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Abstract: From production to retail, the food supply chain (FSC) encompasses all stages of food
production. Food is now transmitted across continents over long ranges. People depend on supply
chains for basic necessities such as food, water, drinks, etc. Any disruption in these shipment pipelines
poses a serious threat to human life. Supplier selection (SS) has been identified as a crucial component
of FSC, which has been contemplated as a multi-criteria decision-making (MCDM) problem in
many studies. The failure of some specific MCDM problems is due to failure in contemplating the
relationships between alternatives under uncertain circumstances. To address such challenges, we
present a contemporary method for designating green suppliers based on single-valued neutrosophic
hesitant fuzzy (SVNHF) information, in which the input assessment is taken into account using
single-valued neutrosophic hesitant fuzzy numbers (SVNHFNs). The foremost purpose of this
analysis is to construct a topological structure on single-valued neutrosophic hesitant fuzzy sets
(SVNHFSs) as well as to validate several key properties with examples. We discuss certain properties
of SVNHF topology such as the SVNHF closure, SVNHF interior, SVNHF exterior, and SVNHF
frontier. We also examine the conceptualization of the SVNHF dense set and SVNHF base in SVNHF
topology using comprehensive examples. Eventually, to demonstrate and validate the superiority
and inferiority ranking (SIR) method and choice value (CV) method in terms of their rationality
and scientific basis, a real-world example of supplier selection in a food supply chain is provided.
A comparative analysis is also performed to discuss the symmetry, validity and advantage of the
proposed techniques.

Keywords: SVNHFS; SVNHF topology; uncertain supply chain; symmetry; SIR method; CV method

1. Introduction

Data analysis and information aggregation techniques have been an increasing focus
in various fields such as engineering, healthcare, economics, environmental concerns,
and decision making. Due to uncertain information and limitations in data analysis,
we cannot seek accurate and ideal evaluation in MCDM problems. To resolve such
circumstances, Zadeh [1] introduced “fuzzy set theory” initially with the concept of
membership function on behalf of an exact real number in [0, 1] to express the degree
of belonging of objects under a criterion. The components of membership (MG) and
non-membership (NMG) of objects were addressed by Atanassov [2] in terms of an
“Intuitionistic fuzzy set (IFS)”. “Pythagorean fuzzy set” (PFS), a new method for coping
with vagueness when considering membership degree ωµ and non-membership degree ων

was proposed by Yager [3]. It can characterize uncertain information more adequately and
accurately than IFSs. Although IFSs and PFSs can effectively report the attribute values in
MCDM in the vast majority of instances, there are a few instances where they are deficient.
In accordance with the constraints imposed by IFSs and PFSs, the attribute value cannot
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be represented by both IFSs and PFSs when the square sum of ωµ and ων degrees exceeds
unity. In order to cope with this scenario, Yager [4] established the notion of the q-rung
orthopair fuzzy set (q-ROFS), which can be considered a generalization of IFS and PFS.
The “picture fuzzy set” (PiFS) was developed by Cuong [5], and the “spherical fuzzy set”
(SFS) initiated by Mahmood et al. [6], Ashraf et al. [7], and Gündogdu and Kahraman [8].
The idea of a neutrosophic set was suggested by Smarandache [9]. Some extensions of
fuzzy sets and their constraints are expressed in Table 1.

Table 1. Representations of some fuzzy sets and fuzzy numbers as well as their constraints.

Fuzzy Sets Fuzzy Numbers Constraints

IFS [2] (ωµ, ων) ωµ, ων ∈ [0, 1], 0 ≤ ωµ + ων ≤ 1

PFS [3] (ωµ, ων) ωµ, ων ∈ [0, 1], 0 ≤ (ωµ)2 + (ων)2 ≤ 1

q-ROFS [4] (ωµ, ων) ωµ, ων ∈ [0, 1], 0 ≤ (ωµ)q + (ων)q ≤ 1, q ≥ 1

PiFS [5] (ωµ, ω I , ων) ωµ, ω I , ων ∈ [0, 1], 0 ≤ ωµ + ω I + ων ≤ 1

SFS [6–8] (ωµ, ω I , ων) ωµ, ω I , ων ∈ [0, 1], 0 ≤ (ωµ)2 + (ω I)2 + (ων)2 ≤ 1

NS [9] (T, I, F) T, I, F ∈]0−, 1+[, T + I + F ∈ [0−, 3+]

SVNS [10] (T, I, F) T, I, F ∈ [0, 1], T + I + F ∈ [0, 3]

Smarandache [9] developed the “neutrosophic set” (NS) and neutrosophic logic.
The neutrosophic logic is a conventional framework for determining truth, indeterminacy,
and falsification. In the NS, indeterminacy is the main focus, although truth and falsity are
basic components. This presumption is critical in a variety of situations, as in information
fusion, which involves combining data from multiple sensors. Furthermore, because it
can handle vague and imperfect information, neutrosophy appears to be preferable for
modeling uncertainties, as it is rare to have complete information at one’s disposal when
making decisions. The NS derives its component values from a subset of ]0−, 1+[ that is
either real or non-standard. However, in real-world engineering and scientific problems,
using an NS with values from a real standard or non-standard subset of ]0−, 1+[ is
difficult. However, a single-valued neutrosophic set (SVNS) [10] derives its components
T, I, F ∈ [0, 1] with T + I + F ∈ [0, 3]. An SVNS [10] is a type of neutrosophic set that adds
a new way to represent the undetermined, vague, imperfect, and inconsistent statistics
that subsist in the the real world. It is better suited for dealing with unspecified and
inconsistent data.

Molodtsov [11] proposed “soft set” (SS) theory to cope with uncertainty of parameters
and their approximate elements. Hashmi et al. [12] introduced the m-polar neutrosophic
set and extended it to m-polar neutrosophic topological structure with clustering analysis
and healthcare. It can be difficult to regulate an element’s membership in a fixed set
at times, which could be due to a misunderstanding of a collection of different values.
Torra [13] suggested the notion of “hesitant fuzzy sets” (HFSs) as a generalization of FSs to
better describe this situation, which permits membership degree to aid in the collection
of practicable values in the closed interval [0, 1]. Experts have used HFSs to choose a
variety of possible MGs to evaluate objects under suitable criteria. The theory of HFS has a
diverse set of applications in a variety of disciplines, such as for computational intelligence,
clustering, healthcare, and MCDM problems.

In an HFS, because of the doubts of decision makers, there is only one truth-membership
hesitant function, and it is impossible to manifest this problem using only a few different
values assigned by truth, indeterminacy, and falsity membership degrees. As a result, it
can only represent one type of hesitancy statistics in this situation and cannot manifest
three types of hesitancy statistics. To handle uncertain problems, the idea of a single-valued
neutrosophic hesitant fuzzy set (SVNHFS) was introduced by Jun [14]. The truth-membership
hesitancy function (TMFF), the indeterminacy-membership hesitancy function (IMHF),
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and the falsity-membership hesitancy function (FMHF) are three parts of the SVNHFS that
can exhibit three types of hesitancy information in this state. Tanuwijaya et al. [15] proposed
a novel SVNHF time series model and applied it to stock index forecasting in Indonesia
and Argentina. Aggregation operators of SVNHFS were introduced by Liu et al. [16]. Wang
and Li [17] proposed generalized single-valued neutrosophic hesitant fuzzy prioritized
aggregation operators. The TOPSIS method for neutrosophic hesitant fuzzy multi-attribute
decision making was extended by Giri et al. [18].

The CV method is a renowned and widely used MCDM basis for evaluating a set of
choices using a set of criteria. Each choice is contrasted with the others by calculating a
number of ratios, one per choice criterion. Every ratio is multiplied by the proportional
weight of the criterion in consideration. The selection of one or more options from the set
of alternatives based on the number of criteria is a fundamental task in MCDM problems.

Xu [19] proposed the SIR method, which is extension of the PROMETHEE method. The SIR
method is an important MCDM approach which can grasp real data and supply the system user
with six different preference structures. According to the two ranking lists, the SIR method ranks
the alternatives more accurately. This method ranks alternatives using a superiority ranking list
and an inferiority ranking list. The great feature of using the SIR method is that it incorporates
the possessions of other MCDM techniques such as TOPSIS, SAW, and PROMETHEE. Some
applications of the SIR method are given in Table 2.

Table 2. Some applications of the SIR method.

Researchers Benchmarks Applications

Tam et al. [20] SIR method Concrete pump selection

Tom and Tong [21] SIR method Developments in the project
concerning
the location of the large-scale
harbor

Liu [22] IF SIR method Supply chain management

Ma et al. [23] HF SIR method Selection of outstanding teachers
from overseas

Peng and Yang [24] PF SIR method Investment in internet stocks

Rouhani [25] Fuzzy SIR method Software selection in IT field

Chen [26] PF PROMETHEE Bridge construction
method with superiority
and inferiority PFNs

Tavana et al. [27] IFG SIR method Solution of third-party reverse
logistics problem

Zhao et al. [28] SIR method with HFL Sustainable energy technology
evaluation

prioritized value

Geetha and PF SIR method For investment selection of the
internet

Narayanamoorthy [29] Stock marketing companies

Jie et al. [30] IVIF SIR method Engineering investment selection

Certain novel concepts of neutrosophic sets, neutrosophic logic, and neutrosophic
probability were explored in [31]. Seikh and Dutta [32] developed a matrix games model
based on SVNSs. Saha and Paul [33] proposed generalized weighted exponential similarity
measures for SVNSs. Alcantud et al. [34] developed generalized OWA aggregation operators
and multi-agent decision making with N-soft sets. Sitara et al. [35] proposed the notion
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of q-rung picture fuzzy graph structures for decision analysis. Riaz et al. [36] studied
recent trends in pharmaceutical logistics and supply chain management based on distance
and similarity measures for bipolar fuzzy soft sets. Farid and Riaz [37] investigated
the properties of Einstein interactive geometric information aggregation with q-ROFSs.
Zararsiz and Riaz [38] introduced the idea of bipolar fuzzy metric spaces with applications
in decision making. Riaz et al. [39] proposed topological data analysis with spherical fuzzy
soft AHP-TOPSIS for an environmental mitigation system. Riaz et al. [40] proposed the idea
of interval-valued linear Diophantine fuzzy Frank aggregation operators for computational
intelligence and MCDM problems.

