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Abstract: When the length of the tether remains constant, the relative planar motion of the tethered
subsatellite with respect to the base satellite in a circular orbit around the Earth, is similar to a simple
pendulum motion, i.e., there are two kinds of equilibrium points: local vertical and local horizontal
positions, which are center and saddle points, respectively. However, when out-of-plane motion
is initially excited, the relative motion of the subsatellite presents symmetric quasi-periodic and
chaotic behavior. In the first part of this study, such trajectories are analyzed by means of Poincaré
sections. In the second part, a non-linear tension force by using a Lyapunov approach is proposed for
controlling the coupled pitch-roll motion during the deployment and retrieval phases. The goal of
this paper is to guide the relative non-linear motion of the subsatellite to the local upward vertical
position. The numerical results show that the non-linear tension control steered the subsatellite close
to the local vertical direction very well, reducing the quasi-periodic and chaotic oscillations.

Keywords: tethered satellite system; quasi-periodic and chaotic motions; lyapunov approach; tension
control law

1. Introduction

In recent decades, the Tethered Satellite System (TSS) has been proposed for many
different space applications, such as micro- and variable-g experiments, orbit transfer,
spacecraft formation, energy transmission, and space debris removal [1]. However, one
of the primary issues in space tether missions is controlling the fast deployment and
retrieval of attached payloads, which is extremely complicated due to nonlinear dynamics.
Furthermore, chaotic motion can occur in a two-body TSS [2–15]. The Coriolis force
causes the deployment/retrieval operation to be unstable. In fact, the retrieval operation is
inherently unstable [3,16,17]. Many researchers have investigated the dynamics and control
of a TSS during deployment, station-keeping, and retrieval stages, and various methods
for controlling tether deployment/retrieval have been proposed, such as tension control
laws, length rate control algorithms, Lyapunov’s second method, optimal control strategies,
elastic tethers, and out-of-plane thrusting [3,15,18–39].

Because of the complexity of the problem, a TSS consisting of a base satellite and
a subsatellite linked by a rigid but massless tether, orbiting the Earth in a Keplerian
circular orbit, was considered in this study. Other forces or perturbations were neglected.
Additionally, the base satellite was regarded as the reference spacecraft, and its mass was
assumed to be much greater than that of the subsatellite. In such cases, Misra et al. [6]
showed that, in the station-keeping phase, the planar motion of the tethered subsatellite
had two kinds of equilibrium points–center and saddle points–at the local vertical and
local horizontal positions, respectively. Thus, its planar motion when the tether length
was constant did not seem to be quite complicated. However, during deployment and
retrieval, the subsatellite did not move in a straight line trajectory because of the Coriolis

Symmetry 2022, 14, 1381. https://doi.org/10.3390/sym14071381 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14071381
https://doi.org/10.3390/sym14071381
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-3599-9745
https://orcid.org/0000-0002-7966-3231
https://doi.org/10.3390/sym14071381
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14071381?type=check_update&version=1


Symmetry 2022, 14, 1381 2 of 14

force [3,16,17,19]. For deployment and retrieval, the dynamics of the tethered subsatellite
may become unstable around the local vertical configuration. In fact, if the tether length
varies too fast, there will be no fixed points [3]. Therefore, it was necessary to implement a
control scheme for the deployment and retrieval phases. In this connection, innumerable
control strategies have been studied for the in-plane pitch motion [19,20,23–26,28,29,31,38].
Among these, the tension feedback control laws, as well as the length rate schemes, have
been proven to be the most effective for their simplicity and practicality [40].

