should know. For example, data forms, variables, input/output,
arithmetic operations, logical operations, selection structure, and repetition. Figure 25
shows the pre- and post-testing questions that were used in the experiments. The question
consists of 10 multiple-choice questions and 4 filling questions, which represent some of
the abilities that one must have when coding, such as name, variable, operator, if, loop, and
so on. The second part includes the fill-in questions. The student needs to fill in the C++,
Java, and Python program codes to answer the questions. The first question of part (2) in
Figure 25c is used to test the “input/output” ability of the student. The student needs to
imitate the code shown above to output their name on the screen. The second question
in Figure 25d is used to test the arithmetic operations ability. The student needs to type
the right code for computing the value of “a + b.” The third question is used to test the
logical ability of the student. The student needs to know how to write the structure of “if”
to obtain the true answer. The fourth question is used to test the repetition ability of the
student. They need to know how to write the “For loop” to print the number from 1 to 5.

After the testing process, we provided a questionnaire to the students to determine
the results of student’s confidence in the programming language that had been learned.
There are four questions in the confidence questionnaire given in the form of a Likert scale
with a range of 1–5. The four questions are:

1. Writing a computer program is easy.
2. I am good at writing computer programs.
3. I plan to continue programming after the class is over.
4. I want to take another computer programming.

Symmetry 2022, 14, 1405 25 of 36
Symmetry 2022, 14, x FOR PEER REVIEW 26 of 37

(a) (b)

(c) (d)

Figure 25. A sample JLcoding test: (a) multiple-choice questions of Named, Coordinate, Height and
Width, Scale; (b) multiple-choice questions of Color Code, Go Ahead, Move, Clone; (c) multiple-choice
questions of Variable and if/else; (d) filling questions and confidence investigation.

Symmetry 2022, 14, 1405 26 of 36

4.4. Data Processing and Analysis

The research process was divided into three stages: pre-test, course training, and
post-test. All questionnaires are inquired in paper form and collected immediately after
filling out. The results of the questionnaire were analyzed by SPSS Statistics 22 software
(IBM, New York, NY, USA). As shown in Figure 26, the analysis method is as follows:

• Use descriptive statistics to illustrate the performance of students before and after the
JLcoding course.

• Use the paired-sample t-test to illustrate the performance of students before and after
the JLcoding course.

• Use the independent-sample t-test to show whether there is a significant difference in
the progress scores of students of different genders in the JLcoding course.

• Use the independent-sample t-test to show whether there is a significant difference in
the progress scores of students interested in JLcoding and those who are not interested
in learning JLcoding courses.

• Use the independent-sample t-test to illustrate the degree of confidence of different
genders and interests in students’ programming abilities.

Symmetry 2022, 14, x FOR PEER REVIEW 27 of 37

Figure 25. A sample JLcoding test: (a) multiple-choice questions of Named, Coordinate, Height and
Width, Scale; (b) multiple-choice questions of Color Code, Go Ahead, Move, Clone; (c) multiple-
choice questions of Variable and if/else; (d) filling questions and confidence investigation.

After the testing process, we provided a questionnaire to the students to determine
the results of student’s confidence in the programming language that had been learned.
There are four questions in the confidence questionnaire given in the form of a Likert scale
with a range of 1–5. The four questions are:
1. Writing a computer program is easy.
2. I am good at writing computer programs.
3. I plan to continue programming after the class is over.
4. I want to take another computer programming.

4.4. Data Processing and Analysis
The research process was divided into three stages: pre-test, course training, and

post-test. All questionnaires are inquired in paper form and collected immediately after
filling out. The results of the questionnaire were analyzed by SPSS Statistics 22 software
(IBM, New York, NY, USA). As shown in Figure 26, the analysis method is as follows:
• Use descriptive statistics to illustrate the performance of students before and after the

JLcoding course.
• Use the paired-sample t-test to illustrate the performance of students before and after

the JLcoding course.
• Use the independent-sample t-test to show whether there is a significant difference

in the progress scores of students of different genders in the JLcoding course.
• Use the independent-sample t-test to show whether there is a significant difference

in the progress scores of students interested in JLcoding and those who are not inter-
ested in learning JLcoding courses.

• Use the independent-sample t-test to illustrate the degree of confidence of different
genders and interests in students’ programming abilities.

Figure 26. Research architecture diagram.

4.5. Descriptive Statistics
The experiment of this research was carried out from October 2020 to January 2021.

Table 4 shows the descriptive statistics of the research participants. A total of 41 question-
naires were distributed, two participants dropped out in the process, four questionnaires
were invalid, and a total of 35 participants completed the test.

Among them, males made up 51.4% and females 48.6%. All the students had taken
relevant programming courses, including Scratch. After the test, students were asked
whether they were interested in JLcoding, and 68.6% of the students expressed interest.

Figure 26. Research architecture diagram.

4.5. Descriptive Statistics

The experiment of this research was carried out from October 2020 to January 2021.
Table 4 shows the descriptive statistics of the research participants. A total of 41 question-
naires were distributed, two participants dropped out in the process, four questionnaires
were invalid, and a total of 35 participants completed the test.

Table 4. Descriptive statistics.

Attribute Participants Percentage

Male 18 51.4%
Female 17 48.6%

Scratch 34 97.1%
Code.org 7 20.0%
mBlock 5 14.3%
Python 2 5.7%

Interested in JLcoding 24 68.6%
Non-interested in JLcoding 11 31.4%

Among them, males made up 51.4% and females 48.6%. All the students had taken
relevant programming courses, including Scratch. After the test, students were asked
whether they were interested in JLcoding, and 68.6% of the students expressed interest.

Symmetry 2022, 14, 1405 27 of 36

4.5.1. JLcoding Test

From Table 5, it can be observed that the students performed well in the pre-test
averages of Coordinate, Height and Width, Color Code, and Move, while the pre-test per-
formances of Scale, Clone, Variable, and If/else were poor. We compared the performance
of the students before and after teaching. Except for Question 8, the student’s correct
answers to other questions have increased.