The foremost purpose of the paper is to construct the topological structure on a
single-valued neutrosophic hesitant fuzzy set and to derive significant results. These
results are explained with the help of examples. We define certain concepts of SVHF
topology such as the interior of SVNHFS, the closure of SVNHFS, the exterior of SVNHFS,
the frontier of SVNHFS, dense sets and the base of SVNHF topology. We establish an
extension of the SIR technique towards SVNHF topology to deal with uncertain MCDM
problems. Moreover, to demonstrate and validate the SIR method and the CV method,
a practical example of supplier selection in a food supply chain is provided. A comparative
analysis is also given to discuss the validity and advantage of the proposed techniques.

The organization of the rest of the paper is as follows. In Section 2, we examine some
elementary conceptions such as NS, SVNS, HFS, SVNHFS, SF, and AF of SVNHFNs and
operations on SVNHFSs. In Section 3, we introduce the topological structure of SVNHFSs.
Section 4 introduces the SIR method, and the CV method is developed in Section 5 for
SVNHF information. In Section 6, an application of the SIR method and the CV method for
SVNHF information is illustrated for data analysis in uncertain supply chains. Section 5
concludes the article and discusses future directions.

2. Preliminaries

In this section, we review the notions of NS [9], SVNS [10], HFS [13], and SVNHFS [14].

Definition 1 ([9]). Let K be a set. A NS A in K is specified by the three components defined by

A =
{
〈ς, (TA, IA, NA)〉 : ς ∈ K

}
where TA(ς), IA(ς), NA(ς) ⊆]0−, 1+[ such that 0− ≤ sup TA(ς) + sup IA(ς) + sup
NA(ς) ≤ 3+.

Definition 2 ([10]). Let K be a set. A SVNS S in K can be expressed as

S = {〈ς, TS (ς), IS (ς), FS (ς)〉|ς ∈ K}

where the components are described by mappings TS , IS , FS : S −→ [0, 1]. The components also
satisfy the condition 0 ≤ TS (ς) + IS (ς) + FS (ς) ≤ 3.

Example 1. Let K = {ς1, ς2, ς3, ς4} be a set. Then, an SVNS in K is of the form

S =
{
〈ς1, (0.235, 0.476, 0.667)〉, 〈ς2, (0.133, 0.345, 0.198)〉,
〈ς3, (0.421, 0.782, 0.385)〉, 〈ς4, (0.347, 0.847, 0.667)〉

}
.

Definition 3 ([13]). Assume that K is a set. An HFS set can be defined as follows:

h = {〈 ϕ, ȟ(ϕ)〉 ϕ ∈ K}

where ȟ(ϕ) yields a finite subset of [0, 1]. Then ȟ(ϕ) denotes an HF-element that involve some
values in [0, 1] indicating the MGs of element ϕ ∈ K to the set h.
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Example 2. Let K = {ϕ1, ϕ2, ϕ3, ϕ4, ϕ5} be a set. Then, the HFS can be expressed as

h =
{
〈ϕ1, {0.645, 0.125, 0.667}〉, 〈ϕ2, {0.133, 0.345, 0.988, 0.259}〉,
〈ϕ3, {0.511, 0.178}〉, 〈ϕ4, {0.481, 0.872}〉, 〈ϕ5, {0.666, 0.879}〉

}
where, h(ϕ1) = {0.645, 0.125, 0.667}, h(ϕ2) = {0.133, 0.345, 0.988, 0.259},
h(ϕ3) = {0.511, 0.178}, h(ϕ4) = {0.481, 0.872}, and h(ϕ5) = {0.666, 0.879} are HF-elements
corresponding to ϕ1, ϕ2, ϕ3, ϕ4 and ϕ5, respectively.

Definition 4 ([14]). Let K be a set; a SVNHFS in K is defined as

ℵΥ =

{
〈ωx, ωµ(ωx), ω I(ωx), ων(ωx)〉| ωx ∈ K

}
in which ωµ(ωx), ω I(ωx) and ων(ωx) are three sets of some values in [0, 1], denoting the possible
truth hesitant degrees (THD), indeterminacy hesitant degrees (IHD), and falsity hesitant degrees
(FHD) of the element ωx ∈ K to the set ℵΥ, respectively, with the conditions 0 ≤ ωµ, ω I , ων ≤ 1
and 0 ≤ ωµ+ + ω I+ + ων+ ≤ 3, where ωµ ∈ ωµ(ωx), ω I ∈ ω I(ωx), ων ∈ ων(ωx), ωµ+ ∈
ωµ+(ωx) = ∪

ωµ∈ωµ(ωx)
max{ωµ}, ω I+ ∈ ω I+(ωx) = ∪

ω I∈ω I(ωx)
max{ω I} and ων+ ∈

ων+(ωx) = ∪
ων∈ων(ωx)

max{ων} for ωx ∈ K. Thethree-tuple ν(ωx) = {ωµ(ωx), ω I(ωx), ων(ωx)}

is called a single-valued neutrosophic hesitant fuzzy element (SVNHFE). It can be expressed as
N = {ωµ, ˜ω I , ˜ων}.

Example 3. Let K = {ωx
1, ωx

2, ωx
3, ωx

4} be a set. Then, an SVNHFS ℵΥ in K can be expressed
as follows:

ℵΥ =
{
〈ωx

1, {0.645, 0.125, 0.667}, {0.211}, {0.111, 0.200}〉,
〈ωx

2, {0.133, 0.345}, {0.988, 0.259}, {0.335, 0.121}〉,
〈ωx

3, {0.511}, {0.124, 0.654}, {0.652, 0.783, 0.284}〉,
〈ωx

4, {0.481, 0.872, 0.100, 0.321}, {0.865}, {0.768}〉
}

Definition 5 ([14]). A SVNHFS ℵΥ is said to be null SVNHFS if ω
µ
i (ω

x) = 0, ω I
i (ω

x) = 1 and
ων

i (ω
x) = 1, where i varies according to alternatives, and the null SVNHFS is denoted as 0ℵΥ.

A SVNHFS ℵΥ is said to be an absolute SVNHFS if ω
µ
i (ω

x) = 1, ω I
i (ω

x) = 0 and ων
i (ω

x) = 0,
where i varies according to alternatives, and the absolute SVNHFS is denoted as 1ℵΥ.

Definition 6 ([41]). Let Ni =
〈

ω
µ
i , ω I

i , ων
i

〉
(i = 1, 2, . . . , n) be the collection of SVNHFEs.

Then, the score function (SF) S(Ni), the accuracy function (AF) A(Ni), and the certainty function
(CF) C(Ni) of Ni(i = 1, 2, . . . , n) can be defined as follows:

S(Ni) =
1
3

2 +
1
lωµ

∑
ωµ∈ωµ(ωx)

ωµ − 1
lω I

∑
ω I∈ω I(ωx)

ω I − 1
lων

∑
ων∈ων(ωx)

ων

 (1)

A(Ni) =
1
lωµ

∑
ωµ∈ωµ(ωx)

ωµ − 1
lων

∑
ων∈ων(ωx)

ων (2)

C(Ni) =
1
lωµ

∑
ωµ∈ωµ(ωx)

ωµ (3)
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SVNHFSs are used to express the method of ranking alternatives as follows, based on
the concepts of SF, AF, and CF on SVNHFSs. Let N1 and N2 be two SVNHFEs; the ranking
method is:

1. If S(N1) > S(N2), then N1 is superior to N2, designated by N1 � N2.
2. If S(N1) = S(N2) and A(N1) > A(N2), then N1 is superior to N2, designated by

N1 � N2.
3. If S(N1) = S(N2),A(N1) = A(N2) and C(N1) > C(N2), then N1 is superior to N2,

designated by N1 � N2.
4. If S(N1) = S(N2),A(N1) = A(N2) and C(N1) = C(N2), then N1 is equal to N2

designated by N1 ∼ N2.

Definition 7 ([14]). Let Ni(i = 1, 2, ..., k) be a cluster of SVNHFEs; the SVNHFWA operator is
also an SVNHFE defined by

SVNHFWA(N1, N2, . . . , Nk) = ∑k
i=1 θi Ni

= ∪
ωµ

1∈ω
µ
1 ,...,ωµ

k∈ω
µ
k ,ω I

1∈ω I
1,...,ω I

k∈ω I
k ,ων

1∈ων
1 ,...,ων

k∈ων
k

{{
1−∏k

i=1(1−ωµ
i)

θi
}

, (4){
∏k

i=1
(
ω I

i
)θi
}

,
{

∏k
i=1(ω

ν
i)

θi
}}

where θ = (θ1, θ2, . . . , θk)
¯ is the weight vector of Ni(i = 1, 2, . . . , k) with θi > 0, ∑k

i=1 θi = 1.

