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Abstract: In this paper, we use semi-tensor product of quaternion matrices, L-representation of
quaternion matrices, and GH-representation of special quaternion matrices such as quaternion (anti)-
centrosymmetric matrices to solve the special solutions of quaternion matrix equation. Based on semi-
tensor product of quaternion matrices and the structure matrix of the multiplication of quaternion,
we propose the vector representation operation conclusion of quaternion matrices, and study the
different matrix representations of quaternion matrices. Then the problem of the quaternion matrix
equation is transformed into the corresponding problem in the real number fields by using vector
representation and L-representation of quaternion matrices, combined with the special structure
of (anti)-centrosymmetric matrices, the independent elements are extracted by GH-representation
method, so as to reduce the number of variables to be calculated and improve the calculation accuracy.
Finally, the effectiveness of the method is verified by numerical examples, and the time comparison
with the two existing algorithms is carried out. The algorithm in this paper is also applied in a
centrosymmetric color digital image restoration model.

Keywords: quaternion matrix equation; semi-tensor product of quaternion matrices; L-representation;
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1. Introduction

The symbols to be used in this paper are as follows: R/Q represent the set of all the
real numbers/quaternions, respectively. Rt represents the set of all real column vectors
with t-dimension. Rm×n/Qm×n represent the set of all m × n real matrices/quaternion
matrices, respectively. Sn×n/ASn×n/Sn×n/ASn×n represent the set of all n× n real cen-
trosymmetric matrices/real anti-centrosymmetric matrices/quaternion centrosymmetric
matrices/quaternion anti-centrosymmetric matrices, respectively. In addition, In repre-
sents the unit matrix with n-dimension, δi

n(i = 1, 2, · · · , n) represents the ith column of In.
A/AT/AH/A† represent the conjugate/transpose/conjugate transpose/Moore-Penrose
inverse of matrix A. ⊗ represents the Kronecker product of matrices, ‖·‖ represents the
Frobenius norm of a matrix or Euclidean norm of a vector.

Currently the numerical computation is not only a tool for scientific calculations, but
also one of the ways to discover truths. However, the traditional matrix theory also has
some shortages; for example, it has dimensional restriction and noncommutativity. Semi-
tensor product of matrices proposed by Cheng [1] is different from the traditional matrix
product. It does not need size matching conditions and can be used for any two matrices.
It is designed to deal with higher-dimensional data as well as multilinear mappings. In a
computer the higher-dimensional data can easily be treated without arranging the m into
a cube or even higher-dimensional cuboid. Semi-tensor product of matrices is designed
in such a way that the product rule can automatically search the proper position for each
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factor of multiplier. At present, semi-tensor product of matrices is widely used in biological
system and life science [2,3], game theory [4,5], graph theory and formation control [6,7],
fuzzy control [8,9], coding theory, and algorithm implementation [10,11]. In addition, some
scholars proposed a new quaternion real vector representation method [12,13] based on
semi-tensor product of matrices, and applied this method to the solution of quaternion
linear system. In this paper, some new conclusions of semi-tensor product of quaternion
matrices are proposed, which will be used to solve quaternion linear systems.

Quaternion is a hypercomplex number composed of a scalar and a vector, which has
the dual properties of real number and complex number. Due to the rapid development
of computer graphics [14], robot and other fields [15,16], quaternion has been more and
more widely used in computer animation, robot trajectory planning [17], modeling [18],
rendering and three-dimensional fractal display. The application of quaternion matrix in
color digital images is becoming more and more important and extensive [19,20]. Color
digital image restoration is usually modeled as the solution of quaternion matrix equation.

Matrix equations have wide applications in many spheres. These real, complex and
quaternion matrix equations have attracted extensive attention. As a special matrix equa-
tion, quaternion matrix equation has been widely integrated into computer science [21],
signals [22], statistics [23], and color image processing [24]. Because quaternion does not
satisfy the commutativity of multiplication, the quaternion matrix equation is usually
transformed into a familiar problem of real matrix equation or complex matrix equation
by real representation or complex representation, so as to simplify the operation of matrix
equation. Many scholars have discussed different solutions to different equations with the
help of these methods. For example, using the real representation matrix of quaternion
matrices, ref. [25] obtained the expressions of the minimal norm least squares solution for
the quaternion matrix equation AXB + CXD = E; ref. [26] investigated the minimal norm
least squares η-(anti)-Hermitian solution of quaternion matrix equation AXB + CYD = E;
ref. [27] discussed the minimal norm least squares (anti)-j-self-conjugate solution on quater-
nion matrix equation X− AX̂B = C; in addition, ref. [28] used the complex representation
matrix of quaternion matrices to study the η-(anti)-Hermitian solution of quaternion matrix
equation AXB + CYD = E; ref. [29] derive the expressions of the least squares solution,
pure imaginary solution, real solution with the least norm for the quaternion matrix equa-
tion AX = B by using the complex representation matrix of quaternion matrices. Some
scholars have also devoted themselves to the study of quaternion matrix equations by
using Cramer’s rules [30–32], iterative algorithms [33–36] or rank method [37–40].

Definition 1 ([41]). If X = (xij) ∈ Qn×n satisfies:

xij = xn−i+1,n−j+1, (i, j = 1, · · · , n),

then X is called a quaternion centrosymmetric matrix. If X = (xij) ∈ Qn×n satisfies:

xij = −xn−i+1,n−j+1, (i, j = 1, · · · , n),

then X is called a quaternion anti-centrosymmetric matrix.

As two special kinds of matrices, (anti)-centrosymmetric matrices are applied broadly
in the fields of statistical analysis and matrix countermeasures information theory, linear
system theory and numerical analysis, and some matrices with special rules of elements,
such as (anti)-centrosymmetric matrices. We want to extract the independent elements
of the matrix to remove the redundancy and reduce the complexity of solving the matrix
equation. The H-representation [42] method perfectly realizes our idea.

This paper presents the (anti)-centrosymmetric solutions of quaternion matrix equation

k

∑
i=1

AiXBi = C (1)
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by using semi-tensor product of quaternion matrices,L-representation and GH-representation.
Problem 1 Let Ai ∈ Qm×n, Bi ∈ Qn×p, (i = 1, · · · , k), C ∈ Qm×p, and

MS =

{
X ∈ Sn×n

∣∣∣∣
∥∥∥∥∥ k

∑
i=1

AiXBi − C

∥∥∥∥∥ = min

}
.