Under the above assumptions for the dynamics of the station-keeping phase, Misra
et al. [6] found that the coupled pitch-roll motion of a TSS will be periodic, quasi-periodic,
or chaotic. Misra et al. [6] showed symmetric phase portraits and Poincaré sections of
periodic, quasi-periodic, and chaotic motions. Thus, three-dimensional deployment and
retrieval missions need further study and numerical experiments. For example, assuming
that the base satellite follows a circular orbit, Fujii et al. [24], Vadali and Kim [26], Fujii and
Anazawa [27] used the Lyapunov approach to propose two different nonlinear feedback
control laws for the deployment and retrieval of a subsatellite swinging in-plane and out-of-
plane. Misra and Modi [41] and Nixon [3] studied the coupled motion of deployment and
retrieval under a length-rate control algorithm in a circular orbit. Kumar and Pradeep [30],
Salazar and Prado [39] linearized the motion equations about the local vertical to derive
linear feedback control laws for the three-dimensional dynamics from a circular orbit. In
this case, Kumar and Pradeep [30] employed a combination of tension control and out-of-
plane thrusting. On the other hand, Salazar and Prado [39] only applied a linear tension
control. Finally, Jin and Hu [34] and Wen et al. [35,36] presented a nonlinear optimal
control for the deployment and retrieval of a tethered subsatellite system in a circular
Keplerian orbit, taking into account not only the in-plane but also the out-of-plane motion.
Similarly, the linear tension feedback control laws and the tether rate control laws are easier
to implement [40]. However, stability could not be global since these schemes use linear
approximations to determine the stability of the fixed points [42]. In this sense, nonlinear
feedback control laws, designed using Lyapunov functions (named mission functions),
showed excellent controlled response of the tethered subsatellite system because linear
approximations were not employed. A positive-definite Lyapunov function is defined to
be zero when the deployment and retrieval are essentially completed. A nonlinear tension
control is then selected to reduce the value of the Lyapunov function during deployment
and retrieval.

The goal of this paper is to analyze the efficiency of a nonlinear tension-control law
designed from a Lyapunov function and apply it to deployment and retrieval missions
when the initial state emerges from the three-dimensional quasi-periodic and chaotic zones
of the TSS dynamics. Lyapunov’s second method has been used to select a stable tension-
control law during deployment and retrieval in the three-dimensional case, such that the
quasi-periodic and chaotic motions are suppressed, and the system is steered close to
the local vertical direction. Although much in the literature have been published on the
control of deployment and retrieval missions of a TSS, the control of the chaotic behavior
observed in the coupled pitch-roll motion has not been sufficiently explored. In this sense,
the simulations performed in this study show that the selected nonlinear tension-control
law performs well, but terminal oscillations of the rolling motion are encountered during
retrieval because this process is inherently unstable, as mentioned above. Additionally, it
is important to mention that it is possible to experience quasi-periodic and chaotic planar
motions on the TSS when additional forces and perturbations are considered in the motion
of TSS around the Earth [6–8,10,15,43]. Although the mathematical model used in this study
is simpler than more elaborated in-plane models, the numerical results showed excellent
controlled behavior of the nonlinear tension-control law, even for chaotic behavior.

The remainder of this article is as follows. A simplified mathematical model for
an orbiting TSS in a Keplerian circular orbit is given in Section 2. Then, the regular and
chaotic dynamics in three-dimensional space is analyzed using phase portraits and Poincaré
sections in Section 2.1. Section 2.2 describes the mission function, the tension control law,
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and its stability. Section 3 provides a case study to verify the quasi-periodic and chaotic
motions and their deployment and retrieval performance. Section 4 gives the conclusions.

2. Methods

Figure 1 illustrates a TSS orbiting the Earth in a Keplerian circular orbit. It consists of
a base satellite of mass M, which is regarded as the reference spacecraft, and a subsatellite
of mass m (m << M) connected by a massless and rigid tether. The true anomaly, orbital
angular velocity vector, and orbital radius vector from the Earth’s center O of the base
satellite’s orbit are denoted by υ, ω, and RB, respectively, as shown in Figure 1a. Similarly,
the reference coordinate system is designated by x0-y0-z0 axes, such that y0 = RB/RB, and
z0 = ω/ω, as shown in Figure 1.

Figure 1. Sketch of the geometry of the TSS around the Earth showing reference coordinate systems
and the spherical coordinate system. (a) Pitch motion is obtained by rotating x0-y0 axes through an
angle ϕ. (b) Roll motion is obtained by rotating x′-z′ axes through an angle θ [39].