The weight of each component is considered by the SVNHFWA operators, and the
aggregation is also an SVNHFE.

Definition 8 ([41]). Let N1 =
〈

ω
µ
1 , ω I

1, ων
1

〉
and N2 =

〈
ω

µ
2 , ω I

2, ων
2

〉
be two SVNHFEs. Then,

the normalized Hamming distance between N1 and N2 is defined as follows:

D(N1, N2) =
1
3

(∣∣∣∣ 1
l
ω

µ
1

∑ωµ
1∈ω

µ
1 (ω

x) ωµ
1 − 1

l
ω

µ
2

∑ωµ
2∈ω

µ
2 (ω

x) ωµ
2

∣∣∣∣+ (5)∣∣∣∣ 1
l
ωI

1

∑ω I
1∈ω I

1(ω
x) ω I

1 − 1
l
ωI

2

∑ω I
2∈ω I

2(ω
x) ω I

2

∣∣∣∣
+

∣∣∣∣ 1
lων

1
∑ων

1∈ων
1 (ω

x) ων
1 − 1

lων
2

∑ων
2∈ων

2 (ω
x) ων

2

∣∣∣∣)
where lωµ

k
, lω I

k
and lων

k
are numbers of feasible membership values in Nk for k = 1, 2.

Definition 9. Let us consider two SNVHFEs N1 = {ωµ
1 (ω

x), ˜ω I
1(ω

x), ˜ων
1(ω

x)} and N2 =

{ωµ
2 (ω

x), ˜ω I
2(ω

x), ˜ων
2(ω

x)}. Some operations on SNVHFEs are defined in [14], which are
the following.

1. Complement: The complements of SVNHFEs N1 and N1 can be expressed as follows:

N1
c = {ων

1(ω
x), 1−ω I

1(ω
x), ω

µ
1 (ω

x)},

N2
c = {ων

2(ω
x), 1−ω I

2(ω
x), ω

µ
2 (ω

x)}.

2. Inclusion: N1 ⊆ N2 ⇐⇒ ω
µ
1 (ω

x) ≤ ω
µ
2 (ω

x), ω I
1(ω

x) ≥ ω I
2(ω

x) and ων
1(ω

x) ≥ ων
2(ω

x)

for each ωx ∈ ℵΥ.
3. The union of two SVNHFEs is defined as follows:

N1 ∪ N2 =
{

ωµ ∈ (ω
µ
1 ∪ω

µ
2 )|ωµ ≥ max(ωµ

1
−

, ω
µ
2
−
), ω I ∈ (ω I

1 ∩ω I
2)|ω I ≤min(ω I

1
+,

ω I
2
+
), ων ∈ (ων

1 ∩ων
2)|ων ≤ min(ων

1
+, ων

2
+)
}

.
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4. The intersection of two SVNHFEs is defined as follows: N1 ∩N2 =
{

ωµ ∈ (ω
µ
1 ∩ω

µ
2 )|ωµ ≤

min(ωµ
1
+

, ω
µ
2
+
), ω I ∈ (ω I

1 ∪ ω I
2)|ω I ≥ max(ω I

1
−, ω I

2
−
), ων ∈ (ων

1 ∪ ων
2)|ων ≥

max(ων
1
−, ων

2
−)
}

.
5. N1 ⊕ N2 = {ωµ

1 ⊕ω
µ
2 , ω I

1 ⊕ω I
2, ων

1 ⊕ων
2}

= ∪
ωµ

1∈ω
µ
1 ,ω I

1∈ω I
1,ων

1∈ων
1 ,ωµ

2∈ω
µ
2 ,ω I

2∈ω I
2,ων

2∈ων
2

{
{ωµ

1

+ωµ
2 −ωµ

1ωµ
2}, {ω I

1ω I
2}, {ων

1ων
2}
}

.
6. N1 ⊗ N2 = {ωµ

1 ⊗ω
µ
2 , ω I

1 ⊗ω I
2, ων

1 ⊗ων
2}

= ∪
ωµ

1∈ω
µ
1 ,ω I

1∈ω I
1,ων

1∈ων
1 ,ωµ

2∈ω
µ
2 ,ω I

2∈ω I
2,ων

2∈ων
2

{
{ωµ

1ωµ
2}, {ω I

1 + ω I
2 −ω I

1ω I
2},

{ων
1 + ων

2 −ων
1ων

2}
}

.
7. θN1 = ∪

ωµ
1∈ω

µ
1 ,ω I

1∈ω I
1,ων

1∈ων
1

{
{1− (1−ωµ

1)
θ}, {ω I

1)
θ}, {ων

1
θ}
}

, θ > 0.

8. N1
θ = ∪

ωµ
1∈ω

µ
1 ,ω I

1∈ω I
1,ων

1∈ων
1

{
{(ωµ

1)
θ}, {1− (1−ω I

1)
θ}, {1− (1−ων

1)
θ}
}

, θ > 0.

3. SVNHF Topology

Ye [14] proposed the idea of SVNHFS as an efficient model for modeling uncertainties.
Biswas et al. [41] suggested the notions of SF, AF, and CF for SVNHFEs. In this section,
the notion of SVNHF topology is introduced using fundamental characteristics of SVNHFSs.

Definition 10. Let K be a set and τ be the collection of SVNHFSs in K. Then, τ is called an
SVNHF topology if it satisfies following properties:

1. 0ℵΥ,1 ℵΥ ∈ τ.
2. For each ℵΥ

i ∈ τ, i ∈ Ω, ∪i∈ΩℵΥ
i ∈ τ.

3. For any ℵΥ
1 ,ℵΥ

2 ∈ τ, ℵΥ
1 ∩ ℵΥ

2 ∈ τ.

Then (K, τ) is called SVNHF topological space.

Example 4. Let K = {ωx
1, ωx

2, ωx
3, ωx

4} be a set. Let us consider

ℵΥ
1 =

{
〈ωx

1, {0.321, 0.567, 0.411}, {0.102}, {0.536, 0.844, 0.689}〉,
〈ωx

2, {0.213, 0.469, 0.328}, {0.650, 0.679}, {0.998, 0.450}〉,
〈ωx

3, {0.404, 0.500}, {0.308}, {0.792, 0.670, 0.666}〉,
〈ωx

4, {0.210, 0.410, 0.589}, {0.752, 0.890, 0.786}, {0.450}〉
}

,

ℵΥ
2 =

{
〈ωx

1, {0.600, 0.580, 0.893}, {0.100}, {0.520, 0.440, 0.250}〉,
〈ωx

2, {0.469, 0.480, 0.850}, {0.210, 0.650}, {0.450, 0.100}〉,
〈ωx

3, {0.540, 0.600}, {0.300}, {0.150, 0.150, 0.655}〉,
〈ωx

4, {0.589, 0.650, 0.890}, {0.095, 0.350, 0.750}, {0.400}〉
}

any two SVNHFSs in K. Tables 3 and 4 show the union and intersection, respectively, of the
SVNHFSs ℵΥ

1 and ℵΥ
2 .

Table 3. Union of SVNHFSs.

Union 0ℵΥ ℵΥ
1 ℵΥ

2
1ℵΥ

0ℵΥ 0ℵΥ ℵΥ
1 ℵΥ

2
1ℵΥ

ℵΥ
1 ℵΥ

1 ℵΥ
1 ℵΥ

2
1ℵΥ

ℵΥ
2 ℵΥ

2 ℵΥ
2 ℵΥ

2
1ℵΥ

1ℵΥ 1ℵΥ 1ℵΥ 1ℵΥ 1V
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Table 4. Intersection of SVNHFSs.

Intersection 0ℵΥ ℵΥ
1 ℵΥ

2
1ℵΥ

0ℵΥ 0ℵΥ 0ℵΥ 0ℵΥ 0ℵΥ

ℵΥ
1

0ℵΥ ℵΥ
1 ℵΥ

1 ℵΥ
1

ℵΥ
2

0ℵΥ ℵΥ
1 ℵΥ

2 ℵΥ
2

1ℵΥ 0ℵΥ ℵΥ
1 ℵΥ

2
1ℵΥ

We see that
τ1 =

{ 0ℵΥ,1 ℵΥ}
τ2 =

{ 0ℵΥ,ℵΥ
1 ,1 ℵΥ}

τ3 =
{ 0ℵΥ,ℵΥ

2 ,1 ℵΥ}
τ4 =

{ 0ℵΥ,ℵΥ
1 ,ℵΥ

2 ,1 ℵΥ}
are SVNHF topologies on K.
where

0ℵΥ =
{
〈ωx

1, {0.000, 0.000, 0.000}, {1.000}, {1.000, 1.000, 1.000}〉,
〈ωx

2, {0.000, 0.000, 0.000}, {1.000, 1.000}}, {1.000, 1.000}〉,
〈ωx

3, {0.000, 0.000}, {1.000}, {1.000, 1.000, 1.000}〉,
〈ωx

4, {0.000, 0.000, 0.000}, {1.000, 1.000, 1.000}, {1.000}〉
}

is a null SVNHFS in K.