Table 5. JLcoding test score comparison.

Question Attribute Pre-Test Post-Test Progress

Question 1 Named 6.3 9.4 +49.21%
Question 2 Coordinate 8.3 9.1 +9.64%
Question 3 Height and Width 8.6 9.7 +12.79%
Question 4 Scale 2.9 7.1 +144.83%
Question 5 Color Code 8.3 8.9 +7.23%
Question 6 Go Ahead 3.7 4.3 +16.22%
Question 7 Move 6.9 7.4 +7.25%
Question 8 Clone 1.7 1.1 −35.29%
Question 9 Variable 2.0 4.9 +145.00%

Question 10 If/else 4.3 6.0 +39.53%

Scale, Variable, and If/else are items with lower scores in the pre-test, and the average
score growth in the post-test is greater than 30%. The average pre-test scores of Coordi-
nate, Color Code, and Move are already very high, and it is not easy to have room for
improvement, so the degree of improvement is small.

Table 6 shows the comparisons of the average scores of the pre-test and post-test.
The post-test is 15.14, higher than the average score of the pre-test. SD is the standard
deviation, SE is the standard error, and N is the total number of students. Tables 7 and 8
show the statistics of the number of scores before and after the test. The data of the
number of participants and the percentage of the number of participants are counted in an
interval of 10. Figure 27 shows that the score of 50 has the highest frequency in the pre-test,
and that of 80 has the highest frequency in the post-test, which means that the score has
significantly improved.

Table 6. JLcoding test total score comparison.

Test N Mean SD SE

pre-test 35 52.86 18.720 3.164
post-test 35 68.00 14.912 2.521

Table 7. Pre-test score.

Score N Percentage

0 1 2.7%
10 1 2.7%
30 2 5.4%
40 6 16.2%
50 9 24.3%
60 8 21.6%
70 4 10.8%
80 3 13.5%
90 1 2.7%

Symmetry 2022, 14, 1405 28 of 36

Table 8. Post-test score.

Score N Percentage

20 1 2.9%
30 1 2.9%
50 2 5.7%
60 9 25.7%
70 9 25.7%
80 11 31.4%
90 2 5.7%

Symmetry 2022, 14, x FOR PEER REVIEW 29 of 37

Table 7. Pre-test score.

Score N Percentage
0 1 2.7%

10 1 2.7%
30 2 5.4%
40 6 16.2%
50 9 24.3%
60 8 21.6%
70 4 10.8%
80 3 13.5%
90 1 2.7%

Table 8. Post-test score.

Score N Percentage
20 1 2.9%
30 1 2.9%
50 2 5.7%
60 9 25.7%
70 9 25.7%
80 11 31.4%
90 2 5.7%

Figure 27. Histogram of pre-test and post-test scores.

This study divides the students into three different categories, high-level, middle-
level, and low-level groups, according to the score of the pre-test. The top 25% of students
are categorized under the high-level group, and the last 25% of students are categorized
under the low-level group. The remaining students are categorized into the middle-level
group. The three groups are used to calculate their progress. The performance after teach-
ing and training, as well as the experimental results, shows that the average score of the

Figure 27. Histogram of pre-test and post-test scores.

This study divides the students into three different categories, high-level, middle-level,
and low-level groups, according to the score of the pre-test. The top 25% of students are
categorized under the high-level group, and the last 25% of students are categorized under
the low-level group. The remaining students are categorized into the middle-level group.
The three groups are used to calculate their progress. The performance after teaching and
training, as well as the experimental results, shows that the average score of the low-level
group improved by 25.56, the middle-level group improved by 17.65, and the high-level
group improved by 0. The results are shown in Table 9.

Table 9. Statistics of low, middle, and high groups.

Category N Pre-Test Mean Post-Test Mean Progress Score

low-level 9 30 55.56 25.56
middle-level 17 53.53 71.18 17.65

high-level 9 74.44 74.44 0.00

The degree of improvement is related to the pre-teaching scores. Those with lower
pre-test scores have more room for improvement. Conversely, those with higher pre-test
scores have less room for improvement.

Furthermore, the study categorizes the students into male and female groups according
to their gender for statistical analysis. The average gap between the pre-test with a different
gender is 2.45. After training and learning, both groups improved by more than 10. The gap

Symmetry 2022, 14, 1405 29 of 36

in the post-testing scores between the two groups is only 0.46. The degree of the progress
score of the male group is higher than that of the female, as shown in Table 10.

Table 10. Statistics of male and female groups.

Category N Pre-Test Mean Post-Test Mean Progress Score

male 18 51.67 67.78 16.11
female 17 54.12 68.24 14.12

The results in Table 11 show our group comparisons based on students’ interest in
JLcoding. The gap in the pre-test score between the two groups is 3.78. After training
and learning, the interested group improved by more than 10, while the non-interested
group improved by 10. The gap in the post-test scores between the two groups is 3.72.
Furthermore, the degree of improvement in the interested group is higher than that in the
non-interested group.

Table 11. The comparisons are based on students’ interest in JLcoding.

Category N Pre-Test Mean Post-Teat Mean Progress Score

interested 24 51.67 69.17 17.50
non-interested 11 55.45 65.45 10

4.5.2. Text-Based Programming Quiz

In the text-based programming quiz, four types of fill questions were used to test
whether the students can transform from block-based to text-based programming. The
questions included the output string, calculation if/else, and loop. For example, Figure 28
shows the questions in the quiz: (a) The student needs to follow the example to fill in how
to write their name in C++, Java, and Python, (b) how to set the variable c to be the result
of a + b, (c) judge whether 10/2 = 5 is true or false, and (d) set up the “for” loop.