The relative motion of the subsatellite is represented by the radius vector r, which
is described by its magnitude r, where r << RB, and the pitch and roll angles ϕ and θ,
respectively, as shown in Figure 1a,b. The radius vector motion is described by

r̈ =

(
− µ

R3
S

RS −
T
m

r
r

)
−
(
− µ

R3
B

RB +
T
M

r
r

)
, (1)

where µ = 398,602 km3/s2 is the Earth’s gravitational constant, T is the magnitude of the
tension tether force, RS = RB + r is the vector position of the subsatellite from the Earth’s
center O , and overdot denotes the time derivative d/dt. On the fact that m << M and
r << RB, r̈ can be estimated as

r̈ = − µ

R3
B

[
1− 3

sin ϕ cos θ

RB
r
]

RS +
µ

R3
B

RB −
T
m

r
r

. (2)

On the other hand, the relative position vector r and the position vector RB can be
expressed in the spherical coordinate system r̂− ϕ̂− θ̂ as [31]

r = rr̂, RB = cos θ sin ϕr̂ + cos ϕϕ̂+ sin θ sin ϕθ̂. (3)
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Similarly, the radius vector motion r̈ along r̂− ϕ̂− θ̂ is

r̈ = r̈r r̂ + r̈ϕϕ̂+ r̈θ θ̂, (4)

where

r̈r = r̈− rθ̇2 − r(ω + ϕ̇)2 cos2 θ, (5)

r̈ϕ =
[
rϕ̈ + 2ṙ(ω + ϕ̇)− 2r(ω + ϕ̇)θ̇ tan θ

]
cos θ, (6)

r̈θ = −
[
rθ̈ + 2ṙθ̇ + r

(
ω + θ̇

)2 cos θ sin θ
]
. (7)

Assuming a rigid tether of length ` in the TSS, then ` = r. Thus, substituting the
spherical coordinates of r, RB, and r̈ in Equation (2), the relative motion of the tethered
subsatellite is described by the following equations [31]:

῭ − `θ̇2 − `(ω + ϕ̇)2 cos2 θ − `ω2
(

3 sin2 ϕ cos2 θ − 1
)

= −T
m

, (8)

ϕ̈ + 2
˙̀

`
(ω + ϕ̇)− 2(ω + ϕ̇)θ̇ tan θ − 3ω2 sin ϕ cos ϕ = 0, (9)

θ̈ + 2
˙̀

`
θ̇ + (ω + ϕ̇)2 cos θ sin θ + 3ω2 sin2 ϕ sin θ cos θ = 0. (10)

Using the following non-dimensional variables:

υ = ωt, ρ =
`

L
, u =

T
mω2L

,

where L is the maximum tether length, the equations of motion of the subsatellite can be
non-dimensionalized:

ρ′′ − ρθ′2 − ρ
(
1 + ϕ′

)2 cos2 θ − ρ
(

3 sin2 ϕ cos2 θ − 1
)

= −u, (11)

ϕ′′ + 2
ρ′

ρ

(
1 + ϕ′

)
− 2
(
1 + ϕ′

)
θ′ tan θ − 3 sin ϕ cos ϕ = 0, (12)

θ′′ + 2
ρ′

ρ
θ′ +

(
1 + ϕ′

)2 cos θ sin θ + 3 sin2 ϕ sin θ cos θ = 0, (13)

where prime refers to the true anomaly derivative d/dυ.
In the station-keeping phase we have `′ = 0. Then Equations (11)–(13) reduce to

ϕ′′ − 2
(
1 + ϕ′

)
θ′ tan θ − 3 sin ϕ cos ϕ = 0, (14)

θ′′ +
(
1 + ϕ′

)2 cos θ sin θ + 3 sin2 ϕ sin θ cos θ = 0. (15)

This system has three equilibrium points: the stable local vertical with ϕ = ±(2n + 1)π
2 ,

θ = ±nπ, the unstable local horizontal with ϕ = ±nπ, θ = ±nπ , and the unstable orbit
normal with ϕ = ϕ∗, θ = ±(2n + 1)π

2 , where n is any integer and ϕ∗ is any constant [6,7].
Additionally, there exists a constant C of the TSS motion (i.e., C′ = 0), when the tether
length remains constant (`′ = 0), given by [6]

C = θ′2 + cos2 θ
(

ϕ′2 − 1− 3 sin2 ϕ
)
+ 4, (16)

where 0 ≤ C ≤ 4, with C = 0 and C = 4 at the local vertical and orbit normal equilibrium
points, respectively.
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2.1. Analysis of Three-Dimensional Motion

If θ0 = θ′0 = 0 in Equations (14) and (15), the pitch motion of the TSS is described by

ϕ′′ − 3 sin ϕ cos ϕ = 0. (17)

The phase portrait of Equation (17), depicted in Figure 2, shows that the pitch motion
of the TSS in the station-keeping phase is similar to a simple pendulum, such that the
vertical position is a center and the local horizontal corresponds to a saddle point.