1ℵΥ =
{
〈ωx

1, {1.000, 1.000, 1.000}, {0.000}, {0.000, 0.000, 0.000}〉,
〈ωx

2, {1.000, 1.000, 1.000}, {0.000, 0.000}}, {0.000, 0.000}〉,
〈ωx

3, {1.000, 1.000}, {0.000}, {0.000, 0.000, 0.000}〉,
〈ωx

4, {1.000, 1.000, 1.000}, {0.000, 0.000, 0.000}, {0.000}〉
}

is an absolute SVNHFS in K.

Definition 11. If (K, τ) is an SVNHF topological space over K, then the members of SVNHF
topology τ are called SVNHF open sets. That is, if ℵΥ ∈ τ, then ℵΥ is called an SVNHF open set.

Theorem 1. If (K, τ) is any SVNHF topological space, then

1. 0ℵΥ and 1ℵΥ are SVNHF open sets;
2. ∪

ω∈Ω
ℵΥ

ω is an SVNHF open set, where each ℵΥ
ω is an SVNHF open set;

3. ∩n
i=1ℵΥ

i is an SVNHF open set, where each ℵΥ
i is an SVNHF open set.

Proof. 1. From the definition of SVNHF topology τ, 0ℵΥ, 1ℵΥ ∈ τ. Hence, 0ℵΥ and 1ℵΥ

are SVNHF open sets.
2. Let

{
(ℵΥ

ω)ω∈Ω
}

be SVNHF open sets. Then, ℵΥ
ω ∈ τ. By the definition of τ

∪
ω∈Ω
ℵΥ

ω ∈ τ

Hence, ∪
ω∈Ω
ℵΥ

ω is SVNHF open set.

3. Let ℵΥ
1 ,ℵΥ

2 , · · · ,ℵΥ
n be SVNHF open sets. Then, by the definition of τ,

∩n
i=1ℵΥ

i ∈ τ
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Hence, ∩n
i=1ℵΥ

i is an SVNHF open set.

Definition 12. Let (K, τ) be an SVNHF topological space over K. If the complement of an
SVNHFS is SVNHF open, then it is called an SVNHF closed set in K. That is, ℵΥ is called an
SVNHF closed set if, and only if, (ℵΥ)c ∈ τ.

Theorem 2. Assume that (K, τ) is an SVNHF topological space. Then,

1. 0ℵΥ,1 ℵΥ are SVNHF closed sets over K;
2. (∩ℵΥ

ω)ω∈Ω is an SVNHF closed set over K, where each ℵΥ
ω is an SVNHF closed set;

3. (∪ℵΥ
i ) is an SVNHF closed set over K, for any SVNHF closed sets ℵΥ

1 and ℵΥ
2 .

Proof. The proof is obvious.

Definition 13. Let (K, τ1) and (K, τ2) be two SVNHF topological spaces over same set K. If
τ1 ⊆ τ2, then τ1 is said to be SVNHF coarser or SVNHF weaker than τ2, and τ2 is said to be
SVNHF finer or SVNHF stronger than τ1.

If τ1 * τ2 or τ2 * τ1, then these SVNHF topologies are not comparable.

Example 5. From Example 4, let us consider τ2 = {0ℵΥ,ℵΥ
1 ,1 ℵΥ} and τ4 = {0ℵΥ,ℵΥ

1 ℵΥ
2 ,1 ℵΥ},

two SVNHF topologies on K. It is comprehensible that τ2 ⊆ τ4. Thus, τ2 is SVNHF coarser than
τ4 and τ4 is SVNHF finer than τ2.

Definition 14. Assume a universal set K, and the assemblage of all SVNHFSs τ is defined over K.
Then, τ is an SVNHF discrete topology on K, and (K, τ) is known as SVNHF discrete topological
space over K.

Definition 15. Suppose that K is a universal set and τ = {0ℵΥ,1 ℵΥ}. Then, τ is an SVNHF
non-discrete topology on K and (K, τ) is an SVNHF non-discrete topological space over K.

Theorem 3. Suppose that (K, τ1) and (K, τ2) are two SVNHF topological spaces over identical
universes of discourse K; then, (K, τ1 ∩ τ2) is an SVNHF topological space over K.

Proof. The proof is obvious.

Definition 16. Let us consider an SVNHF topological space (K, τ). For any SVNHFS ℵΥ of K,
the SVNHF interior (ℵΥ)◦ is interpreted as the union of all SVNHF open subsets of ℵΥ. (ℵΥ)◦ is
the largest SVNHF open set contained in ℵΥ.

Example 6. From Example 4, we see that τ = {0ℵΥ,ℵΥ
1 ,ℵΥ

2 ,1 ℵΥ} is an SVNHF topology on K.
Consider an SVNHFS defined on K = {ωx

1, ωx
2, ωx

3, ωx
4}

ℵΥ =
{
(〈ωx

1, {0.400, 0.575, 0.589}, {0.101}, {0.530, 0.540, 0.570}〉,
〈ωx

2, {0.369, 0.470, 0.638}, {0.400, 0.660}, {0.700, 0.200}〉,
〈ωx

3, {0.500, 0.550}, {0.305}, {0.400, 0.380, 0.660}〉
〈ωx

4, {0.330, 0.500, 0.700}, {0.400, 0.611, 0.770}, {0.440}〉
}

Then, (ℵΥ)◦ = 0ℵΥ ∪ ℵΥ
1 = ℵΥ

1 .

Theorem 4. Assume that (K, τ) is an SVNHF topological space overK, ℵΥ
1 and ℵΥ

2 are SVNHFSs
over K. Then,

1. (ℵΥ
1 )
◦ ⊆ ℵΥ

1
2. (ℵΥ

1 )
◦ = ((ℵΥ

1 )
◦)◦

3. ℵΥ
1 is an SVNHF open set⇐⇒ (ℵΥ

1 )
◦ = ℵΥ

1
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4. (ℵΥ
1 )
◦ ⊆ (ℵΥ

2 )
◦ if ℵΥ

1 ⊆ ℵΥ
2

5. (ℵΥ
1 )
◦ ∩ (ℵΥ

2 )
◦ = (ℵΥ

1 ∩ ℵΥ
2 )
◦

6. (ℵΥ
1 )
◦ ∪ (ℵΥ

2 )
◦ ⊆ (ℵΥ

1 ∪ ℵΥ
2 )
◦

Proof. 1. This is obvious from the definition of the SVNHF interior.
2. Since (ℵΥ

1 )
◦ is an SVNHF open set and it is also the biggest SVNHF open subset of

itself, (ℵΥ
1 )
◦ = ((ℵΥ

1 )
◦)◦.

3. If ℵΥ
1 is an SVNHF open subset, then ℵΥ

1 will be an SVNHF interior of itself since it
is the largest SVNHF open subset. Conversely, if (ℵΥ

1 )
◦ = ℵΥ

1 , then ℵΥ
1 is an SVNHF

open set because (ℵΥ
1 )
◦ is SVNHF open.

4. Since ℵΥ
1 ⊆ ℵΥ

2 , from part (1), (ℵΥ
1 )
◦ ⊆ ℵΥ

1 ⊆ ℵΥ
2 . (ℵΥ

1 )
◦ is an SVNHF open subset of

ℵΥ
2 and so, by the definition of (ℵΥ

2 )
◦, we have (ℵΥ

1 )
◦ ⊆ (ℵΥ

2 )
◦

5. From part (4),
ℵΥ

1 ∩ ℵΥ
2 ⊆ ℵΥ

1 and ℵΥ
1 ∩ ℵΥ

2 ⊆ ℵΥ
2

=⇒ (ℵΥ
1 ∩ ℵΥ

2 )
◦ ⊆ (ℵΥ

1 )
◦ and (ℵΥ

1 ∩ ℵΥ
2 )
◦ ⊆ (ℵΥ

2 )
◦

so that
(ℵΥ

1 ∩ ℵΥ
2 )
◦ ⊆ (ℵΥ

1 )
◦ ∩ (ℵΥ

2 )
◦

Furthermore, since (ℵΥ
1 )
◦ ⊆ ℵΥ

1 , (ℵΥ
2 )
◦ ⊆ ℵΥ

2 , (ℵΥ
1 )
◦ ∩ (ℵΥ

2 )
◦ ⊆ ℵΥ

1 ∩ ℵΥ
2 , so that

(ℵΥ
1 )
◦ ∩ (ℵΥ

2 )
◦ is an SVNHF open subset of ℵΥ

1 ∩ ℵΥ
2 . Hence,

(ℵΥ
1 )
◦ ∩ (ℵΥ

2 )
◦ ⊆ (ℵΥ

1 ∩ ℵΥ
2 )
◦

Thus,
(ℵΥ

1 ∩ ℵΥ
2 )
◦ = (ℵΥ

1 )
◦ ∩ (ℵΥ

2 )
◦.

6. From ℵΥ
1 ⊆ ℵΥ

1 ∪ ℵΥ
2 ,ℵΥ

2 ⊆ ℵΥ
1 ∪ ℵΥ

2
we have
(ℵΥ

1 )
◦ ⊆ (ℵΥ

1 ∪ ℵΥ
2 )
◦, (ℵΥ

2 )
◦ ⊆ (ℵΥ

1 ∪ ℵΥ
2 )
◦

so that, because (ℵΥ
1 )
◦ ∪ (ℵΥ

2 )
◦ is SVNHF open,

(ℵΥ
1 )
◦ ∪ (ℵΥ

2 )
◦ ⊆ (ℵΥ

1 ∪ ℵΥ
2 )
◦.