Symmetry 2022, 14, x FOR PEER REVIEW 30 of 37

low-level group improved by 25.56, the middle-level group improved by 17.65, and the
high-level group improved by 0. The results are shown in Table 9.

The degree of improvement is related to the pre-teaching scores. Those with lower
pre-test scores have more room for improvement. Conversely, those with higher pre-test
scores have less room for improvement.

Table 9. Statistics of low, middle, and high groups.

Category N Pre-Test Mean Post-Test Mean Progress Score
low-level 9 30 55.56 25.56

middle-level 17 53.53 71.18 17.65
high-level 9 74.44 74.44 0.00

Furthermore, the study categorizes the students into male and female groups accord-
ing to their gender for statistical analysis. The average gap between the pre-test with a
different gender is 2.45. After training and learning, both groups improved by more than
10. The gap in the post-testing scores between the two groups is only 0.46. The degree of
the progress score of the male group is higher than that of the female, as shown in Table
10.

Table 10. Statistics of male and female groups.

Category N Pre-Test Mean Post-Test Mean Progress Score
male 18 51.67 67.78 16.11

female 17 54.12 68.24 14.12

The results in Table 11 show our group comparisons based on students’ interest in
JLcoding. The gap in the pre-test score between the two groups is 3.78. After training and
learning, the interested group improved by more than 10, while the non-interested group
improved by 10. The gap in the post-test scores between the two groups is 3.72. Further-
more, the degree of improvement in the interested group is higher than that in the non-
interested group.

Table 11. The comparisons are based on students’ interest in JLcoding.

Category N Pre-Test Mean Post-Teat Mean Progress Score
interested 24 51.67 69.17 17.50

non-interested 11 55.45 65.45 10

4.5.2. Text-Based Programming Quiz
In the text-based programming quiz, four types of fill questions were used to test

whether the students can transform from block-based to text-based programming. The
questions included the output string, calculation if/else, and loop. For example, Figure 28
shows the questions in the quiz: (a) The student needs to follow the example to fill in how
to write their name in C++, Java, and Python, (b) how to set the variable c to be the result
of a + b, (c) judge whether 10/2 = 5 is true or false, and (d) set up the “for” loop.

(a) (b)

Symmetry 2022, 14, x FOR PEER REVIEW 31 of 37

(c) (d)

Figure 28. Text-based programming quiz: (a) the output string question of the quiz; (b) the calcula-
tion question of the quiz; (c) the if/else question of the quiz; (d) the loop question of the quiz.

Table 12 shows the efficiency of text-based program testing. For the first question,
the percentages of the students who can answer correctly for C++ , Java, and Python are
42%, 44%, and 80%, respectively. The percentages for the second question are 36%, 30%,
and 30%; for the third question are 24%, 20%, and 20%. No one can answer the fourth
question. Most of the students can answer the first question. Most of the students can
answer correctly in Python format.

Most students are willing to try to answer the question without formally learning
text-based programming. In the calculation question, half of the students can choose the
correct answers; however, for the If/else and loop question, most of them had given up
answering because, in the experiment, the teaching material only included Name, Coor-
dinate, Height and Width, Scale, Color Code, Go Ahead, Move, Clone, Variable, and
If/else. The For loop course was not included in this period. Furthermore, the If/else course
was the final course—students did not have enough time to practice.

From the experiments, we can see that the students have some ability to transform
from block-based programming to text-based programming for the part that they have
learned in JLcoding.

Table 12. Test of text-based programming.

Quiz Category Correct Wrong Give Up

1. Output String
C++ 15 (42%) 14 (40%) 6 (16%)
Java 16 (44%) 13 (36%) 6 (16%)

Python 28 (80%) 1 (2%) 6 (16%)

2. Calculate
C++ 13 (36%) 15 (42%) 7 (20%)
Java 11 (30%) 14 (40%) 10 (28%)

Python 11 (30%) 13 (36%) 11 (30%)

3. If/else
C++ 9 (24%) 4 (10%) 22 (62%)
Java 7 (20%) 5 (14%) 23 (64%)

Python 7 (20%) 4 (10%) 24 (68%)

4. Loop
C++ 0 (0%) 8 (22%) 27 (76%)
Java 0 (0%) 6 (16%) 29 (82%)

Python 0 (0%) 6 (16%) 29 (82%)

4.5.3. Programming Confidence Questionnaire
This study investigated whether students of JLcoding had confidence in their ability

to write computer programs and were asked whether they wanted to continue program-
ming. Table 13 shows the results of students’ confidence in programming. The value of
C2 is lower than 3, which means that the student’s self-confidence in computer program-
ming decreased; however, the values of the other questions are high. They believe that
writing computer programs is easy and they want to write computer programs after class
and enroll in other programming courses, which shows that students enjoy the program-
ming experience.

Figure 28. Text-based programming quiz: (a) the output string question of the quiz; (b) the calculation
question of the quiz; (c) the if/else question of the quiz; (d) the loop question of the quiz.

Table 12 shows the efficiency of text-based program testing. For the first question,
the percentages of the students who can answer correctly for C++, Java, and Python are
42%, 44%, and 80%, respectively. The percentages for the second question are 36%, 30%,
and 30%; for the third question are 24%, 20%, and 20%. No one can answer the fourth
question. Most of the students can answer the first question. Most of the students can
answer correctly in Python format.

Symmetry 2022, 14, 1405 30 of 36

Table 12. Test of text-based programming.