Figure 2. Pitch motion of the TSS in the station-keeping phase [39].

On the other hand, if θ0 6= 0 or θ′0 6= 0 in Equations (14) and (15), quasi-periodic
and chaotic motions can occur in the out-of-plane motion of the TSS [6,7]. For example,
for a given value of C, Equations (14) and (15) are integrated numerically with ϕ0 = ϕ∗,

ϕ′0 = 0, θ = 0, θ′0 =
√

C− 4 + (1 + 3 sin2 ϕ∗), for various values of ϕ∗, over 300 orbits.
Note that the initial roll velocity is computed by using Equation (16). Then, the Poincaré
map of the phase trajectories is taken as Σ = {(ϕ, ϕ′)|θ = 0, θ′ > 0}, sampled at period
2π. Figure 3 shows the Poincaré sections for C = 2.5, C = 3.0, C = 3.25, and C = 3.75,
respectively. As can be seen from Figures 2 and 3, the periodic planar motion becomes
quasi-periodic and chaotic. Similarly, Poincaré sections show that, if the local vertical

(ϕ0 = π
2 , ϕ′0 = 0) is initially excited with θ0 = 0, θ′0 =

√
C− 4 + (1 + 3 sin2 π

2 ) =
√

C, then
the stable equilibrium point turns into a quasi-periodic trajectory when 0 < C < 3.15 but
is replaced by a chaotic trajectory when 3.15 ≤ C < 4, as shown in Figure 4a,b. To study
the control of the out-of-plane motion of TSS in this manner, the system is considered to
begin at the local vertical position by applying the initial conditions ϕ0 = π

2 , θ0 = 0, ϕ′0 = 0,
θ′0 =

√
C, with C = 3 (quasi-periodic motion) and C = 3.5 (chaotic motion).
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Figure 3. Poincaré sections for three-dimensional TSS motion for various C > 0. (a) C = 2.5 ,
(b) C = 3.0, (c) C = 3.25, and (d) C = 3.75 are shown [39].

Figure 4. Poincaré sections for local vertical initially excited with θ′0 =
√

C− 4 + (1 + 3 sin2 π
2 ).

(a) C = 3.14 and (b) C = 3.15 are shown.

2.2. Tether Length Control

This section describes the Lyapunov function formulation (mission function) for
controlling tether deployment/retrieval. The following positive definite function, which is
related to the integral C, was selected as the trial Lyapunov function:

V =
1
2

[
ρ′2 + K1

(
ρ− ρ f

)2
+ 3ρ2C2

]
, (18)

where ρ f is the desired final value of ρ; K1 is a positive constant (non-dimensional gain);
V ≥ 0, and V = 0 if and only if at ρ = ρ f , ϕ = ±(2n + 1)π

2 , θ = ±nπ, ρ′ = 0, ϕ′ = 0,
θ′ = 0. The time derivative of V is given by

V′ = ρ′
[
ρ′′ + K1

(
ρ− ρ f

)
+ 3ρC

(
C− 4

(
θ′2 + ϕ′ cos2 θ

(
1 + ϕ′

)))]
. (19)
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Substituting Equation (11) into (19), we obtain

u = u1 + u2 + u3, (20)

where

u1 = K1

(
ρ− ρ f

)
+ K2ρ′, (21a)

u2 = ρ
[
θ′2 +

(
1 + ϕ′

)2 cos2 θ +
(

3 sin2 ϕ cos2 θ − 1
)]

, (21b)

u3 = ρ
[
3C
(

C− 4
(

θ′2 + ϕ′ cos2 θ
(
1 + ϕ′

)))]
, (21c)

as the nonlinear tension-control law, so that

V′ = −K2ρ′2, K2 > 0. (22)

One can see from Equation (22) that V′ ≤ 0 with V′ = 0 if and only if ρ′ = 0. Thus, V′

is negative semi-definite and the desired final state ρ = ρ f , ϕ = π
2 , θ = 0, ρ′ = ϕ′ = θ′ = 0

is stable [42]. The limitation of this strategy is that we need a Lyapunov function to find
the non-linear control. Actually, it can be derived only in simple cases, for example, when
the system has an integral, as in this case. In this manner, linear approximations are much
better and easier to implement.