Definition 17. Let us consider an SVNHF topological space (K, τ). For any SVNHFS ℵΥ of K,
the SVNHF closure ℵΥ is the intersection of all SVNHF closed super sets of ℵΥ.

Example 7. Consider an SVNHF topology τ = {0ℵΥ,ℵΥ
1 ,ℵΥ

2 ,1 ℵΥ} on K defined in Example 4
and an SVNHFS defined in Example 6 For SVNHF closure, we have to find the complements of
ℵΥ

1 ,ℵΥ
2 ,0 ℵΥ and 1ℵΥ.

(ℵΥ
1 )

c =
{
(〈ωx

1, {0.536, 0.844, 0.689}, {0.898}, {0.321, 0.567, 0.411}〉,
〈ωx

2, {0.998, 0.450}, {0.350, 0.321}, {0.213, 0.469, 0.328}〉,
〈ωx

3, {0.792, 0.670, 0.666}, {0.692}, {0.404, 0.500}〉
〈ωx

4, {0.450}, {0.248, 0.110, 0.214}, {0.210, 0.410, 0.589}〉
}

(ℵΥ
2 )

c =
{
〈ωx

1, {0.520, 0.440, 0.250}, {0.900}, {0.600, 0.580, 0.893}〉,
〈ωx

2, {0.450, 0.100}, {0.790, 0.350}, {0.469, 0.480, 0.850}〉,
〈ωx

3, {0.150, 0.150, 0.655}, {0.700}, {0.540, 0.600}〉
〈ωx

4, {0.400}, {0.905, 0.650, 0.250}, {0.589, 0.650, 0.890}〉
}

(0ℵΥ)c =
{
〈ωx

1, {1.000, 1.000, 1.000}, {0.000}, {0.000, 0.000, 0.000}〉,
〈ωx

2, {1.000, 1.000, 1.000}, {0.000, 0.000}}, {0.000, 0.000}〉,
〈ωx

3, {1.000, 1.000}, {0.000}, {0.000, 0.000, 0.000}〉,
〈ωx

4, {1.000, 1.000, 1.000}, {0.000, 0.000, 0.000}, {0.000}
}
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(1ℵΥ)c =
{
〈ωx

1, {0.000, 0.000, 0.000}, {1.000}, {1.000, 1.000, 1.000}〉,
〈ωx

2, {0.000, 0.000, 0.000}, {1.000, 1.000}}, {1.000, 1.000}〉,
〈ωx

3, {0.000, 0.000}, {1.000}, {1.000, 1.000, 1.000}〉,
〈ωx

4, {0.000, 0.000, 0.000}, {1.000, 1.000, 1.000}, {1.000}
}

Then, ℵΥ = (0ℵΥ)c = 1ℵΥ.

Theorem 5. Suppose that K is a universal set, that (K, τ) is an SVNHF topological space over K,
and that ℵΥ

1 and ℵΥ
2 are SVNHFSs over K. Then,

1. 0ℵΥ =0 ℵΥ and 1ℵΥ = 1ℵΥ

2. ℵΥ
1 ⊆ ℵΥ

1

3. ℵΥ
1 is an SVNHF closed set⇐⇒ ℵΥ

1 = ℵΥ
1

4. ℵΥ
1 = ℵΥ

1

5. ℵΥ
1 ⊆ ℵΥ

2 if ℵΥ
1 ⊆ ℵΥ

2

6. ℵΥ
1 ∪ ℵΥ

2 = ℵΥ
1 ∪ ℵΥ

2

7. ℵΥ
1 ∩ ℵΥ

2 ⊆ ℵΥ
1 ∩ ℵΥ

2

Proof. 1. By definition, 0ℵΥ ⊆ 0ℵΥ. Since 0ℵΥ is an SVNHF closed superset of itself,
0ℵΥ ⊆ 0ℵΥ. Thus, 0ℵΥ = 0ℵΥ. Similarly, 1ℵΥ = 1ℵΥ.

2. By definition, ℵΥ
1 ⊆ ℵΥ

1 , because ℵΥ
1 is the intersection of all SVNHF closed supersets

of ℵΥ
1 .

3. The proof is obvious.

4. Since ℵΥ
1 is an SVNHF closed set, by (3) we have ℵΥ

1 = ℵΥ
1 .

5. Suppose ℵΥ
1 ⊆ ℵΥ

2 as ℵΥ
2 ⊆ ℵΥ

2 . Therefore, ℵΥ
1 ⊆ ℵΥ

2 . This means that ℵΥ
2 is an SVNHF

closed superset of ℵΥ
1 . Thus, ℵΥ

1 ⊆ ℵΥ
2 .

6. As we know that ℵΥ
1 ⊆ ℵΥ

1 ∪ ℵΥ
2 and ℵΥ

2 ⊆ ℵΥ
1 ∪ ℵΥ

2 , by using part (5), ℵΥ
1 ⊆ ℵΥ

1 ∪ ℵΥ
2

and ℵΥ
2 ⊆ ℵΥ

1 ∪ ℵΥ
2 .

=⇒ ℵΥ
1 ∪ ℵΥ

2 ⊆ ℵΥ
1 ∪ ℵΥ

2 .

Conversely, suppose that ℵΥ
1 ⊆ ℵΥ

1 and ℵΥ
2 ⊆ ℵΥ

2 .

Thus, ℵΥ
1 ∪ ℵΥ

2 ⊆ ℵΥ
1 ∪ ℵΥ

2 .

Since ℵΥ
1 ∪ ℵΥ

2 is s SVNHF closed superset of ℵΥ
1 ∪ ℵΥ

2 .Therefore, ℵΥ
1 ∪ ℵΥ

2 ⊆ ℵΥ
1 ∪ ℵΥ

2 .

Thus, ℵΥ
1 ∪ ℵΥ

2 = ℵΥ
1 ∪ ℵΥ

2 .

7. If ℵΥ
1 ∩ ℵΥ

2 ⊆ ℵΥ
1 and ℵΥ

1 ∩ ℵΥ
2 ⊆ ℵΥ

2 , then ℵΥ
1 ∩ ℵΥ

2 ⊆ ℵΥ
1 and ℵΥ

1 ∩ ℵΥ
2 ⊆ ℵΥ

2 . Thus,

ℵΥ
1 ∩ ℵΥ

2 ⊆ ℵΥ
1 ∩ ℵΥ

2 .

Definition 18. Let us consider an SVNHF topological space (K, τ). For any SVNHFS ℵΥ of K,
the SVNHF exterior Ext(ℵΥ) is interpreted as the interior of the complement of SVNHFS ℵΥ.

Example 8. From Example 4, consider an SVNHF topology τ = {0ℵΥ,ℵΥ
1 ,ℵΥ

2 ,1 ℵΥ} on K and
an SVNHFS defined in Example 6. For SVNHF exterior, we have to find the complement of ℵΥ.

(ℵΥ)c =
{
(〈ωx

1, {0.530, 0.540, 0.570}, {0.899}, {0.400, 0.575, 0.589}〉,
〈ωx

2, {0.700, 0.200}, {0.600, 0.340}, {0.369, 0.470, 0.638}〉,
〈ωx

3, {0.400, 0.380, 0.660}, {0.695}, {0.500, 0.550}〉
〈ωx

4, {0.440}, {0.600, 0.389, 0.230}, {0.330, 0.500, 0.700}〉
}

Then, Ext(ℵΥ) = ((ℵΥ)c)◦ = 0ℵΥ.
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Theorem 6. Suppose that (K, τ) is an SVNHF topological space over K, and that ℵΥ
1 and ℵΥ

2 are
SVNHFSs over K. Then,

1. (ℵΥ
1 )

c contains the largest SVNHF open set Ext(ℵΥ
1 ).

2. (ℵΥ
1 )

c is SVNHF open⇐⇒ Ext(ℵΥ
1 ) = (ℵΥ

1 )
c.

3. ℵΥ
1 ⊆ ℵΥ

2 =⇒ Ext(ℵΥ
1 ) ⊆ Ext(ℵΥ

2 ).

Proof. Straight forward.

Definition 19. Let us consider an SVNHF topological space (K, τ). For any SVNHFS ℵΥ of K,
the SVNHF frontier Fr(ℵΥ) is interpreted as the intersection of ℵΥ and (ℵΥ)c

Example 9. From Example 4, consider an SVNHF topology τ = {0ℵΥ,ℵΥ
1 ,ℵΥ

2 ,1 ℵΥ} on K and
an SVNHFS defined in Example 6. The SVNHF frontier is
Fr(ℵΥ) = ℵΥ ∩ (ℵΥ)c = 1ℵΥ.

Theorem 7. Consider an SVNHF topological space (K, τ) and ℵΥ as an SVNHFS; then,

1. Fr(ℵΥ) = Fr((ℵΥ)c).
2. (Fr(ℵΥ))c = (ℵΥ)◦ ∪ ((ℵΥ)c)◦.
3. If ℵΥ is SVNHF open, then Fr(ℵΥ) ⊆ (ℵΥ)c.

Proof. 1. By the definition of the SVNHF frontier, Fr(ℵΥ) = ℵΥ ∩ (ℵΥ)c = (ℵΥ)c ∩ℵΥ =

(ℵΥ)c ∩ ((ℵΥ)c)c = Fr((ℵΥ)c).
2. Since Fr(ℵΥ) = ℵΥ ∩ (ℵΥ)c, by taking the SVNHF complement on both sides, we

obtain (Fr(ℵΥ))c =
(
ℵΥ ∩ (ℵΥ)c

)c
=
(
ℵΥ
)c.