Find out XS ∈ MS, such that

‖XS‖ = min
X∈MS

‖X‖.

XS is called the minimal norm least squares centrosymmetric solution of quaternion matrix
Equation (1). If min = 0, XS is called the minimal norm centrosymmetric solution of
quaternion matrix Equation (1).

Problem 2 Let Ai ∈ Qm×n, Bi ∈ Qn×p, (i = 1, · · · , k), C ∈ Qm×p, and

MA =

{
X ∈ ASn×n

∣∣∣∣
∥∥∥∥∥ k

∑
i=1

AiXBi − C

∥∥∥∥∥ = min

}
.

Find out XA ∈ MA, such that

‖XA‖ = min
X∈MA

‖X‖.

XA is called the minimal norm least squares anti-centrosymmetric solution of quaternion
matrix Equation (1). If min = 0, XA is called the minimal norm anti-centrosymmetric
solution of quaternion matrix Equation (1).

Several new conclusions on semi-tensor product of quaternion matrices are presented
in this article. By using semi-tensor product of quaternion matrices, quaternion matrix
equations can be analyzed by vector representation directly. Under the structure ma-
trix of the multiplication of quaternion, we establish different matrix representations of
quaternion matrices by semi-tensor product of quaternion matrices, in this case, we de-
fine the definition of L-representation. Employing vector representation of quaternion
matrices and combining L-representation of quaternion matrices with GH-representation,
several types of special minimal norm solutions to quaternion equation ∑k

i=1 AiXBi = C
are presented, along with the necessary and sufficient conditions of compatibility. Using
GH-representation method, we can remove the redundancy and reduce the complexity of
the problem by identifying the independent elements of a special matrix. It can be seen
that GH-representation simplifies solutions to quaternion matrix equations in a simple and
effective manner.

The following are the main sections of this article: In Section 2, the fundamentals of
quaternion and semi-tensor product of quaternion matrices are covered. In Section 3, the
vector representation conclusion of quaternion matrices is given, and combined with the
structure matrix, the definition of L-representation of quaternion matrices is proposed.
In Section 4, H-representation of several special matrices are given, and the definition of
GH-representation of special quaternion matrices is proposed. In Section 5, the necessary
and sufficient conditions for the minimal norm solution and compatibility of the above
problems are explored. In Section 6, the corresponding algorithm and numerical examples
are shown to verify the effectiveness of the method, and we give the time comparison
between the algorithm in this paper and the algorithms in references [43,44]. In Section 7,
the research of centrosymmetric color digital image restoration is given. In Section 8, a brief
summary is made of the full text.
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2. Preliminaries
2.1. Quaternion and Quaternion Matrices

This part mainly introduces the basic knowledge of quaternion. For more information,
please refer to the literature [25–27].

Definition 2. A quaternion x can be uniquely expressed as

x = x0 + x1i + x2j + x3k ∈ Q,

where xs ∈ R, s = 0, 1, 2, 3, and the three imaginary units i, j, k satisfy i2 = j2 = k2 = −1, ij =
−ji = k, jk = −kj = i, ki = −ik = j. The conjugate of x is defined as

x = x0 − x1i− x2j− x3k ∈ Q.

A quaternion matrix X can be uniquely expressed as X = X0 + X1i + X2j + X3k ∈ Qm×n,
where Xs ∈ Rm×n, s = 0, 1, 2, 3. The conjugate of X is defined as X = X0 − X1i− X2j− X3k ∈
Qm×n.

Definition 3 ([24]). The norm of a quaternion x = x0 + x1i + x2j + x3k ∈ Q is defined as

‖x‖ =
√
|x0|2 + |x1|2 + |x2|2 + |x3|2 = xx,

and the Frobenius norm of X = X0 + X1i + X2j + X3k ∈ Qm×n is defined as

‖X‖ =
√
‖X0‖2 + ‖X1‖2 + ‖X2‖2 + ‖X3‖2.

2.2. Semi-Tensor Product of Quaternion Matrices

In this section, some basic knowledge about semi-tensor product of quaternion ma-
trices is given. For more details of semi-tensor product of matrices on real number fields,
please refer to the literature [1,45,46].

Definition 4. Suppose A ∈ Qm×n, B ∈ Qp×q, the semi-tensor product of A and B is denoted by

A n B = (A⊗ It/n)(B⊗ It/p),

where t = lcm(n, p) is the least common multiple of n and p. If n = p, the semi-tensor product
reduces to the traditional matrix product.

Example 1. Suppose A =

[
3 0
2 1

]
, B =


4 1 4 1
5 1 1 1
3 4 5 3
1 1 2 2

. First, we block matrix A and B into

A =

[
3 0
2 1

]
=

[
A11 A12
A21 A22

]
, B =


4 1 4 1
5 1 1 1
3 4 5 3
1 1 2 2

 =

[
B11 B12
B21 B22

]
.

Then the semi-tensor product of A and B is

A n B = (A⊗ I2)B =


3 0 0 0
0 3 0 0
2 0 1 0
0 2 0 1




4 1 4 1
5 1 1 1
3 4 5 3
1 1 2 2

 =


12 3 12 3
15 3 3 3
11 6 13 5
11 3 4 4
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=

[
A11 n B11 + A12 n B21 A11 n B12 + A12 n B22
A21 n B11 + A22 n B21 A21 n B12 + A22 n B22

]
.

Theorem 1. Suppose α, β ∈ R, A, B, C be quaternion matrices, then
(1) (Associative rule)

(A n B)n C = A n (B n C).

(2) (Distributive rule)

A n (αB + βC) = αA n B + βA n C,

(αB + βC)n A = αB n A + βC n A.

(3) (Conjugate Transpose)
(A ./ B)H = BH ./ AH.

Definition 5 ([46]). A swap matrix W[m,n] is a mn×mn matrix, which is defined as

W[m,n] = [In ⊗ δ1
m, In ⊗ δ2

m, · · · , In ⊗ δm
m ].

The properties of swap matrix are as follows, which facilitates the calculation of matrix.