In the next section, the TSS is assumed to be orbiting the Earth at an altitude of
220 km, with ω = 1.1804× 10−3 rad/s. The maximum tether length is assumed to be 1 km
(L = 1 km), and the base satellite and subsatellite masses are set as M = 1000 kg and
m = 50 kg.

3. Deployment and Retrieval Performances

The initial conditions for the tethered subsatellite motion are [25,29,38]:

(
ρ0, ρ′0, ϕ0, ϕ′0, θ0, θ′0

)T
=
(

0.01, 0.5,
π

2
, 0, 0,

√
C
)T

,

where C = 3.0 and C = 3.5. The initial roll motion θ′0 was set so that quasi-periodic and
chaotic solutions appear in the station-keeping phase, as shown in Figures 5a,b and 6a,b,
respectively. Figures 5c and 6c show the Poincaré section obtained from these trajectories,
indicating that quasi-periodicity and chaos do occur for C = 3 and C = 3.5, respectively.

The desired final conditions are
(

ρ f , ρ′f , ϕ f , ϕ′f , θ f , θ′f

)T
=
(

ρ∗f , 0, π
2 , 0, 0, 0

)T
, where

ρ∗f = 1.0 for deployment and ρ∗f = 0.01 for retrieval. Based on the stability condition
of the system, the gains selected are K1 = 2, K2 = 6 during deployment, and K1 = 1,
K2 = 6 during retrieval. In this manner, the effect of the variable tether length on the
three-dimensional solutions is computed by numerically solving Equations (11)–(13), and
using the tension-control law u given by Equation (20). To confirm the feasibility of u, it
must satisfy the necessary positiveness condition: u ≥ 0, at any time.
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Figure 5. Quasi-periodic solution of the tethered subsatellite when the tether length remains constant.

The system is considered to begin with the initial states
(

ϕ0, ϕ′0, θ0, θ′0
)T

=
(

π
2 , 0, 0,

√
C
)T

, where
C = 3. (a,b) Pitch and roll angles versus true anomaly υ. (c) Poincaré section of the phase trajectories.

Figure 6. Chaotic solution of the tethered subsatellite when the tether length remains constant. The

system is considered to begin with the initial states
(

ϕ0, ϕ′0, θ0, θ′0
)T

=
(

π
2 , 0, 0,

√
C
)T

, where C = 3.5.
(a,b) Pitch and roll angles versus true anomaly υ. (c) Poincaré section of the phase trajectories.
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Figures 7a,b and 8a,b show the effect of the variable length of the tether on the
quasi-periodic and chaotic trajectories illustrated in Figures 5a,b and 6a,b, respectively.
Figures 7a,b and 8a,b show the time history of the pitch and roll angles. Similarly,
Figures 7c,d and 8c,d show the time history of the non-dimensional tether length and ten-
sion. The tension control (see Equation (20)) was always positive in both cases, and the
deployment and retrieval phases were essentially complete in about five orbits. There
exists a station-keeping phase when the deployment and retrieval phases are complete, as
shown in Figures 7c,d and 8c,d. In the station-keeping phase, the tension control tends to
stabilize about u = 3 (τ = 0.21 N) when ρ ≈ 1, and u = 0 when ρ ≈ 0.01. Although the
tension control performs well, and the tether achieves the desired final lengths, the pitch
and roll angles oscillate about the equilibrium vertical position during the transfer from
station-keeping to retrieval, as shown in Figures 7a,b and 8a,b. Note that the damping
term in Equations (12) and (13) is proportional to ρ′. Thus, the pitch and roll motions are
positively damped and stable during deployment but are negatively damped and unstable
during retrieval, as shown in Figures 7a,b and 8a,b. However, as soon as the tension control
caused the tether to retrieve from ρ = 1 to ρ = 0.01, the length rate settled down to ρ′ = 0;
the pitch motion returned to equilibrium; and the roll motion settled down to a sinusoidal
oscillation of constant amplitude corresponding to a limit cycle [3]. In this connection,
Banerjee and Kane [21], Xu et al. [44], Fujii and Ishijima [23], Kumar and Pradeep [30]
proposed an out-of-plane thrusting for the retrieval phase to help stabilize this process.