∪
(
(ℵΥ)c

)c
= ((ℵΥ)c)◦ ∪ ℵΥ◦ by Theorem 5.

3. Let ℵΥ be an SVNHF open set; this yields that (ℵΥ)c is SVNHF closed. Utilizing (2),
Fr(ℵΥ)c ⊆ (ℵΥ)c, and by (1), we obtain Fr(ℵΥ) ⊆ (ℵΥ)c.

Theorem 8. Suppose that (K, τ) is an SVNHF topological space over K and that ℵΥ is an
SVNHFS; then,

1. (ℵΥ)c = ((ℵΥ)◦)c

2. (ℵΥ) = ℵΥ ∪ Fr(ℵΥ).
3. (ℵΥ)◦ = ℵΥ \ Fr(ℵΥ).
4. For any subset ℵΥ in (K, τ), ℵΥ is open if, and only if, ℵΥ ∩ Fr(ℵΥ) is a null SVNHFS.
5. For any subset ℵΥ in (K, τ), ℵΥ is closed if, and only if, ℵΥ ⊇ Fr(ℵΥ).
6. For any subset ℵΥ in (K, τ), ℵΥ is both open and closed if, and only if, Fr(ℵΥ) is a null SVNHFS.

Proof. The proof is obvious.

Definition 20. Consider an SVNHF topological space (K, τ). A SVNHFS ℵΥ is termed dense in
K if ℵΥ = 1ℵΥ.

Example 10. Let us consider SVNHF topological space given in Example 4 an SVNHFS ℵΥ

defined in Example 6. We see that ℵΥ = 1ℵΥ. This shows that ℵΥ is dense in K.

Definition 21. Consider an SVNHF topological space (K, τ). A sub-collection B of τ is called an
SVNHF base for τ if every SVNHF open set in τ is a union of members of B.

Example 11. From Example 4, consider SVNHF topology τ = {0ℵΥ,ℵΥ
1 ,ℵΥ

2 ,1 ℵΥ} over K. Then,
B = {0ℵΥ,ℵΥ

1 ,ℵΥ
2 ,1 ℵΥ} is an SVNHF base for τ.
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4. Extension of SIR Method for SVNHF Information

In this section, a new MCDM method is developed based on Algorithm 1, which is an
extension of the SIR method to SVNHFSs.

Algorithm 1 (SIR method for SVNHFSs)

Let K = {ωx
i : i = 1, 2, · · · , l} be an assemblage of substitutes/alternatives and

C = {ωC
j : j = 1, 2, · · · , m} is the collection of accredits/attributes. Assume that

E = {ωe
k : k = 1, 2, · · · , n} be the collection of experts with weight vectors Ẇ =

{ẇ1, ẇ2, · · · , ẇn}. Suppose P(k) =
(
p
(k)
ij
)
l×m(i = 1, 2, · · · , l; j = 1, 2, · · · ,m; k =

1, 2, · · · , n) is the SVNHF decision matrix, where p
(k)
ij designates the accredits value that

substitutes ωx
i and persuades the accredits ωC

j designated by expert ωe
k . The accredits

weighted decision matrix is ẇ = (ẇ
(k)
j )n×m, where ẇ

(k)
j designates the weight value of the

accredits ωC
j designated by expert ωe

k .
A novel approach based on SVNHF-SIR is addressed below:
Step 1: Calculate the discrete/individual measure degree ρk (k = 1, 2, · · · , n) via the
weights of experts, which take the form of SVNHFEs. The relative closeness coefficient is
procured as follows:

ρk =
d(Ẇk, Ẇ−)

d(Ẇk, Ẇ−) + d(Ẇk, Ẇ+)
. (6)

where Ẇ+ = (max{ωµ
k }, min{ω I

k}, min{ων
k}), Ẇ

− = (min{ωµ
k }, max{ω I

k}, max{ων
k}). It

is easily obtained that 0 ≤ Ẇk ≤ 1 and if ρk → 1, then Ẇk → Ẇ+; if ρk → 0, then
Ẇk → Ẇ−.
Step 2: To make the sum into a unit, normalize the ρk (k = 1, 2, · · · , n) and obtain
as follows:

vk =
ρk

∑n
k=1 ρk

=
ρk

ρ1 + ρ2 + · · ·+ ρn
(7)

We obtain the vector of real numbers that have been normalized v = (v1, v2, · · · , vn)µ as
discrete/individual measure degrees.
Step 3: Employ the SVNHFWA operator to aggregate individual perspectives into group
perspectives as follows:
1. Discrete/individual attributes’ weights integration:

ẇj = SVNHFWAvk

(
ẇ
(1)
j , ẇ(2)

j , · · · , ẇ(n)
j
)

(8)

=
({

1−∏n
k=1

(
1−ωµ(k)

j

)vk
}

,
{

∏n
k=1

(
ω I (k)

j

)vk
}

,
{

∏n
k=1

(
ων(k)

j

)vk
})

= (ij,kj, (jג

2. Discrete/individual decision matrix integration:

pij = SVNHFWAvk

(
p
(1)
ij , p(2)ij , · · · , p(n)ij

)
(9)

=
({

1−∏n
k=1

(
1−ωµ(k)

ij

)vk
}

,
{

∏n
k=1

(
ω I (k)

ij

)vk
}

,
{

∏n
k=1

(
ων(k)

ij

)vk
})

From this step, the group-integrated decision matrix p = (pij)l×m and the attribute weight
vector ẇ = (ẇ1, ẇ2, · · · , ẇm) are acquired.
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Algorithm 1 Cont.
Step 4: Acquire the SVNHF superiority/inferiority matrix
1. Attain the performance function fij:

fij = f(pij) =
d(pij, p

−)

d(pij, p
−) + d(pij, p

+)
(10)

where p− = {ωC
j , (min{ωµ

ij}, max{ω I
ij}, max{ων

ij})},
p+ = {ωC

j , (max{ωµ
ij}, min{ω I

ij}, min{ων
ij})}. It is easily obtained that 0 ≤ fij ≤ 1

and if fij → 1, then pij → p+; if fij → 0, then pij → p−.
2. Attain the preference intensity PIj(ω

x
i , ωx

t ):
We define PIj(ω

x
i , ωx

t )(i, t = 1, 2, · · · , l, i 6= t; j = 1, 2, · · · ,m) as the preference
intensity of alternatives ωx

i to the corresponding attribute ωC
j , which is given

as follows:

PIj(ω
x
i , ωx

t ) = φj(fij − ftj) = φj(d) (11)

where φj(d) is a non-decreasing function from the real number to [0, 1]. Normally,
φj(d) is from a set of six generalized threshold functions [42], or interpreted by the
experts themselves.

3. Acquire superiority matrix and inferiority matrix:
Superiority index (S-index): S = (Sij)l×m

Sij =
m

∑
t=1
PIj(ω

x
i , ωx

t ) =
m

∑
t=1

φj(fij − ftj); (12)

Inferiority index (I-index): I = (Iij)l×m

Iij =
m

∑
t=1
PIj(ω

x
i , ωx

t ) =
m

∑
t=1

φj(ftj − fij); (13)

Step 5: Calculate the superiority flow and inferiority flow as follows:
S-flow

Ψ>(ωx
i ) = SVNHFWASij(ẇ1, ẇ2, · · · , ẇm) (14)

=
({

1−∏m
j=1(1−ij)

Sij
}

,
{

∏m
j=1(kj)

Sij
}

,
{

∏m
j=1(גj)

Sij
})

I-flow

Ψ<(ωx
i ) = SVNHFWAIij(ẇ1, ẇ2, · · · , ẇm) (15)

=
({

1−∏m
j=1(1−ij)

Iij
}

,
{

∏m
j=1(kj)

Iij
}

,
{

∏m
j=1(גj)

Iij
})

By using Equation (1), we calculate the score function of the corresponding S-flow Ψ>(ωx
i )

and I-flow Ψ<(ωx
i ), respectively. Hence, we obtain the S-flow and I-flow of alternative

ωx
i as ωx

i (Ψ
>(ωx

i ), Ψ<(ωx
i )). It seems that if the S-flow Ψ>(ωx

i ) is larger and the I-flow
Ψ<(ωx

i ) is smaller, the alternative ωx
i is preferable.

Step 6: Superiority ranking rule (SR-Rule):
SR− Rule1. If Ψ>(ωx

i ) > Ψ>(ωx
t ) and Ψ<(ωx

i ) < Ψ<(ωx
t ), then ωx

i � ωx
t ;

SR− Rule2. If Ψ>(ωx
i ) > Ψ>(ωx

t ) and Ψ<(ωx
i ) = Ψ<(ωx

t ), then ωx
i � ωx

t ;
SR− Rule3. If Ψ>(ωx

i ) = Ψ>(ωx
t ) and Ψ<(ωx

i ) < Ψ<(ωx
t ), then ωx

i � ωx
t .
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Algorithm 1 Cont.
Inferiority ranking rule (IR-Rule):
IR− Rule1. If Ψ>(ωx

i ) < Ψ>(ωx
t ) and Ψ<(ωx

i ) > Ψ<(ωx
t ), then ωx

i ≺ ωx
t ;

IR− Rule2. If Ψ>(ωx
i ) < Ψ>(ωx

t ) and Ψ<(ωx
i ) = Ψ<(ωx

t ), then ωx
i ≺ ωx

t ;
IR− Rule3. If Ψ>(ωx

i ) = Ψ>(ωx
t ) and Ψ<(ωx

i ) > Ψ<(ωx
t ), then ωx

i ≺ ωx
t .