Theorem 2. (1) Suppose A ∈ Qm×n, then

W[m,n]Vr(A) = Vc(A); W[n,m]Vc(A) = Vr(A).

(2) Suppose A ∈ Qs×t, then for any integer m > 0 have

W[s,m] n A nW[m,t] = Im ⊗ A.

Example 2. Assume A =

[
a11 a12
a21 a22

]
∈ Q2×2, B =

b11 b12
b21 b22
b31 b32

 ∈ Q3×2, then m = n = 2,

s = 3, t = 2. Hence, we have

W[3,2] = [I2 ⊗ δ1
3 , I2 ⊗ δ2

3 , I2 ⊗ δ3
3 ] =



1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

;

W[2,2] = [I2 ⊗ δ1
2 , I2 ⊗ δ2

2 ] =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

.

Then

W[3,2] n B nW[2,2] n A = (I2 ⊗ B)n A =



b11 b12 0 0
b21 b22 0 0
b31 b32 0 0
0 0 b11 b12
0 0 b21 b22
0 0 b31 b32


n
[

a11 a12
a21 a22

]
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=



b11a11 b12a11 b11a12 b12a12
b21a11 b22a11 b21a12 b22a12
b31a11 b32a11 b31a12 b32a12
b11a21 b12a21 b11a22 b12a22
b21a21 b22a21 b21a22 b22a22
b31a21 b32a21 b31a22 b32a22


=



a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a11b31 a11b32 a12b31 a12b32
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22
a21b31 a21b32 a22b31 a22b32


= A⊗ B.

3. Main Conclusions
3.1. Vector Representation of Quaternion Matrices

As we know, quaternion multiplication does not satisfy the commutative law,

Vc(AXB) = (BT ⊗ A)Vc(X)

is not tenable on quaternion. Therefore, some scholars [24,26,28,29] mainly study the
quaternion matrix equation based on the real representation matrix and complex represen-
tation matrix of quaternion matrices. However, we can find a new straightening result on
quaternion according to the property of quaternion conjugation. Then some straightening
conclusions of semi-tensor product of quaternion matrices are given below, which will be
used to solve quaternion matrix equation.

Definition 6. For A = (aij) ∈ Qm×n, the column vector representation of quaternion matrix A
is defined as

Vc(A) = (a11, . . . , am1, a12, . . . , am2, . . . , a1n, . . . , amn)
T,

the row vector representation of quaternion matrix A is defined as

Vr(A) = (a11, . . . , a1n, a21, . . . , a2n, . . . , am1, . . . , amn)
T.

Theorem 3. Suppose A ∈ Qm×n, X ∈ Qn×q, Y ∈ Qp×m, then

(1)Vr(AX) = A n Vr(X), Vc(AX) = (Iq ⊗ A)n Vc(X).

(2)Vc(YA) = AH n Vc(Y), Vr(YA) = (Ip ⊗ AH)n Vr(Y).

Proof. (1) For Vr(AX) = A n Vr(X). Suppose C = AX, ai(i = 1, · · · , m) represents the
ith row of matrix A, xj(j = 1, · · · , n) represents the jth row of matrix X, ci(i = 1, · · · , m)
represents the ith row of matrix C, then the ith block of A n Vr(X) is

ai n Vr(X) = ai n

(x1)T

...
(xn)T

 =

∑n
k=1 aikxk1

...
∑n

k=1 aikxkq

 = (ci)T,

then we have Vr(AX) = A n Vr(X).
By the properties of the swap matrix and Vr(AX) = A n Vr(X), then,

Vc(AX) = W[m,q] n Vr(AX) = W[m,q] n A n Vr(X)

= W[m,q] n A nW[q,n] n Vc(X)

= (Iq ⊗ A)n Vc(X).
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(2) We prove Vc(YA) = AH n Vc(Y). Let A = [a1, a2, · · · , an], ai(i = 1, 2, · · · , n)
represents the ith column of matrix A, Y = [y1, y2, · · · , ym], yj(j = 1, 2, · · · , m) represents
the jth column of matrix Y, then

Vc(YA) = Vc(Ya1, · · · , Yan) =

Ya1
...

Yan

,

by the conjugate properties of quaternions, we have

Yai =y1a1i + y2a2i + · · ·+ ymami

=a1i y1 + a2i y2 + · · ·+ ami ym

=[a1i Ip, · · · , ami Ip]Vc(Y).

So

Vc(YA) =


a11 Ip a21 Ip · · · am1 Ip
a12 Ip a22 Ip · · · am2 Ip

...
...

. . .
...

a1n Ip a2n Ip · · · amn Ip

Vc(Y)

= (AH ⊗ Ip)n Vc(Y) = AH n Vc(Y).

By the properties of the swap matrix and Vc(YA) = AH n Vc(Y), we obtain

Vr(YA) = W[n,p] n Vc(YA) = W[n,p] n AH n Vc(Y)

= W[n,p] n AH nW[p,m] n Vr(Y)

= (Ip ⊗ AH)n Vr(Y).

3.2. L-Representation of Quaternion Matrices

Our main work in this section is to study the matrix representation of quaternion
matrices by using the structure matrix of the multiplication of quaternion.

Definition 7. [1] Let Vi (i = 1, 2, · · · , k) be ni-dimensional vector spaces with ei
1, · · · , ei

ni
as the

fixed bases of Vi, and φ : V1 n · · ·n Vk → V0 be a multilinear mapping. Denote

φ(e1
i1 , · · · , ek

ik ) =
n0

∑
i0=1

µi0
i1,i2,...,ik

en0
i0

, ij = 1, · · · , nj, j = 1, · · · , k.

Then the matrix

M1
φ =


µ1

11···1 · · · µ1
11···nk

· · · µ1
n1n2···nk−11 · · · µ1

n1n2···nk

µ2
11···1 · · · µ2

11···nk
· · · µ2

n1n2···nk−11 · · · µ2
n1n2···nk

...
...

...
...

µn0
11···1 · · · µn0

11···nk
· · · µn0

n1n2···nk−11 · · · µn0
n1n2···nk
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is defined as the right structure matrix of φ. The matrix

M2
φ =


µ1

11···1 · · · µ1
n11···1 · · · µ1

1n2···nk−1nk
· · · µ1

n1n2···nk

µ2
11···1 · · · µ2

n11···1 · · · µ2
1n2···nk−1nk

· · · µ2
n1n2···nk

...
...