Quiz Category Correct Wrong Give Up

1. Output String
C++ 15 (42%) 14 (40%) 6 (16%)
Java 16 (44%) 13 (36%) 6 (16%)

Python 28 (80%) 1 (2%) 6 (16%)

2. Calculate
C++ 13 (36%) 15 (42%) 7 (20%)
Java 11 (30%) 14 (40%) 10 (28%)

Python 11 (30%) 13 (36%) 11 (30%)

3. If/else
C++ 9 (24%) 4 (10%) 22 (62%)
Java 7 (20%) 5 (14%) 23 (64%)

Python 7 (20%) 4 (10%) 24 (68%)

4. Loop
C++ 0 (0%) 8 (22%) 27 (76%)
Java 0 (0%) 6 (16%) 29 (82%)

Python 0 (0%) 6 (16%) 29 (82%)

Most students are willing to try to answer the question without formally learning text-
based programming. In the calculation question, half of the students can choose the correct
answers; however, for the If/else and loop question, most of them had given up answering
because, in the experiment, the teaching material only included Name, Coordinate, Height
and Width, Scale, Color Code, Go Ahead, Move, Clone, Variable, and If/else. The For
loop course was not included in this period. Furthermore, the If/else course was the final
course—students did not have enough time to practice.

From the experiments, we can see that the students have some ability to transform
from block-based programming to text-based programming for the part that they have
learned in JLcoding.

4.5.3. Programming Confidence Questionnaire

This study investigated whether students of JLcoding had confidence in their ability to
write computer programs and were asked whether they wanted to continue programming.
Table 13 shows the results of students’ confidence in programming. The value of C2 is lower
than 3, which means that the student’s self-confidence in computer programming decreased;
however, the values of the other questions are high. They believe that writing computer
programs is easy and they want to write computer programs after class and enroll in other
programming courses, which shows that students enjoy the programming experience.

Table 13. Programming of confidence.

No. Question Mean SD

C1 Writing computer programs is easy. 3.03 1.071
C2 I am good at writing computer programs. 2.97 1.200

C3 I plan to continue programming after the
class is over. 3.11 1.132

C4 I want to take another computer
programming course. 3.29 1.073

4.6. Paired Samples t-Test

In terms of statistical methods, the t-test is used to analyze whether there is a difference
in the sample averages of the two groups, and when the two sets of samples are related, the
paired samples t-test can be used. This study compares paired data through this verification
method. The study analyzes the difference between the pre-test and post-test scores. The
hypothesis of the t-test is the Null and Opposite hypothesis:

• Null hypothesis (H0): There is no significant difference between the pre-test and
post-test scores.

Symmetry 2022, 14, 1405 31 of 36

• Opposite hypothesis (H1): There is a significant difference between the pre-test and
post-test scores.

The analysis results are shown in Table 14, where t is the test quantity. The t-value of
the test statistic method subtracting post-test from the pre-test score. Usually, the post-test
score is greater than the pre-test score, such that the t-value is a negative number. Both the
upper and lower bounds of the confidence interval are negative numbers and the range
does not contain 0. This shows that under 95% probability, the two will not be the same. A
significant p is less than 0.000, which means that the pre-test and post-test have the same
probability of less than 0.000. The significance p is less than 0.05, which means rejecting the
null hypothesis H0.

Table 14. Paired-sample t-test of pre-test and post-test.

Paired Differences

Test Mean SD SEM

95% Confidence Interval
of the Difference t df p

Lower Upper

Pre-test–
Post-test −15.143 19.154 3.238 −21.723 −8.563 −4.677 34 0.000

The opposite hypothesis is established, and there is a significant difference between
the pre-test (before the course) and the post-test scores (after the course); therefore, we saw
that the student had a significant difference in grades after studying JLcoding. In other
words, students can improve their grades significantly after using the JLcoding course.

4.7. Independent Samples t-Test

If the two samples are independent and do not affect each other, the independent
samples t-test is required. The samples must have the characteristics of an independent
event, i.e., the two samples will not affect each other. This research uses gender to know if
the students are interested in the system to perform an independent sample t-test. First, we
analyze whether students of different genders have significant differences in their progress
scores after using this system. The hypothesis of the t-test is:

• Null hypothesis (H0): There is no significant difference between the two groups
of students.

• Opposite hypothesis (H1): There are significant differences between the two groups
of students.

The analysis results are shown in Tables 15 and 16. There was a non-significant
difference in the progress scores for males (M = 16.11, SD = 20.62) and females (M = 14.12,
SD = 18.05). The p for the gender score is 0.763, which is greater than 0.05. The value
shows that the standard did not reach a significant degree. The null hypothesis is accepted.
Males and females have no significant difference in their progress after using this system;
however, regardless of whether males and females use this system to study, their progress
is independent of their gender.

Table 15. Statistics of males and females.

Gender N Mean SD SE

male 18 16.11 20.62 4.86
female 17 14.12 18.05 4.38

Symmetry 2022, 14, 1405 32 of 36

Table 16. Independent sample t-test of males and females.

Gender
scores

t-Test for Equality of Means

t df p Mean
Difference SE Difference

95% Confidence Interval of
the Difference

Lower Upper

0.304 33 0.763 1.99346 6.56627 −11.36571 15.35263

The second analysis was analyzed to know whether the score has a relationship with
their interest in JLcoding and if there is a significant difference in progress after using
this system.

• Null hypothesis (H0): There is no significant difference between the two groups
of students.

• Opposite hypothesis (H1): There are significant differences between the two groups
of students.

The analysis results are shown in Tables 17 and 18. There was a non-significant
difference in the progress scores for the student with interest (M = 17.50, SD = 16.75) and
non-interested (M = 10.00, SD = 23.66). The p for the interest score is 0.289, which is larger
than 0.05. The value shows that the standard did not reach a significant degree. The null
hypothesis is accepted. Nevertheless, regardless of whether or not they are interested in
using this system to study, their progress is independent of their interest.

Table 17. Statistics of interest and non-interest.

Interested N Mean SD SE

yes 24 17.50 16.75 3.42
no 11 10.00 23.66 7.14

Table 18. Independent sample t-test of interest and non-interest.