Step 7: By incorporating the SR-Rule and the IR-Rule, we can achieve the best alternative
ωx

i (i = 1, 2, · · · , l).
A flow chart of the SIR method for supplier selection is shown in Figure 1.

Figure 1. Flow chart of SIR method for supplier selection.

5. Extension of CV Method for SVNHF Information

In this section, a new MCDM method is developed in Algorithm 2, which is extension
of the CV method to SVNHFSs. Table 5 includes various types of cases where different
systems were used to help with operations or decision-making in the food supply chain.

Algorithm 2 (CV method for SVNHFSs)

Step 1: Obtain the decision matrices from the decision makers, with alternative ωx
j

evaluated on the basis of criterion ωC
i , given in Table 6. The aggregated decision matrix pij

is obtained using step 1, step 2 and step 3(2).
Step 2: Decision makers also give weight w to the criteria with the condition that the sum
of weights must be equal to 1. Then, the multiplication of decision matrix is computed with
criteria weights, to obtain the matrix qij.
Step 3: Find the score function of each SVNHFN.
Step 4: Compute the ranking of the alternatives according to their score function values.



Symmetry 2022, 14, 1382 16 of 24

Case Study

The food industry is critical for delivering the essentials for a variety of uses and
tendencies [43]. Food must be stored, supplied, and marketed as soon as it is cultivated or
produced so that it can reach the ultimate customers on time. Every year, worldwide food
loss would supply more than enough to nourish the world’s nearly 1 billion starving people.
In Pakistan, it is anticipated that 40% of food is wasted. Food is produced in sufficient
quantities to feed the overall population of Pakistan, but due to food waste, an expected 6
out of 10 inhabitants go to bed without dinner. Pakistan stands 107th out of 118 developing
countries on the International Poverty Index. Approximately one-third of all produced
food is destroyed or wasted each year (approximately 1.3 billion tonnes) [44]. Two-thirds
of all waste in food (roughly 1 billion tonnes) occurs at the supply chain stage, which
encompasses cultivation, shipments, and storage [45].

The term FSCM has been utilized to depict the activities or procedures occurring
during the yield, dispersion, and the use of various foods in order to preserve their quality
and safety in effective and efficient ways [46,47]. The relevance of factors such as safety,
food quality, and freshness within a specified time frame distinguishes FSCM from many
other supply chains including furniture logistics and supply chain management, making
the underpinning supply chain more convoluted and unmanageable [48]. As the challenges
of global coordination have increased, the attention turned from a single echelon, such as
food production, to the effectiveness and efficiency of the comprehensive supply chain.
That is, the food supply chain resources such as vehicles, storage areas, transport services,
and laborers will be used proficiently to ensure the quality and safety of food through
effective efforts including optimization decisions [49]. The relevance of value chains
in FSCM is that they benefit both consumers and producers. The traceability of food
has become increasingly popular in recent decades, with a wide range of applications.
Because of the emergence of food, FSCM is becoming more dynamic and complex in order
to meet the diversifying and globalized industries.

FSCM IT Systems

There is no doubt that IT systems are crucial in FSCM because so much can go wrong,
such as vehicles, food suppliers, data entry, and so on. The decision-making systems
and traceability for FSCM are used as examples of current state-of-the-art situations that
professionals can use when instituting IT-based solutions. A food’s traceability consists in a
data trail that follows the physiological trail of the food through different phases [50]. Some
systems track food all the way from the retailer to the farm, while others only examine key
stages of the supply chain. Some traceability systems gather information only for tracking
food products to the minute of manufacturing or logistics path, while others track only
superficial data, such as in a vast geographical area [51]. Aside from FSCM’s traceability
systems, other decision-making processes in the food industry include implementation,
strategy, vehicle maintenance, and WMS.

The internationalization of food production, logistics, and utilization has resulted in
an integrated world for FSCM, whose models are critical in ensuring consistently high
standards and security in food products [52]. Quality of food, high delivery performance,
and food security appear to be more important in these models. Multi-objective considerations
are also common; for example, food quality assurance is incorporated into decision models.
Recently, supply chain effectiveness and value chain evaluation have received special
attention, since the international FSCM is becoming increasingly important.
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Table 5. Cases involving IT systems in FSCM that have been reported.

Instance Firm Network Enhancement

Aramyan et al. [53] Tomato firm Performance Efficiency and flexibility
measurement system have both improved,

food quality has improved,
and there is a faster response time.

Bevilacqua et al. [54] Tronto Valley ARIS Three types of costs
are being reduced;

improved traceability.

Pagell and Wu [55] Pizza restaurants TQM Lean/JIT Enhanced information sharing,
superior quality,

enhanced logistical efficiency.

Tuncel and Alpan [56] A medium size Risk management The percentage of orders completed
on time has increased to 90.6%,

with risk reduction rising by 9.9%.

Zhu et al. [57] A food manufacturer Customer cooperation Customer cooperation has improved;
system internal environment management

has been improved.

Jacxsens et al. [58] A fresh producer Food safety Food of higher quality;
management system improved risk management ability.

Friel et al. [59] Agri-food supply chain H&S food A more nutritious diet,
decision-making with improved environmental

system sustainability.

Savino et al. [60] A chestnut Value chain Increased long-term viability,
company management CO2 reduced emissions,

system enhanced value chain.

Banasik et al. [61] A mushroom Supply chain Overall profitability increased by 11%,
manufacturer management with improved environmental

system performance

Sgarbossa and Russo [62] 6 Firms FSCM system Conserving energy,
costs of disposal avoided,

enhanced productivity.

Choosing a supplier is a critical element of any business’s operations. Reputation,
reliability, service, cost, and value for money are all important considerations. The aim of
supplier selection is to identify the best supplier who delivers the best value for money in
terms of product or service. Suitable supplier selection yields good profit and quality in the
end. The supplier is treated as an integral part of the organization in this strategic alliance.
All purchasers must choose a supplier, and it is a critical step in the acquisition process.
Purchasers should go through several stages of decision making and develop their own
selection criteria for selecting appropriate suppliers.

Some interesting studies for supply chain can be seen in [63–65].

6. MCDM Process

The RH Flour Mills in Lahore wants to find the best supplier for one of its key
components in the manufacturing process. Four suppliers were left as alternatives. The
four criteria considered were: quality and safety, delivery, social responsibility, and service.
The suppliers are evaluated using the recommended methodology by a group of decision
makers. In multi-criteria decision making with a fuzzy environment, four decision makers
were chosen, consisting of supplier experts and expert academics. The steps in the
procedure for selecting the best green supplier are as follows.
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The decision-making process using Algorithm 1 is illustrated as follows:
Let K = {ωx

1, ωx
2, ωx

3, ωx
4} is the set of alternatives and C = {ωC

1 , ωC
2 , ωC

3 } is the set
of attributes. Assume that E = {ωe

1, ωe
2, ωe

3} is the set of experts. Then, the single-valued
neutrosophic hesitant fuzzy decision matrices are expressed in Table 6, the weights of the
experts are given in Table 7, and the weights of the attributes are shown in Table 8.

Table 6. Single-valued neutrosophic hesitant fuzzy decision matrices.

ωe
1 ωC

1 ωC
2 ωC

3

ωx
1 {0.125, 0.326}, {0.444}, {0.236} {0.230}, {0.200}, {0.912} {0.200}, {0.111, 0.253}, {0.751}

ωx
2 {0.111}, {0.750, 0.905}, {0.216} {0.250}, {0.112}, {0.445} {0.523}, {0.521}, {0.423, 0.624}

ωx
3 {0.149}, {0.242}, {0.889} {0.246, 0.925}, {0.851}, {0.124} {0.259, 0.590}, {0.125}, {0.300}

ωx
4 {0.195}, {0.860}, {0.120, 0.120} {0.315}, {0.866}, {0.606} {0.400, 0.580}, {0.430}, {0.118}

ωe
2 ωC

1 ωC
2 ωC

3

ωx
1 {0.326}, {0.414}, {0.216} {0.655}, {0.200}, {0.219} {0.800}, {0.253}, {0.715, 0.870}

ωx
2 {0.456}, {0.570, 0.800}, {0.206} {0.250}, {0.102, 0.436}, {0.102} {0.600}, {0.500}, {0.421}

ωx
3 {0.419}, {0.237}, {0.900} {0.380}, {0.450}, {0.120} {0.529}, {0.125}, {0.210}

ωx
4 {0.528}, {0.111}, {0.120, 0.300} {0.513}, {0.750}, {0.880} {0.450}, {0.400, 0.500}, {0.117}

ωe
3 ωC

1 ωC
2 ωC

3

ωx
1 {0.225, 0.350}, {0.420}, {0.220} {0.222}, {0.150, 0.215}, {0.319} {0.755}, {0.253}, {0.745}

ωx
2 {0.330}, {0.100}, {0.498} {0.546}, {0.110}, {0.623} {0.550, 0.600}, {0.520}, {0.324}

ωx
3 {0.240}, {0.230, 0.300}, {0.850} {0.855}, {0.114}, {0.522} {0.300}, {0.100, 0.550}, {0.900}

ωx
4 {0.800}, {0.200}, {0.120, 0.300} {0.356}, {0.777}, {0.415} {0.444}, {0.232}, {0.718}

Table 7. The weights of the experts.

