# Effective Majorana Neutrino Mass for ΔL = 2 Neutrino Oscillations

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Neutrino to Antineutrino Oscillation

## 3. Neutrinoless Double-Beta Decay

## 4. Results

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Tanabashi, M.; Hagiwara, K.; Hikasa, K.; Nakamura, K.; Sumino, Y.; Takahashi, F.; Tanaka, J.; Agashe, K.; Aielli, G.; Amsler, C.; et al. Review of Particle Physics. Phys. Rev. D
**2018**, 98, 030001. [Google Scholar] [CrossRef][Green Version] - Esteban, I.; Gonzalez-Garcia, M.C.; Maltoni, M.; Schwetz, T.; Zhou, A. The fate of hints: Updated global analysis of three-flavor neutrino oscillations. J. High Energy Phys.
**2020**, 9, 178. [Google Scholar] [CrossRef] - Vergados, J.D.; Ejiri, H.; Šimkovic, F. Neutrinoless double beta decay and neutrino mass. Int. J. Mod. Phys. E
**2016**, 25, 1630007. [Google Scholar] [CrossRef][Green Version] - Engel, J.; Menéndez, J. Status and Future of Nuclear Matrix Elements for Neutrinoless Double-Beta Decay: A Review. Rept. Prog. Phys.
**2017**, 80, 046301. [Google Scholar] [CrossRef] - Dolinski, M.J.; Poon, A.W.P.; Rodejohann, W. Neutrinoless Double-Beta Decay: Status and Prospects. Ann. Rev. Nucl. Part. Sci.
**2019**, 69, 219–251. [Google Scholar] [CrossRef][Green Version] - Cirigliano, V.; Davoudi, Z.; Dekens, W.; de Vries, J.; Engel, J.; Feng, X.; Gehrlein, J.; Graesser, M.L.; Gráf, L.; Hergert, H.; et al. Neutrinoless Double-Beta Decay: A Roadmap for Matching Theory to Experiment. arXiv
**2022**, arXiv:2203.12169. [Google Scholar] - Bahcall, J.N.; Primakoff, H. Neutrino-anti-neutrinos Oscillations. Phys. Rev. D
**1978**, 18, 3463–3466. [Google Scholar] [CrossRef] - Li, L.F.; Wilczek, F. Physical Processes Involving Majorana Neutrinos. Phys. Rev. D
**1982**, 25, 143. [Google Scholar] [CrossRef] - Schechter, J.; Valle, J.W.F. Neutrino Oscillation Thought Experiment. Phys. Rev. D
**1981**, 23, 1666. [Google Scholar] [CrossRef] - Chang, L.N.; Chang, N.P. Structure of the Vacuum and Neutron and Neutrino Oscillations. Phys. Rev. Lett.
**1980**, 45, 1540. [Google Scholar] [CrossRef] - Bernabeu, J.; Pascual, P. CP Properties of the Leptonic Sector for Majorana Neutrinos. Nucl. Phys. B
**1983**, 228, 21–30. [Google Scholar] [CrossRef][Green Version] - Langacker, P.; Wang, J. Neutrino anti-neutrino transitions. Phys. Rev. D
**1998**, 58, 093004. [Google Scholar] [CrossRef][Green Version] - de Gouvea, A.; Kayser, B.; Mohapatra, R.N. Manifest CP Violation from Majorana Phases. Phys. Rev. D
**2003**, 67, 053004. [Google Scholar] [CrossRef][Green Version] - Delepine, D.; Gonzalez Macias, V.; Khalil, S.; Castro, G.L. Probing Majorana neutrino CP phases and masses in neutrino-antineutrino conversion. Phys. Lett. B
**2010**, 693, 438–442. [Google Scholar] [CrossRef][Green Version] - Xing, Z.Z. Properties of CP Violation in Neutrino-Antineutrino Oscillations. Phys. Rev. D
**2013**, 87, 053019. [Google Scholar] [CrossRef][Green Version] - Xing, Z.Z.; Zhou, Y.L. Majorana CP-violating phases in neutrino-antineutrino oscillations and other lepton-number-violating processes. Phys. Rev. D
**2013**, 88, 033002. [Google Scholar] [CrossRef][Green Version] - Kimura, K.; Takamura, A. Unification of Neutrino-Neutrino and Neutrino-Antineutrino Oscillations. arXiv
**2021**, arXiv:2101.04509. [Google Scholar] - Wang, Y.; Zhou, S. Non-unitary leptonic flavor mixing and CP violation in neutrino-antineutrino oscillations. Phys. Lett. B
**2022**, 824, 136797. [Google Scholar] [CrossRef] - Krivoruchenko, M.I. Private Communication. 2017. [Google Scholar]
- Pascoli, S.; Petcov, S.T. Majorana Neutrinos, Neutrino Mass Spectrum and the |<m>|~ 10
^{−3}eV Frontier in Neutrinoless Double Beta Decay. Phys. Rev. D**2008**, 77, 113003. [Google Scholar] [CrossRef][Green Version]

**Figure 1.**The effective neutrino mass as a function of the lightest neutrino mass assuming normal ordering (${m}_{1}<{m}_{2}<{m}_{3}$). The blue shaded region depicts region II, where ${m}_{\mathrm{lightest}}$ is in the range of [2.5–6] meV and ${m}_{\beta \beta}$ is obtained as zero.

**Figure 2.**The dependence of the effective neutrino mass ${m}_{\beta \beta}^{L}$ with (dashed lines) and without (solid lines) $\nu \to \overline{\nu}$ oscillation. The red and blue lines are obtained with Majorana phases corresponding to the maximum (${\varphi}_{1}=0,{\varphi}_{2}=0$) and minimum ${m}_{\beta \beta}$ (Equation (10)). Note that y-axis ranges are different in the three panels.

**Figure 3.**Dependence of ${m}_{\beta \beta}^{L}$ on lightest mass (${m}_{1}$ for NO) with Majorana phases corresponding to maximum (${\varphi}_{1}=0,{\varphi}_{2}=0$) and minimum ${m}_{\beta \beta}$ (Equation (10)) in left and right panels, respectively, with two choices of $L/E$.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Khatun, A.; Šimkovic, F.
Effective Majorana Neutrino Mass for Δ*L* = 2 Neutrino Oscillations. *Symmetry* **2022**, *14*, 1383.
https://doi.org/10.3390/sym14071383

**AMA Style**

Khatun A, Šimkovic F.
Effective Majorana Neutrino Mass for Δ*L* = 2 Neutrino Oscillations. *Symmetry*. 2022; 14(7):1383.
https://doi.org/10.3390/sym14071383

**Chicago/Turabian Style**

Khatun, Amina, and Fedor Šimkovic.
2022. "Effective Majorana Neutrino Mass for Δ*L* = 2 Neutrino Oscillations" *Symmetry* 14, no. 7: 1383.
https://doi.org/10.3390/sym14071383