Gender
scores

t-Test for Equality of Means

t df p Mean
Difference SE Difference

95% Confidence Interval of
the Difference

Lower Upper

1.078 33 0.289 7.50000 6.95775 −6.65564 21.65564

Finally, we used an independent-sample t-test to compare whether there are differences
in gender and interest in learning JLcoding. Tables 17 and 18 show the results of the t-test.
In Table 19, C3 (I plan to continue programming after the class is over) is less than 0.05.
In Table 20, C2 (I am good at writing computer programs) and C3 are less than 0.05. This
shows that gender and interest have a significant impact on these two projects. In other
words, males will be more willing to learn new things in programming than females.
Consequently, students with programming interests are more likely to think they are good
at programming and maintain the willingness to learn.

Symmetry 2022, 14, 1405 33 of 36

Table 19. Independent samples t-test of gender.

No.

Gender t-Test Results for
InterestedMale Female

Mean SD Mean SD t p

C1 3.33 1.283 2.71 0.686 1.817 0.081
C2 3.33 1.283 2.56 1.004 1.905 0.065
C3 3.50 1.098 2.71 1.047 2.187 0.036
C4 3.56 1.042 3.00 1.061 1.563 0.128

Table 20. Independent samples t-test of interested.

No.

Interested t-Test Results for
InterestedYes No

Mean SD Mean SD t p

C1 3.25 0.944 2.55 1.214 1.873 0.070
C2 3.29 0.999 2.27 1.348 2.506 0.017
C3 3.42 0.974 2.45 1.214 2.510 0.017
C4 3.50 0.978 2.82 1.168 1.802 0.081

5. Conclusions

In this paper, we proposed the JLcoding as a tool for early programming learning. We
found that there are no difficulties in learning text-based programming using JLcoding.
Students can understand the basics of programming through the JLcoding course and
expand to more complex programming concepts.

It can be seen from the experimental analysis results that this system can indeed make
progress in programming. More significant progress can be made, especially for those with
lower scores in the pre-test. Students can improve their scores through a series of teaching
materials, irrespective of their gender or interest in the system or not.

However, our findings show that males are more willing to learn the program, and
students who have more interest in the system are more confident in programming. Only
C2 (I am good at writing computer programs) in the confidence questionnaire is lower than
the rest of the items in the questionnaire, which may be related to the reasons mentioned
by Colleen M. Lewis, stating that students do not think they have fully learned all the
functions in JLcoding [13], which is in line with the data in this study. Students performed
poorly on variables, conditional expressions, and loops in the test. The reason could be
that these functions are taught at the end of the course, resulting in insufficient time for
students to practice. If students can have more time to practice, they could perform better.

Because the students in this study are limited to secondary school bilingual colleges,
and the seven-week course is too long to obtain many samples in a short period. Students
in this study had never learned Scratch. The experimental results cannot show the learning
effectiveness of the students who have never studied programming. Hence, the study will
test JLcoding, the students who have never learned any program before to compare the
teaching performance.

In the future, the research will extend the testing groups to elementary and high
schools to obtain more data. The programming of basic grammar is currently the main
teaching objective of this system. Nevertheless, when the level of students has improved,
more complex programming courses, such as game development, Internet of Things, and
artificial intelligence, will be added to the system. If more participants can be recruited
for research in the future, the experimental group can be compared with the control group
to understand the differences between the students using other programming education
software. Additionally, the views of the students’ parents or teachers on the software will
be collected to further understand the complete satisfaction and effectiveness of its use.

Symmetry 2022, 14, 1405 34 of 36

Author Contributions: Conceptualization, W.-Y.L.; methodology, T.-C.L.; software, W.-Y.L.; valida-
tion, T.-C.L.; writing—original draft preparation, W.-Y.L.; writing—review and editing, T.-C.L.; All
authors have read and agreed to the published version of the manuscript.

Funding: Ministry of Science and Technology (MOST), Taiwan, Republic of China, under the Grant
MOST 109-2221-E-324 -025 -MY3.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Effenberger, T.; Pelánek, R. Towards making block-based programming activities adaptive. In Proceedings of the 5th annuaire

ACM Conference Learned Scale, London, UK, 26–28 June 2018; pp. 1–4.
2. Israel, M.; Pearson, J.N.; Tapia, T.; Wherfel, Q.M.; Reese, G. Supporting all learners in school-wide computational thinking: A

cross-case qualitative analysis. Comput. Educ. 2015, 82, 263–279. [CrossRef]
3. Kucuk, S.; Sisman, B. Behavioral patterns of elementary students and teachers in one-to-one robotics instruction. Comput. Educ.

2017, 111, 31–43. [CrossRef]
4. Manches, A.; Plowman, L. Computing education in children’s early years: A call for debate. Br. J. Educ. Technol. 2017, 48, 191–201.

[CrossRef]
5. Mannila, L.; Dagiene, V.; Demo, B.; Grgurina, N.; Mirolo, C.; Rolandsson, L.; Settle, A. Computational thinking in K-9 Education.

In Proceedings of the Working Group Reports of the 2014 on Innovation & Technology in Computer Science Education Conference
(ITiCSE-WGR ’14), Uppsala, Sweden, 23–25 June 2014; pp. 1–29.

6. Webb, M.; Davis, N.; Bell, T.; Katz, Y.J.; Reynolds, N.; Chambers, D.P.; Sysło, M.M. Computer science in K-12 school curricula of
the 2lst century: Why, what and when? Educ. Inf. Technol. 2017, 22, 445–468. [CrossRef]

7. Wong, G.; Jiang, S.; Kong, R. Computational thinking and multifaceted skills: A qualitative study in primary schools. In Teaching
Computational Thinking in Primary Education; IGI Global: Hershey, PA, USA, 2018; pp. 78–101.

8. Grover, S.; Basu, S. Measuring student learning in introductory block-based programming: Examining misconceptions of loops,
variables, and Boolean logic. In Proceedings of the ACM SIGCSE Technical Symposium on Computer Science Education, Seattle
WA, USA, 1–8 March 2017; pp. 267–272.