Experts SVNHFEs

ωe
1 {0.831, 0.120}, {0.310}, {0.456, 0.511}

ωe
2 {0.802}, {0.408, 0.300}, {0.472}

ωe
3 {0.711, 0.177}, {0.234, 0.500}, {0.500, 0.250}

Table 8. The weights of the attributes.

ωC
1 ωC

2 ωC
3

ωe
1 {0.311}, {0.200}, {0.500} {0.111, 0.210}, {0.100}, {0.805} {0.200, 0.666}, {0.555}, {0.213}

ωe
2 {0.207}, {0.300, 0.804}, {0.274} {0.750}, {0.455}, {0.123} {0.100}, {0.578}, {0.920}

ωe
3 {0.170, 0.701}, {0.230}, {0.240} {0.380}, {0.335, 0.510}, {0.200} {0.310}, {0.456, 0.687}, {0.836}

Step 1: Compute the individual measure degree ρk(k = 1, 2, 3) using Equation (6), given by

ρ = (0.432, 0.466, 0.573)µ

Step 2: Acquire the normalized vector using Equation (7), given as

v = (0.294, 0.317, 0.390)µ

Step 3: The attribute weights can be obtained using Equation (8), which are expressed
as follows:

ẇ1 =
(
{0.226, 0.480}, {0.240, 0.328}, {0.310}

)
ẇ2 =

(
{0.483, 0.501}, {0.258, 0.304}, {0.258}

)
ẇ3 =

(
{0.216, 0.394}, {0.520, 0.611}, {0.576}

)
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The aggregated decision matrices can be obtained using Equation (9), and can be
written as follows:

(pij)4×3 =


{0.232, 0.283, 0.289, 0.336}, {0.425}, {0.223} {0.401}, {0.0.178, 0.205}, {0.385} {0.675}, {0.0.198, 0.253}, {0.737, 0.784}
{0.319}, {0.313, 0.349, 0.331, 0.369}, {0.294} {0.384}, {0.108, 0.171}, {0.318} {0.559, 0.579}, {0.514}, {0.380, 0.426}

{0.279}, {0.253, 0.261}, {0.877} {0.628, 0.811}, {0.317}, {0.215} {0.372, 0.473}, {0.114, 0.222}, {0.411}
{0.605}, {0.254}, {0.120, 0.171, 0.359, 0.215} {0.400}, {0.793}, {0.588} {0.434, 0.490}, {0.330, 0.354}, {0.237}


Step 4: Acquire the performance function fij using Equation (10):

(fij)4×3 =


0.586 0.540 0.464
0.625 0.644 0.599
0.179 0.767 0.688

1 0.198 0.601


The threshold attribute function was set to

φk(d) =
{

0.01 if d > 0
0.00 if d ≤ 0

Acquire the superiority matrix (S-matrix) using Equation (12):

S =


0.01 0.01 0
0.02 0.02 0.01

0 0.03 0.03
0.03 0 0.02


Acquire the inferiority matrix (I-matrix) using Equation (13):

I =


0.02 0.02 0.03
0.01 0.01 0.02
0.03 0 0

0 0.03 0.01



Step 5: Measure the flow of superiority and inferiority using Equations (14) and (15), which
are exhibited in Tables 9 and 10.

Table 9. SVNHF superiority flow.

Ψ>(ωx
i ) S(Ψ>(ωx

i ))

ωx
1 {0.00709, 0.00981}, {0.00498, 0.00632}, {0.00568} 0.6657

ωx
2 {0.01634, 0.02356}, {0.01516, 0.01875}, {0.01712} 0.6619

ωx
3 {0.02097, 0.02685}, {0.02334, 0.02745}, {0.02502} 0.6597

ωx
4 {0.0111, 0.02228}, {0.0176, 0.02206}, {0.02082} 0.6587

Table 10. SVNHF inferiority flow.

Ψ<(ωx
i ) S(Ψ<(ωx

i ))

ωx
1 {0.02066, 0.03144}, {0.02556, 0.03097}, {0.02864} 0.6564

ωx
2 {0.01175, 0.01769}, {0.01538, 0.01854}, {0.0172} 0.6602

ωx
3 {0.00678, 0.0144}, {0.0072, 0.00984}, {0.0093} 0.6643

ωx
4 {0.01665, 0.01897}, {0.01294, 0.01523}, {0.0135} 0.6634

Step 6: Integrate Table 9 with the SR-Rule, and the following seems to be accessible:

ωx
1 � ωx

2 � ωx
3 � ωx

4
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Combine Table 10 with the IR-Rule, and the following seems to be accessible:

ωx
1 � ωx

2 � ωx
4 � ωx

3

Step 7: The most desirable alternative, according to the results of the SR-Rule and the
IR-Rule, is ωx

1. A representation of SVNHF superiority and inferiority flow is shown in
Figure 2.

0.65

0.652

0.654

0.656

0.658

0.66

0.662

0.664

0.666

0.668

r1 r2 r3 r4

SVNHF superiority flow SVNHF inferiority flow

Figure 2. Representation of SVNHF superiority and inferiority flow.

The decision-making process using Algorithm 2 is illustrated as follows: Step 1:
Consider SVNHF decision matrices given in Table 6. Obtain aggregated decision matrix
(pij)4×3 using Step 1, Step 2, and Step 3. Step 2: The decision makers provide weights to
three criteria as w1 = 0.235, w2 = 0.312, and w3 = 0.453, with ∑wi = 1

(qij)4×3 =


{0.232, 0.283, 0.289, 0.336}, {0.425}, {0.223} {0.401}, {0.178, 0.205}, {0.385} {0.675}, {0.198, 0.253}, {0.737, 0.784}
{0.319}, {0.313, 0.349, 0.331, 0.369}, {0.294} {0.384}, {0.108, 0.171}, {0.318} {0.559, 0.579}, {0.514}, {0.380, 0.426}

{0.279}, {0.253, 0.261}, {0.877} {0.628, 0.811}, {0.317}, {0.215} {0.372, 0.473}, {0.114, 0.222}, {0.411}
{0.605}, {0.254}, {0.120, 0.171, 0.359, 0.215} {0.400}, {0.793}, {0.588} {0.434, 0.490}, {0.330, 0.354}, {0.237}


 0.235

0.312
0.453



(qij)4×1 =


{0.484, 0.495, 0.496, 0.507}, {0.0005, 0.0007}, {0.0021, 0.0022}
{0.446, 0.455}, {0.0006, 0.0006, 0.0006, 0.0011}, {0.0017, 0.0013}

{0.429, 0.529}, {0.0003, 0.0006}, {0.0026}
{0.461, 0.485}, {0.0022, 0.0024}, {0.0005, 0.0008, 0.0016, 0.0010}


Step 3: Compute the score values of each alternative. The score values of the alternatives
are given in Table 11.

Table 11. Score values.

Alternatives Score Values

ωx
1 0.8309

ωx
2 0.8158

ωx
3 0.8253

ωx
4 0.8233

Step 4: Rank the alternatives according to their score values.

ωx
1 � ωx

3 � ωx
4 � ωx

2

As a result, ωx
1 is the best supplier among the four alternatives according to the

qualities of all criteria.
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Comparative Analysis

This paper develops new techniques for modeling uncertainties using SVNHF information.
We compare the ranking of alternatives using proposed SIR method and the CV method
for SVNHFSs. If we use the SVNHF SIR approach to assemble the alternatives, they are
ranked for superiority flow as

ωx
1 � ωx

2 � ωx
3 � ωx

4

and for inferiority flow as
ωx

1 � ωx
2 � ωx

4 � ωx
3

On the other hand, when we use the technique of the CV method, the ranking of the
alternatives becomes

ωx
1 � ωx

3 � ωx
4 � ωx

2

Based on these findings, it is clear that the ranking of the alternatives is not same.
However, the optimal alternative ωx

1 remains identical in both MCDM methods.
The ranking of alternatives using the SIR method and the CV method is also shown in

Figure 3.

Figure 3. Ranking of alternatives using the SIR method and the CV method.

7. Conclusions

This paper was designed to introduce the concept of single-valued neutrosophic
hesitant fuzzy (SVNHF) topology and its applications in data analysis for uncertain
supply chains. An SVNHFS is a hybrid structure of a hesitant fuzzy set (HFS) and a
single-valued neutrosophic set (SVNS), which is a novel concept for modeling uncertainties
in real-life circumstances with key features of three membership functions: truth-hesitancy
membership function, indeterminacy-hesitancy membership function and falsity-hesitancy
membership function. Using the characteristics of SVNHFSs, we defined the notion of
SVNHF topology. We investigated the fundamental properties of SVNHF topology, such
as the SVNHF closure, the SVNHF interior, the SVNHF exterior, and the SVNHF frontier,
as well as the SVNHF dense set and the SVNHF base, with the help illustrative examples.
Eventually, to demonstrate and validate the SIR method and the CV method in terms of
rationality and scientific basis, a real-life example of supplier selection in a food supply
chain was provided. A comparative analysis was also given to discuss the validity and
advantage of proposed techniques. The proposed methods can be further extended to
investigate the dynamics of human decision analysis, humanized computing, data analysis,
computational intelligence, and healthcare.
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