...
...

µn0
11···1 · · · µn0

n11···1 · · · µn0
1n2···nk−1nk

· · · µn0
n1n2···nk


is defined as the left structure matrix of φ. The left and right structure matrices are collectively
called structure matrices.

Remark 1. For a multi-dimensional data, we can sort it by certain indices. The left structure
matrix and right structure matrix given in Definition 7 are sorted according to different indexes.

Example 3. For x = x0 + x1i + x2j + x3k, y = y0 + y1i + y2j + y3k ∈ Q, then fix an ordered
basis {1, i, j, k}, the basis is normalized to

1 ∼ δ1
4 , i ∼ δ2

4 , j ∼ δ3
4 , k ∼ δ4

4 .

Each quaternion can be represented as a column vector:

x = x0 + x1i + x2j + x3k ∼ (x0, x1, x2, x3)
T = xr.

Then the right structure matrix of the multiplication of quaternions can be obtained as

M1
Q =


1 0 0 0 0 −1 0 0 0 0 −1 0 0 0 0 −1
0 1 0 0 1 0 0 0 0 0 0 1 0 0 −1 0
0 0 1 0 0 0 0 −1 1 0 0 0 0 1 0 0
0 0 0 1 0 0 1 0 0 −1 0 0 1 0 0 0

.

In addition, the left structure matrix of the multiplication of quaternions can be obtained as

M2
Q =


1 0 0 0 0 −1 0 0 0 0 −1 0 0 0 0 −1
0 1 0 0 1 0 0 0 0 0 0 −1 0 0 1 0
0 0 1 0 0 0 0 1 1 0 0 0 0 −1 0 0
0 0 0 1 0 0 −1 0 0 1 0 0 1 0 0 0

.

And we have
(xy)r = M1

Q n xr n yr = M2
Q n yr n xr.

In the case of different basis standardization, the structure matrix of the multiplica-
tion of quaternion is also diverse. We systematically define the matrix representation of
quaternion matrices by using the structure matrix of the multiplication of quaternion and
semi-tensor product of quaternion matrices.

Definition 8. Suppose X = X0 + X1i + X2j + X3k ∈ Qm×n be a quaternion matrix, where
Xt ∈ Rm×n(t = 0, 1, 2, 3), denote X̂ =

[
±XT

0 ±XT
1 ±XT

2 ±XT
3
]T. Suppose Φ is a mapping

such that Φ : X 7→ Φ(X) ∈ R4m×4n, Φ(X) can be represented as

Φ(X) = MQ n (I4 ⊗ X̂),

Φ(X) is called the matrix representation of quaternion matrix X. Furthermore, the first column of
Φ(X) is defined as

Φc(X) = Φ(X)n δ1
4 .
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Remark 2. It can be seen from the definition that Φ(X) and Φc(X) are determined by X̂ and MQ,
that is, when X̂ and MQ are determined, Φ(X) and Φc(X) are also unique and certain.

Example 4. Let X = X0 + X1i + X2j + X3k ∈ Qn×n, by M1
Q defined in Example 3, the matrix

representation of quaternion matrix X can be expressed as

Φ1(X) = M1
Q n

I4 ⊗


X0
X1
X2
X3


 =


X0 −X1 −X2 −X3
X1 X0 X3 −X2
X2 −X3 X0 X1
X3 X2 −X1 X0

.

If we select MQ = M2
Q, then

Φ2(X) = M2
Q n

I4 ⊗


X0
X1
X2
X3


 =


X0 −X1 −X2 −X3
X1 X0 −X3 X2
X2 X3 X0 −X1
X3 −X2 X1 X0

.

The matrix representation method in reference [47] is the matrix representation Φ2(X)
in Example 4. Furthermore, the matrix representation of quaternion matrices plays an
important role in many aspects of quaternion research.

Definition 9. Suppose X ∈ Qm×n, Y ∈ Qn×p, Φ(X) is called L-representation of quaternion
matrices if and only if Φ(X) satisfies the following equations,

(1)Φ(XY) = Φ(X)Φ(Y),

(2)Φc(XY) = Φ(X)Φc(Y).

It is easy to verify that the two matrix representations given in Example 4, Φ1(X) does
not satisfy the two conditions of L-representation, but the matrix representation given by
Φ2(X) does. It is clear that Definition 9 has the following equivalent form.

Definition 10. Suppose X ∈ Qm×n, Y ∈ Qn×p, Φ(X) is called L-representation of quaternion
matrices if and only if Φ(X) satisfies the following equations,

(1)(MQ ⊗ Im)(I4 ⊗ X̂Y) = (MQ ⊗ Im)(MQ ⊗ X̂)(I4 ⊗ Ŷ),

(2)(MQ ⊗ Im)(δ
1
4 ⊗ X̂Y) = (MQ ⊗ Im)(MQ ⊗ X̂)(δ1

4 ⊗ Ŷ).

4. GH-Representation of Quaternion Matrices

In this section, we will first introduce the definition of H-representation, and then give
examples of H-representation of special matrices.

Definition 11 ([42]). Consider a q-dimensional real matrix subspace X ⊂ Rn×n over the field R.
Assume that e1, e2, · · · , eq form the basis ofX, and define H = [Vc(e1), Vc(e2), · · · , Vc(eq)].
For each X ∈ X, if we express Ψ(X) = Vc(X) in the form of

Ψ(X) = HX̃,

with a q × 1 vector X̃ = (x1, x2, · · · , xq)T and X = ∑
q
i=1 xiei, then HX̃ is called an

H-representation of Ψ(X), and H is called an H-representation matrix of Ψ(X).

From the definition of quaternion (anti)-centrosymmetric matrices, we can know that
quaternion (anti)-centrosymmetric matrices is closely related to real (anti)-centrosymmetric
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matrices. In the following, we take real (anti)-centrosymmetric matrices as examples to
give their H-representation.

Example 5. Let X = S3×3, X = (xij) ∈ X, and then dim(X) = 5. If we select a basis of X as

e1 =

1 0 0
0 0 0
0 0 1

, e2 =

0 0 0
1 0 1
0 0 0

, e3 =

0 0 1
0 0 0
1 0 0

, e4 =

0 1 0
0 0 0
0 1 0

, e5 =

0 0 0
0 1 0
0 0 0

.