9. Lewis, C.; Esper, S.; Bhattacharyya, V.; Fa-Kaji, N.; Dominguez, N.; Schlesinger, A. Children’s perceptions of what counts as a
programming language. J. Comput. Sci. Coll. 2014, 29, 123–133.

10. Weintrop, D.; Wilensky, U. Comparing block-based and text-based programming in high school computer science classrooms.
ACM Trans. Comput. Educ. 2017, 18, 1–25. [CrossRef]

11. Grover, S.; Pea, R. Computational thinking in K–12: A review of the state of the field. Educ. Res. 2013, 42, 38–43. [CrossRef]
12. Wing, J.M. Computational thinking. Commun. ACM 2006, 49, 33–35. [CrossRef]
13. Lewis, C.M. How programming environment shapes perception, learning and goals: Logo vs. scratch. In Proceedings of the 41st

ACM Technical Symposium on Computer Science Education (SIGCSE ’10), Milwaukee, WI, USA, 10–13 March 2010; pp. 346–350.
14. Gretter, S.; Yadav, A. Computational thinking and media & information literacy: An integrated approach to teaching twenty-first

century skills. TechTrends 2016, 60, 510–516.
15. Hagge, J. Scratching beyond the surface of literacy: Programming for early adolescent gifted students. Gift. Child Today 2017,

40, 154–162. [CrossRef]
16. Kalantzis, M.; Cope, B. New learning: A charter for change in education 1. Crit. Stud. Educ. 2012, 53, 83–94. [CrossRef]
17. Benander, A.; Benander, B.; Sang, J. Factors related to the difficulty of learning to program in Java—An empirical study of

non-novice programmers. Inf. Softw. Technol. 2004, 46, 99–107. [CrossRef]
18. Gomes, A.; Mendes, A.J. Learning to program-difficulties and solutions. In Proceedings of the International Conference on

Engineering Education-ICEE, Coimbra, Portugal, 3–7 September 2007; pp. 283–287.
19. Rahmat, M.; Shahrani, S.; Latih, R.; Yatim, N.F.M.; Zainal, N.F.A.; Rahman, R.A. Major problems in basic programming that

influence student performance. Procedia-Soc. Behav. Sci. 2012, 59, 287–296. [CrossRef]
20. Watson, C.; Li, F.W.B. Failure rates in introductory programming revisited. In Proceedings of the 2014 Conference on Innovation

& Technology in Computer Science Education (ITiCSE ’14), Uppsala, Sweden, 21–25 June 2014; pp. 39–44.
21. Smith, R.; Rixner, S. The error landscape: Characterizing the mistakes of novice programmers. In Proceedings of the 50th

ACM Technical Symposium on Computer Science Education (SIGCSE ’19), Minneapolis, MN, USA, 27 February–2 March 2019;
pp. 538–544.

22. Combéfis, S.; Beresnevičius, G.; Dagienė, V. Learning programming through games and contests: Overview, characterisation and
discussion. Olymp. Inform. 2016, 10, 39–60. [CrossRef]

http://doi.org/10.1016/j.compedu.2014.11.022
http://doi.org/10.1016/j.compedu.2017.04.002
http://doi.org/10.1111/bjet.12355
http://doi.org/10.1007/s10639-016-9493-x
http://doi.org/10.1145/3089799
http://doi.org/10.3102/0013189X12463051
http://doi.org/10.1145/1118178.1118215
http://doi.org/10.1177/1076217517707233
http://doi.org/10.1080/17508487.2012.635669
http://doi.org/10.1016/S0950-5849(03)00112-5
http://doi.org/10.1016/j.sbspro.2012.09.277
http://doi.org/10.15388/ioi.2016.03

Symmetry 2022, 14, 1405 35 of 36

23. Qian, Y.; Lehman, J. Students’ misconceptions and other difficulties in introductory programming: A literature review. ACM
Trans. Comput. Educ. 2017, 18, 1–24. [CrossRef]

24. Seralidou, E.; Douligeris, C. Learning programming by creating games through the use of structured activities in secondary
education in Greece. Educ. Inf. Technol. 2021, 26, 859–898. [CrossRef]

25. Funke, A.; Geldreich, K.; Hubwieser, P. Analysis of Scratch projects of an introductory programming course for primary school
students. In Proceedings of the 2017 IEEE Global Engineering Education Conference (EDUCON), Athens, Greece, 25–28 April
2017; pp. 1229–1236.

26. Park, Y.; Shin, Y. Comparing the effectiveness of scratch and app Inventor with Regard to Learning Computational Thinking
Concepts. Electronics 2019, 8, 1269. [CrossRef]

27. Price, T.W.; Barnes, T. Comparing textual and block interfaces in a novice programming environment. In Proceedings of the
Eleventh Annual International Conference on International Computing Education Research (ICER ’15), Omaha, NE, USA, 9–13
July 2015; pp. 91–99.

28. Parsons, D.; Haden, P. Programming osmosis: Knowledge transfer from imperative to visual programming environments. In
Proceedings of the 20th Annual Conference of the National Advisory Committee on Computing Qualifications (NACCQ2007),
Nelson, New Zealand; Mann, S., Bridgeman, N., Eds.; pp. 209–215. Available online: https://www.researchgate.net/publication/
228525906_Programming_osmosis_Knowledge_transfer_from_imperative_to_visual_programming_environments (accessed on
24 May 2022).

29. Moors, L.; Luxton-Reilly, A.; Denny, P. Transitioning from block-based to text-based programming languages. In Proceedings
of the International Conference on Learning and Teaching in Computing and Engineering (LATICE), Auckland, New Zealand,
19–22 April 2018; pp. 57–64.