Figure 7. Controlled tether deployment and retrieval. (a,b) The effect of the variable length of the
tether on the coupled pitch and roll motions when the system initiates with the quasi-periodic initial
conditions described in Figure 5. (c,d) Non-dimensional tether length and tension.
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Figure 8. Controlled tether deployment and retrieval. (a,b) The effect of the variable length of
the tether on the coupled pitch and roll motions when the system initiates with the chaotic initial
conditions described in Figure 6. (c,d) Non-dimensional tether length and tension.

Figure 9 shows the in-plane and out-of-plane motion paths of the subsatellite for the
controlled quasi-periodic (Figure 9a,b) and chaotic (Figuere 9c,d) trajectories. The right path
in the in-plane motion corresponds to the deployment phase, and the left path, the retrieval
phase. The station-keeping phase at the distance of ` = 1 km and ` = 0.01 km corresponds
to the stationary points in the upper and lower parts, respectively. Although the retrieval
phase is always unstable, the tension control (20) is very effective for controlling this
system, which began with conditions that led to quasi-periodic and chaotic behavior in the
station-keeping phase.

Finally, Figures 10 and 11 show the performance of a linear tension control imple-
mented by Salazar and Prado [39] to suppress the chaotic behavior of a TSS on a deployment
mission. The system initiates with conditions in such a way that we can obtain chaotic
trajectories when the length of the tether is constant. Although the performance is similar
to the non-linear tension control computed in this study, we noted that the initial pitch and
tension oscillations were larger in the non-linear case. However, the linear-tension control
used by Salazar and Prado [39] could not be used in retrieval missions because ρ = 0
creates a singularity in Equation (12), so the linearization could not be applied around the
singularity ρ = 0.
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Figure 9. In-plane and out-of-plane motion paths of the subsatellite during the controlled deployment
and retrieval. (a,b) Controlled quasi-periodic trajectory depicted in Figure 7. (c,d) Controlled chaotic
trajectory depicted in Figure 8.

Figure 10. (a) Controlled Tether Deployment using a Linear Tension Control with the initial states(
ϕ0, ϕ′0, θ0, θ′0

)T
=
(

π
2 , 0, 0,

√
C
)T

, where C = 3.75. (b) Three-dimensional motion path of the
subsatellite during the controlled deployment [39].
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Figure 11. (a) Controlled tether deployment using a linear tTension control with the initial states(
ϕ0, ϕ′0, θ0, θ′0

)T
=
(
0, 0, π

30 , 0
)T . (b) Three-dimensional motion path of the subsatellite during con-

trolled deployment [39].

4. Conclusions

When the tether length remained constant, the stable local vertical position becames
a quasi-periodic or chaotic trajectory if the out-of-plane motion was considered. In this
study, a Lyapunov approach was used to determine a new nonlinear tension control law for
controlling tether length. The importance of this study was to propose a non-linear tension
control capable of guiding the chaotic subsatellite motion to the local vertical position
by deployment/retrieval, whether or not chaos exists. This strategy can be applied in a
tethered subsatellite orbiting the Earth in a Keplerian circular orbit, such that a constrained
tension force is implemented on the tether during deployment and retrieval missions.

Considering the pitch and roll motions, the tethered subsatellite was deployed from a
perturbed vertical position, such that quasi-periodicity and chaos occurred when the length
of the tether was constant. The tension control was designed for deployment and retrieval
missions, so the quasi-periodic and chaotic oscillations of the tether were suppressed. From
the Lyapunov stability analysis performed about the local upward position, this final state
was shown to be stable, but not asymptotically stable. Although a fast deployment/retrieval
was accomplished by the nonlinear tension control law outlined in this paper, and the
tension was capable of controlling the pitch-roll motion and guide the system to the desired
final state, terminal small oscillations of the roll motion were seen during the retrieval
phase. The result was a sinusoidal oscillation of constant amplitude about the final state.
Thus, a new control law will be necessary to stabilize the pitch and roll angles at the local
upward position when the length of tether is a maximum or minimum.
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