It is easy to compute

Ψ(X) = Vc(X) = (x11, x21, x31, x12, x22, x12, x31, x21, x11)
T,

and
X̃ = (x11, x21, x31, x12, x22)

T,

H =


1 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 1 0
0 0 1 0 0 0 1 0 0
0 0 0 1 0 1 0 0 0
0 0 0 0 1 0 0 0 0


T

.

Example 6. Let X = AS3×3, X = (xij) ∈ X, and then dim(X) = 4. If we select a basis of X as

e1 =

1 0 0
0 0 0
0 0 −1

, e2 =

0 0 0
1 0 −1
0 0 0

, e3 =

0 0 −1
0 0 0
1 0 0

, e4 =

0 1 0
0 0 0
0 −1 0

.

It is easy to compute

Ψ(X) = Vc(X) = (x11, x21, x31, x12, 0, −x12, −x31, −x21, −x11)
T,

and
X̃ = (x11, x21, x31, x12)

T,

H =


1 0 0 0 0 0 0 0 −1
0 1 0 0 0 0 0 −1 0
0 0 1 0 0 0 −1 0 0
0 0 0 1 0 −1 0 0 0


T

.

Then, we select the standard basis for centrosymmetric and anti-centrosymmetric
matrices, and give the H-representation matrices, respectively.

1. If X = Sn×n, we select a standard basis as

{E1, E2, · · · , Eα},

where Ei = {(epq)|el(k+1) = e(n+1−l)(n−k) = 1, i = kn + l(0 ≤ k ≤ l ≤ n; i = 1, 2, · · · , α},

α =

{
n2+1

2 (i f n is odd)
n2

2 (i f n is even)
. Based on above standard basis, for any X ∈ X, we have

X̃ = (x1, x2, · · · , xα)
T

and
Hs = [Vc(E1), Vc(E2), · · · , Vc(Eα)] ∈ Rn2×α.

2. If X = ASn×n, we select a standard basis as

{F1, F2, · · · , Fβ},
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where Fi = {( fpq)| fl(k+1) = − f(n+1−l)(n−k) = 1, i = kn + l(0 ≤ k ≤ l ≤ n; i = 1, 2, · · · , β},

β =

{
n2−1

2 (i f n is odd)
n2

2 (i f n is even)
. Based on above standard basis, for any X ∈ X, we have

X̃ = (x1, x2, · · · , xβ)
T

and
Ha = [Vc(F1), Vc(F2), · · · , Vc(Fβ)] ∈ Rn2×β.

Note that Ψ(X) is a column vector formed by all elements of matrix X. For the sake
of clarity, we denote the H-representation matrix corresponding to X = Sn×n by Hs, the
H-representation matrix corresponding to X = ASn×n by Ha.

Theorem 4. For an n2 × 1 vector α1, if Ψ−1(α1) ∈ Sn×n, then there exists an α× 1 vector β1,
such that α1 = Hsβ1. For an n2 × 1 vector α2, if Ψ−1(α2) ∈ ASn×n, then there exists an β× 1
vector β2, such that α2 = Haβ2.

H-representation prompt us to define GH-representation on quaternion matrices.

Definition 12. Consider a quaternion matrix subspace X ⊂ Qn×n, for each X = X0 + X1i +
X2j + X3k ∈ X, let S = {X0, X1, X2, X3}. A permutation σ on S is a one-to-one mapping from
S to S, denote X =

[
±σ(X0) ±σ(X1) ±σ(X2) ±σ(X3)

]
. If we express Ψ(X) = Vc(X ) in

the form of
Ψ(X) = HGX̃,

where HG =


Hσ(X0)

Hσ(X1)

Hσ(X2)

Hσ(X3)

, X̃ = Ṽc(X ) represents a permutation of

independent elements for each part of Vc(X ). Then HGX̃ is called a GH-representation of Ψ(X),
and HG is called a GH-representation matrix of Ψ(X).

5. The Solutions of Problem 1 and Problem 2

In order to obtain the solution of the quaternion matrix Equation (1), we begin with
the following Lemmas.

Lemma 1 ([48]). The least squares solution of the linear system of equations Ax = b, with
A ∈ Rm×n and b ∈ Rm can be represented as

x = A†b + (I − A† A)y,

where y ∈ Rn is an arbitrary vector. The minimal norm least squares solution of the linear system
of equations Ax = b is A†b.

Lemma 2 ([48]). The linear system of equations Ax = b, with A ∈ Rm×n and b ∈ Rm, has a
solution x ∈ Rn if and only if

AA†b = b.

In case that it has the general solution

x = A†b + (I − A† A)y,

where y ∈ Rn is an arbitrary vector. The minimal norm solution of the linear system of equations
Ax = b is A†b.
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We select X̂ =
[
XT

0 XT
1 XT

2 XT
3
]T for X = X0 + X1i + X2j + X3k ∈ Qn×n as

an example in the following solving process, in this case, the matrix representation we
obtain is the form of Φ2(X) in Example 4. Based on our earlier discussion, we now
turn our attention to Problem 1. We obtain the necessary and sufficient condition of the
existence of centrosymmetric solutions of quaternion matrix Equation (1), we obtain the
following Theorem.

Theorem 5. Suppose Ai ∈ Qm×n, Bi ∈ Qn×p, (i = 1, · · · , k), C ∈ Qm×p, then the set MS of
Problem 1 can be represented as

MS =
{

X ∈ Sn×n|Φc(Vc(X)) = H
′
sR†

1Φc(Vc(C)) + H
′
s(I4α − R†

1R1)y
}

, (2)

where y is an arbitrary vector with suitable dimension. Then, the minimal norm least squares
centrosymmetric solution XS of quaternion matrix Equation (1) satisfies

Φc(Vc(XS)) = H
′
sR†

1Φc(Vc(C)), (3)

where H
′
s =


Hs

Hs
Hs

Hs


4n2×4α

, Kn =


In 0 0 0
0 −In 0 0
0 0 −In 0
0 0 0 −In

, R1 = ∑k
i=1 Φ(Ip ⊗

Ai)KnpΦ(BH
i ⊗ In)Kn2 H

′
s.