30. Symmetry of Language. Available online: https://wiki.c2.com/?SymmetryOfLanguage (accessed on 14 May 2022).
31. Luxton-Reilly, A.; Albluwi, I.; Becker, B.A.; Giannakos, M.; Kumar, A.N.; Ott, L.; Paterson, J.; Scott, M.J.; Sheard, J.; Szabo,

C. Introductory programming: A systematic literature review. In Proceedings of the Companion of the 23rd Annual ACM
Conference on Innovation and Technology in Computer Science Education (ITiCSE 2018 Companion), Larnaca, Cyprus, 2–4 July
2018; pp. 55–106.

32. Beaubouef, T.; Mason, J. Why the high attrition rate for computer science students: Some thoughts and observations. ACM
SIGCSE Bull. 2005, 37, 103–106. [CrossRef]

33. Marwan, S.; Lytle, N.; Williams, J.J.; Price, T. The impact of adding textual explanations to next-step hints in a novice programming
environment. In Proceedings of the 2019 ACM Conference on Innovation and Technology in Computer Science Education (ITiCSE
’19), Aberdeen, UK, 15–17 July 2019; pp. 520–526.

34. Wiggins, J.B.; Fahid, F.M.; Emerson, A.; Hinckle, M.; Smith, A.; Boyer, K.E.; Mott, B.; Wiebe, E.; Lester, J. Exploring novice
programmers’ hint requests in an intelligent block-based coding environment. In Proceedings of the 52nd ACM Technical
Symposium on Computer Science Education (SIGCSE ’21), Virtual Event, USA, 13–20 March 2021; pp. 52–58.

35. Bennedsen, J.; Caspersen, M.E. Failure rates in introductory programming: 12 years later. ACM Inroads 2019, 10, 30–36. [CrossRef]
36. Vihavainen, A.; Airaksinen, J.; Watson, C. A systematic review of approaches for teaching introductory programming and their

influence on success. In Proceedings of the Tenth Annual Conference on International Computing Education Research (ICER ’14),
Glasgow, UK, 11–13 August 2014; pp. 19–26.

37. Giannakos, M.N.; Pappas, I.O.; Jaccheri, L.; Sampson, D.G. Understanding student retention in computer science education: The
role of environment, gains, barriers and usefulness. Educ. Inf. Technol. 2017, 22, 2365–2382. [CrossRef]

38. Kinnunen, P.; Malmi, L. Why students drop out CS1 course? In Proceedings of the Second International Workshop on Computing
Education Research (ICER ’06), Canterbury, UK, 9–10 September 2006; pp. 97–108.

39. Petersen, A.; Craig, M.; Campbell, J.; Tafliovich, A. Revisiting why students drop CS1. In Proceedings of the 16th Koli Calling
International Conference on Computing Education Research (Koli Calling ’16), Koli, Finland, 24–27 November 2016; pp. 71–80.

40. Techapalokul, P.; Tilevich, E. Understanding recurring quality problems and their impact on code sharing in block-based software.
In Proceedings of the IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), Raleigh, NC, USA,
11–14 October 2017; pp. 43–51.

41. Weintrop, D. Block-based programming in computer science education. Commun. ACM 2019, 62, 22–25. [CrossRef]
42. Xu, Z.; Ritzhaupt, A.D.; Tian, F.; Umapathy, K. Block-based versus text-based programming environments on novice student

learning outcomes: A meta-analysis study. Comput. Sci. Educ. 2019, 29, 177–204. [CrossRef]
43. Bau, D.; Gray, J.; Kelleher, C.; Sheldon, J.; Turbak, F. Learnable programming: Blocks and beyond. Commun. ACM 2017, 60, 72–80.

[CrossRef]
44. Xie, B.; Abelson, H. Skill progression in MIT app inventor. In Proceedings of the IEEE Symposium on Visual Languages and

Human-Centric Computing (VL/HCC), Cambridge, UK, 4–8 September 2016; pp. 213–217.
45. Weintrop, D.; Wilensky, U. Using commutative assessments to compare conceptual understanding in blocks-based and text-based

programs. In Proceedings of the Eleventh Annual International Conference on International Computing Education Research
(ICER ’15), Omaha, NE, USA, 9–13 July 2015; pp. 101–110.

46. Armoni, M.; Gal-Ezer, J. Early computing education: Why? what? when? who? ACM Inroads 2014, 5, 54–59. [CrossRef]
47. Malik, S.I.; Mathew, R.; Al-Nuaimi, R.; Al-Sideiri, A.; Coldwell-Neilson, J. Learning problem solving skills: Comparison of

e-learning and M-learning in an introductory programming course. Educ. Inf. Technol. 2019, 24, 2779–2796. [CrossRef]

http://doi.org/10.1145/3077618
http://doi.org/10.1007/s10639-020-10255-8
http://doi.org/10.3390/electronics8111269
https://www.researchgate.net/publication/228525906_Programming_osmosis_Knowledge_transfer_from_imperative_to_visual_programming_environments
https://www.researchgate.net/publication/228525906_Programming_osmosis_Knowledge_transfer_from_imperative_to_visual_programming_environments
https://wiki.c2.com/?SymmetryOfLanguage
http://doi.org/10.1145/1083431.1083474
http://doi.org/10.1145/3324888
http://doi.org/10.1007/s10639-016-9538-1
http://doi.org/10.1145/3341221
http://doi.org/10.1080/08993408.2019.1565233
http://doi.org/10.1145/3015455
http://doi.org/10.1145/2684721.2684734
http://doi.org/10.1007/s10639-019-09896-1

Symmetry 2022, 14, 1405 36 of 36

48. Kazimoglu, C.; Kiernan, M.; Bacon, L.; Mackinnon, L. A serious game for developing computational thinking and learning
introductory computer programming. Procedia-Soc. Behav. Sci. 2012, 47, 1991–1999. [CrossRef]

49. Zapušek, M.; Rugelj, J. Learning programming with serious games. EAI Endorsed Trans. Game-Based Learn. 2013, 1, e6. [CrossRef]
50. Du Boulay, B. Some difficulties of learning to program. J. Educ. Comput. Res. 1986, 2, 57–73. [CrossRef]
51. Ebrahimi, A. Novice programmer errors: Language constructs and plan composition. Int. J. Hum.-Comput. Stud. 1994, 41, 457–480.