Proof. For X = X0 + X1i + X2j + X3k ∈ Sn×n, from Theorem 3, Theorem 4 and the
definition of GH-representation, we can obtain∥∥∥∥∥ k

∑
i=1

AiXBi − C

∥∥∥∥∥ =

∥∥∥∥∥ k

∑
i=1

Vc(AiXBi)−Vc(C)

∥∥∥∥∥
=

∥∥∥∥∥ k

∑
i=1

(Ip ⊗ Ai)n Vc(XBi)−Vc(C)

∥∥∥∥∥
=

∥∥∥∥∥ k

∑
i=1

(Ip ⊗ Ai)n (BH
i ⊗ In)n Vc(X)−Vc(C)

∥∥∥∥∥
=

∥∥∥∥∥ k

∑
i=1

Φc((Ip ⊗ Ai)(BH
i ⊗ In)Vc(X))−Φc(Vc(C))

∥∥∥∥∥
=

∥∥∥∥∥ k

∑
i=1

Φ(Ip ⊗ Ai)KnpΦ(BH
i ⊗ In)Kn2 Φc(Vc(X))−Φc(Vc(C))

∥∥∥∥∥
=

∥∥∥∥∥∥∥∥∥
k

∑
i=1

Φ(Ip ⊗ Ai)KnpΦ(BH
i ⊗ In)Kn2 H

′
s


X̃0

X̃1
X̃2

X̃3

−Φc(Vc(C))

∥∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥∥R1


X̃0

X̃1
X̃2

X̃3

−Φc(Vc(C))

∥∥∥∥∥∥∥∥∥.
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Thus

∥∥∥∥∥ k

∑
i=1

AiXBi − C

∥∥∥∥∥ = min⇐⇒

∥∥∥∥∥∥∥∥∥R1


X̃0

X̃1
X̃2

X̃3

−Φc(Vc(C))

∥∥∥∥∥∥∥∥∥ = min .

For the real matrix equation

R1


X̃0

X̃1
X̃2

X̃3

 = Φc(Vc(C)).

Using Lemma 1, its least squares solution can be represented as
X̃0

X̃1
X̃2

X̃3

 = R†
1Φc(Vc(C)) + (I4α − R†

1R1)y, ∀y ∈ R4α.

Then we have

Φc(Vc(X)) = H
′
s


X̃0

X̃1
X̃2

X̃3

 = H
′
sR†

1Φc(Vc(C)) + H
′
s(I4α − R†

1R1)y, ∀y ∈ R4α.

And then, Equation (3) can be obtained.

Theorem 6. Suppose Ai ∈ Qm×n, Bi ∈ Qn×p, (i = 1, · · · , k), C ∈ Qm×p. Hence quaternion
matrix Equation (1) has a solution X ∈ Sn×n if and only if

(R1R†
1 − I4mp)Φc(Vc(C)) = 0, (4)

where R1 is denoted in Theorem 5. Moreover, if (4) holds, the centrosymmetric solution set of
quaternion matrix Equation (1) can be represented as

MS =
{

X ∈ Sn×n|Φc(Vc(X)) = H
′
sR†

1Φc(Vc(C)) + H
′
s(I4α − R†

1R1)y
}

,

where y is an arbitrary vector suitable for dimension. Then, the minimal norm centrosymmetric
solution XS satisfies

Φc(Vc(XS)) = H
′
sR†

1Φc(Vc(C)). (5)

Proof. Quaternion matrix Equation (1) has a solution X ∈ Sn×n if and only if∥∥∥∥∥ k

∑
i=1

AiXBi − C

∥∥∥∥∥ = 0.

By means of Theorem 5 and the properties of the Moore–Penrose inverse, we obtain

∥∥∥∥∥ k

∑
i=1

AiXBi − C

∥∥∥∥∥ =

∥∥∥∥∥∥∥∥∥R1


X̃0

X̃1
X̃2

X̃3

−Φc(Vc(C))

∥∥∥∥∥∥∥∥∥
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=

∥∥∥∥∥∥∥∥∥R1R†
1R1


X̃0

X̃1
X̃2

X̃3

−Φc(Vc(C))

∥∥∥∥∥∥∥∥∥
=
∥∥∥R1R†

1Φc(Vc(C))−Φc(Vc(C))
∥∥∥

=
∥∥∥(R1R†

1 − I4mp)Φc(Vc(C))
∥∥∥.

Therefore, we have∥∥∥∥∥ k

∑
i=1

AiXBi − C

∥∥∥∥∥ = 0⇐⇒
∥∥∥(R1R†

1 − I4mp)Φc(Vc(C))
∥∥∥ = 0

⇐⇒ (R1R†
1 − I4mp)Φc(Vc(C)) = 0.

In case that quaternion matrix Equation (1) is compatible, its solution X ∈ Sn×n

satisfies

R1


X̃0

X̃1
X̃2

X̃3

 = Φc(Vc(C)).

Moreover, by Lemma 2, we can obtain the centrosymmetric solution X satisfies
X̃0

X̃1
X̃2

X̃3

 = R†
1Φc(Vc(C)) + (I4α − R†

1R1)y, ∀y ∈ R4α.

Then we have

Φc(Vc(X)) = H
′
sR†

1Φc(Vc(C)) + H
′
s(I4α − R†

1R1)y, ∀y ∈ R4α.

And the minimal norm centrosymmetric solution XS satisfies

Φc(Vc(XS)) = H
′
sR†

1Φc(Vc(C)).

For Problem 2, we can also obtain the necessary and sufficient condition for the exis-
tence of anti-centrosymmetric solutions of quaternion matrix Equation (1) through vector
representation of quaternion matrices, L-representation and GH-representation method.
Similar to the analysis procedure of Problem 1, we obtain the following conclusions.

Theorem 7. Suppose Ai ∈ Qm×n, Bi ∈ Qn×p, (i = 1, · · · , k), C ∈ Qm×p, then the set MA of
Problem 2 can be represented as

MA =
{

X ∈ ASn×n|Φc(Vc(X)) = H
′
aR†

2Φc(Vc(C)) + H
′
a(I4β − R†

2R2)y
}

, (6)

where ∀y ∈ R4β. Then, the minimal norm least squares anti-centrosymmetric solution XA of
quaternion matrix Equation (1) satisfies

Φc(Vc(XA)) = H
′
aR†

2Φc(Vc(C)), (7)
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where H
′
a =


Ha

Ha
Ha

Ha


4n2×4β

, Kn =


In 0 0 0
0 −In 0 0
0 0 −In 0
0 0 0 −In

, R2 = ∑k
i=1 Φ(Ip ⊗

Ai)KnpΦ(BH
i ⊗ In)Kn2 H

′
a.