[CrossRef]
52. Grover, S.; Pea, R.; Cooper, S. Designing for deeper learning in a blended computer science course for middle school students.

Comput. Sci. Educ. 2015, 25, 199–237. [CrossRef]
53. Denny, P.; Luxton-Reilly, A.; Tempero, E.; Hendrickx, J. Understanding the syntax barrier for novices. In Proceedings of the 16th

Annual Joint Conference on Innovation and Technology in Computer Science Education, Darmstadt, Germany, 27–29 June 2011;
pp. 208–212.

54. Kelleher, C.; Pausch, R. Lowering the barriers to programming: A taxonomy of programming environments and languages for
novice programmers. ACM Comput. Surv. 2005, 37, 83—137. [CrossRef]

55. Kölling, M.; Brown, N.C.C.; Altadmri, A. Frame-based editing: Easing the transition from blocks to text-based programming. In
Proceedings of the Workshop in Primary and Secondary Computing Education (WiPSCE ’15), London, UK, 9–11 November 2015;
pp. 29–38.

56. Moskal, B.; Lurie, D.; Cooper, S. Evaluating the effectiveness of a new instructional approach. In Proceedings of the 35th SIGCSE
Technical Symposium on Computer Science Education (SIGCSE ’04), Norfolk, VA, USA, 3–7 March 2004; Volume 36, pp. 75–79.

57. Bishop-Clark, C.; Courte, J.; Howard, E.V. Programming in pairs with alice to improve confidence, enjoyment, and achievement.
J. Educ. Comput. Res. 2006, 34, 213–228. [CrossRef]

58. Heintz, F.; Mannila, L.; Färnqvist, T. A review of models for introducing computational thinking, computer science and computing
in K-12 education. In Proceedings of the 2016 IEEE Frontiers in Education Conference (FIE), Erie, PA, USA, 12–15 October 2016;
pp. 1–9.

59. Passey, D. Computer science (CS) in the compulsory education curriculum: Implications for future research. Educ. Inf. Technol.
2017, 22, 421–443. [CrossRef]

60. Rose, S.P.; Habgood, M.P.J.; Jay, T. Designing a programming game to improve children’s procedural abstraction skills in scratch.
J. Educ. Comput. Res. 2020, 58, 1372–1411. [CrossRef]

61. Scratch Team 2020 Scratch Statistics. Available online: https://scratch.mit.edu/statistics/ (accessed on 2 May 2021).
62. Rich, P.J.; Browning, S.F.; Perkins, M.; Shoop, T.; Yoshikawa, E.; Belikov, O.M. Coding in K-8: International trends in teaching

elementary/primary computing. TechTrends 2019, 63, 311–329. [CrossRef]
63. Resnick, M.; Maloney, J.; Monroy-Hernández, A.; Rusk, N.; Eastmond, E.; Brennan, K.; Millner, A.; Rosenbaum, E.; Silver, J.;

Silverman, B.; et al. Scratch: Programming for all. Commun. ACM 2009, 52, 60–67. [CrossRef]
64. Perkel, J.M.J. Julia: Come for the syntax, stay for the speed. Nature 2019, 572, 141–142. [CrossRef]
65. Bezanson, J.; Edelman, A.; Karpinski, S.; Shah, V.B. Julia: A fresh approach to numerical computing. SIAM Rev. 2017, 59, 65–98.

[CrossRef]
66. Koolen, T.; Deits, R. Julia for robotics: Simulation and real-time control in a high-level programming language. In Proceedings of

the International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 604–611.
67. Computer Programming of Khan Academy. Available online: https://www.khanacademy.org/computing/computer-

programming (accessed on 24 June 2022).
68. Altadmri, A.; Kölling, M.; Brown, N.C.C. The Cost of Syntax and How to Avoid It: Text versus Frame-Based Editing. In

Proceedings of the 40th Annual Computer Software and Applications Conference (COMPSAC), Atlanta, GA, USA, 10–14 June
2016; pp. 748–753.

http://doi.org/10.1016/j.sbspro.2012.06.938
http://doi.org/10.4108/trans.gbl.01-06.2013.e6
http://doi.org/10.2190/3LFX-9RRF-67T8-UVK9
http://doi.org/10.1006/ijhc.1994.1069
http://doi.org/10.1080/08993408.2015.1033142
http://doi.org/10.1145/1089733.1089734
http://doi.org/10.2190/CFKF-UGGC-JG1Q-7T40
http://doi.org/10.1007/s10639-016-9475-z
http://doi.org/10.1177/0735633120932871
https://scratch.mit.edu/statistics/
http://doi.org/10.1007/s11528-018-0295-4
http://doi.org/10.1145/1592761.1592779
http://doi.org/10.1038/d41586-019-02310-3
http://doi.org/10.1137/141000671
https://www.khanacademy.org/computing/computer-programming
https://www.khanacademy.org/computing/computer-programming

	Introduction
	Background
	Motivation
	Purpose
	Terminology

	Related Work
	Introductory Programming Difficulties
	Block-Based Programming
	Confidence in Programming Abilities
	Scratch

	JLcoding
	Environment of JLcoding
	Coding Example of JLcoding
	Set Variable
	Input and Output
	Arithmetic
	Conditional
	For Loop

	Features of JLcoding
	Compare with Khan Academy

	Research Methods
	Research Object
	Research Process
	Survey Design
	Data Processing and Analysis
	Descriptive Statistics
	JLcoding Test
	Text-Based Programming Quiz
	Programming Confidence Questionnaire

	Paired Samples t-Test
	Independent Samples t-Test

	Conclusions
	References