Theorem 8. Suppose Ai ∈ Qm×n, Bi ∈ Qn×p, (i = 1, · · · , k), C ∈ Qm×p. Hence quaternion
matrix Equation (1) has a solution X ∈ ASn×n if and only if

(R2R†
2 − I4mp)Φc(Vc(C)) = 0, (8)

where R2 is denoted in Theorem 7. Moreover, if (8) holds, the anti-centrosymmetric solution set of
quaternion matrix Equation (1) can be represented as

MA =
{

X ∈ ASn×n|Φc(Vc(X)) = H
′
aR†

2Φc(Vc(C)) + H
′
a(I4β − R†

2R2)y, ∀y ∈ R4β
}

.

And then, the minimal norm anti-centrosymmetric solution XA satisfies

Φc(Vc(XA)) = H
′
aR†

2Φc(Vc(C)). (9)

6. Algorithms and Numerical Examples

Numerical experiments are used to verify the effectiveness of the above algorithms.

Example 7. Suppose m = n = p, Ai, Bi ∈ Qn×n be generated randomly for n = 5K, K = 1 : 11.
Randomly generate centrosymmetric matrix XS or anti-centrosymmetric matrix XA, respectively.
Then for the left side of quaternion matrix Equation (1), replace X with XS or XA, let k = 2,
calculate C = A1XSB1 + A2XSB2 or C = A1XAB1 + A2XAB2. For the quaternion matrix
Equation (1) with Ai, Bi and C above, its computational solutions can be obtained by using
Algorithms 1 and 2 and denoted as X̆S, X̆A, respectively. Denote ε1 = log10‖Φc(XS)−Φc(X̆S)‖,
ε2 = log10‖Φc(XA)−Φc(X̆A)‖. As the dimension changes, εt (t = 1, 2) is shown in Figure 1.

It can be seen from Figure 1 that the order of magnitude of error between the exact solution
and the numerical solution in Problem 1 and 2 increases with the increase in dimension. However,
for Problem 1, the order of magnitude of error of the centrosymmetric solution is always less than
−11; for Problem 2, the order of magnitude of error of the anti-centrosymmetric solution is always
less than −12, which indicates that the order of magnitude of error between the numerical solution
and the exact solution is very small, that is, the algorithm in this paper is effective.

1 2 3 4 5 6 7 8 9 10 11
−14

−13.5

−13

−12.5

−12

−11.5

−11

−10.5

−10

K

e
rr

o
r

 

 

Problem 1

Problem 2

Figure 1. Errors in different dimensions.
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Algorithm 1 Calculate the minimal norm centrosymmetric solution of quaternion matrix
Equation (1).

Input: Quaternion matrix Ai ∈ Qm×n, Bi ∈ Qn×p, (i = 1, 2, · · · , k), C ∈ Qm×p;
Output: Output the minimal norm centrosymmetric solution X̆S of quaternion matrix

Equation (1) according to (5);
1: Compute Φc(Vc(C));
2: Input Hs, Knp, Kn2 , Φ(Ip ⊗ Ai), Φ(BH

i ⊗ In);
3: Compute H

′
s, R1 = ∑k

i=1 Φ(Ip ⊗ Ai)KnpΦ(BH
i ⊗ In)Kn2 H

′
s;

4: if (4) hold then
5: Calculate the minimal norm solution of quaternion matrix equation according to (5);
6: end if

Algorithm 2 Calculate the minimal norm anti-centrosymmetric solution of quaternion
matrix Equation (1).

Input: Quaternion matrix Ai ∈ Qm×n, Bi ∈ Qn×p, (i = 1, 2, · · · , k), C ∈ Qm×p;
Output: Output the minimal norm centrosymmetric solution X̆A of quaternion matrix

Equation (1) according to (9);
1: Compute Φc(Vc(C));
2: Input Ha, Knp, Kn2 , Φ(Ip ⊗ Ai), Φ(BH

i ⊗ In);
3: Compute H

′
a, R2 = ∑k

i=1 Φ(Ip ⊗ Ai)KnpΦ(BH
i ⊗ In)Kn2 H

′
a;

4: if (8) hold then
5: Calculate the minimal norm solution of quaternion matrix equation according to (9);
6: end if

Next, taking the centrosymmetry solution as an example, we compare the method of
solving the special solution of quaternion matrix equation in this paper with the method of
in references [43,44].

The method in reference [43] used the real representation of quaternion matrices
to process quaternion matrix equation firstly, the transformation from quaternion matrix
equation to real matrix equation is realized, then the straighten operator is used to transform
the real matrix equation into real vector matrix equation.

Remark 3. The symbols appearing in Algorithm 3 follow the symbol representation in reference [43],
J and K are defined in reference [43]. Hs is the H-representation matrix of the centrosymmetric
matrix in this paper, and H

′
s is also defined in Theorem 4.

Algorithm 3 Calculate the minimal norm centrosymmetric solution of quaternion matrix
Equation (1) according to the method of reference [43].

Input: Quaternion matrix Ai ∈ Qm×n, Bi ∈ Qn×p, (i = 1, 2, · · · , k), C ∈ Qm×p;
Output: Output the minimal norm centrosymmetric solution X̆s of quaternion matrix

Equation (1);
1: Compute vec(

−→
Cc);

2: Input Hs, J, K;
3: Compute H

′
s, R3 = ∑k

i=1(
−→
Bic

T ⊗−→Ai)JKH
′
s;

4: Calculate the minimal norm solution of quaternion matrix equation according to X̆s =

H
′
sR†

3vec(
−→
Cc).

The real vector representation method in reference [44] is to represent a quaternion as
a 4× 1 dimension vector, and then establish the relationship between quaternion matrix
real vector representation operations through semi-tensor product of matrices.
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Remark 4. The symbols appearing in Algorithm 4 follow the symbol representation in reference [44],

and Jn =



[
I8k2

V2k2 ⊗ I4

]
(i f n is even)[

I4(2k2+2k+1)
V′2k2+2k+1 ⊗ I4

]
(i f n is odd)

, where Vn =


0 . . . 0 0 1
0 . . . 0 1 0
...

...
...

...
1 . . . 0 0 0


n×n

and V′n =


0 . . . 0 1 0
0 . . . 1 0 0
...

...
...

...
1 . . . 0 0 0


(n−1)×n

.

Algorithm 4 Calculate the minimal norm centrosymmetric solution of quaternion matrix
Equation (1) according to the method of reference [44].

Input: Quaternion matrix Ai ∈ Qm×n, Bi ∈ Qn×p, (i = 1, 2, · · · , k), C ∈ Qm×p;
Output: Output the minimal norm centrosymmetric solution X̆s of quaternion matrix

Equation (1);
1: Compute

−→
Ai

r,
−→
Bi

c,
−→
C c;

2: Compute G, G′, Jn;
3: Compute R4 = ∑k

i=1 G n G′ n
−→
Ai

r nW[4np,4n2] n
−→
Bi

c n Jn;
4: Calculate the minimal norm solution of quaternion matrix equation according to X̆s =

JnR†
4
−→
C c.

Example 8. Suppose m = n = p, Ai, Bi ∈ Qn×n be generated randomly for n = 4K, K = 1 : 10.
Randomly generate centrosymmetric matrix XS. Then for the left side of quaternion matrix Equa-
tion (1), let k = 1, calculate C = A1XSB1. For the quaternion matrix Equation (1) with Ai, Bi
and C above, its computational solutions can be obtained by using Algorithms 1, 3 and 4. As the
dimension changes, time consumed by the algorithms is shown in Figure 2.

Figure 2. Time comparison results.

For the method in reference [44], because the matrix dimension is too large, we only choose
K = 1 : 4. If the form of the solution obtained by the algorithm in reference [43] wants to be
consistent with the form of the solution obtained by the algorithm in this paper, it needs to be
transformed with the help of a large matrix. The method of expressing quaternion as real vector in
reference [44] makes the calculation process of quaternion matrix equation have a large dimension,
which is not conducive to the improvement of calculation efficiency. As can be seen from Figure 2,
the algorithm in this paper takes less time than the algorithm in references [43,44].

7. Application in Color Digital Image Restoration

We know that a color digital image consists of three primary colors: red, green
and blue, and these three primary colors can correspond to the three imaginary parts
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of quaternion, respectively. That is, a color digital image can be represented by a pure
imaginary quaternion matrix. One of the most basic applications in color digital image
is color digital image restoration, and the process of color digital image restoration is the
solution process of the minimal norm least squares solution of quaternion matrix equation.
For an n× n pixel observation image g = gri + ggj + gbk, we know its blurring phenomena
K, where K is a real matrix, then the color digital image restoration model is established as

g = K f + N.

But in general, the noise N is unknown. In this section, we will work with the centrosym-
metric color digital image restoration model. The centrosymmetric color image restoration
problem is transformed into the least squares pure imaginary centrosymmetric solution
problem of quaternion matrix equation K f = g.

Example 9. Given two ideal centrosymmetric color digital image (see Figures 3a and 4a),
f = ( fr, fg, fb) is the image matrix, f can be represented as f = fri + fgj + fbk. By using
LEN = 15; THETA = 30; PSF = f special(′motion′, LEN, THETA) disturb the image fg, and
obtain the disturb image gg. Obviously, K = gg f †

g is a singular matrix. By using the matrix K,
we can obtain the disturb image g = (gr, gg, gb) (see Figures 3b and 4b). The minimal norm least
squares pure imaginary centrosymmetric solution

−→
F can be obtained by Algorithm 5. Through

the ”reshape” command of MATLAB, we obtain the corresponding color digital restored image
F = (Fr, Fg, Fb) (see Figures 3c and 4c).

Finally, we give the mean-square error of each channel which is defined as

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)− K(i, j)]2.

The mean-square error of each channel is represented by εr, εg, εb, respectively, and the results are
shown in Table 1.

(a) Original Image (b) Disturbed Image (c) Restored Image

Figure 3. Image 1: 100× 100 Pixel Centrosymmetric Color Digital .

(a) Original Image (b) Disturbed Image (c) Restored Image

Figure 4. Image 2: 110× 110 Pixel Centrosymmetric Color Digital .
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Algorithm 5 Calculate the minimal norm least squares pure imaginary centrosymmetric
solution of color digital image model K f = g.

Output: Output the minimal norm least squares pure imaginary centrosymmetric solution
of quaternion matrix equation K f = g;

1: Compute K′ =

In ⊗ K
In ⊗ K

In ⊗ K

, HS =

Hs
Hs

Hs

;

2: Compute −→g =

Vc(gr)
Vc(gg)
Vc(gb)

;

3: Calculate the minimal norm least squares pure imaginary centrosymmetric solution of
quaternion matrix equation K f = g according to

−→
f = HS(K′HS)

†−→g .

Table 1. Mean-square error (MSE).

εr εg εb

Figure 3 4.9586× 10−18 2.4722× 10−19 1.9076× 10−18

Figure 4 1.4071× 10−20 4.0846× 10−22 1.2557× 10−21

8. Conclusions

The new conclusions of vector representation and L-representation of quaternion
matrices makes semi-tensor product of quaternion matrices have a new application in
solving quaternion matrix equation. Starting from these new conclusions of semi-tensor
product of quaternion matrices, combined L-representation with H-representation method,
the special solution of quaternion matrix equation ∑k

i=1 AiXBi = C are solved. Furthermore,
numerical examples show that the method is effective. Through a time comparison, it is
found that the algorithm in this paper is relatively efficient compared with the algorithm
in references [43,44]. The application of centrosymmetric color digital image restoration is
also considered.
Notes:

• The images used are from the MATLAB image processing toolbox or USC-SIPI image
database image library of the University of Southern California (http://sipi.usc.edu/
database/, accessed on 1 June 2022).

• All computations are performed on an Intel(R) core(TM) i9-10940U @3.30 GHz/64 GB
computer using MATLAB R2019b software.
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