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Abstract: Although the concept of symmetry is widely used in many fields, it is almost not discussed
in finance. This concept appears to be relevant in relation, for example, to mathematical models
that can predict stock prices to contribute to the decision-making process. This work considers the
stock price of European options with a new class of the non-constant delay model. The stochastic
pantograph differential equation (SPDE) with a variable delay is provided in order to overcome
the weaknesses of using stochastic models with constant delay. The proposed model is constructed
to improve the evaluation process and prediction accuracy for stock prices. The feasibility of the
proposed model is introduced under relatively weak conditions imposed on its volatility function.
Furthermore, the sensitivity of time lag is discussed. The robust stochastic theta Milstein (STM)
method is combined with the Monte Carlo simulation to compute asset prices within the proposed
model. In addition, we prove that the numerical solution can preserve the non-negativity of the
solution of the model. Numerical experiments using real financial data indicate that there is an
increasing possibility of prediction accuracy for the proposed model with a variable delay compared
to non-linear models with constant delay and the classical Black and Scholes model.

Keywords: stochastic pantograph differential equations; stock price modeling; numerical techniques;
positivity; prediction

MSC: 60H10; 65C30; 60H35; 91B70

1. Introduction

Stochastic Differential Equation (SDE) has been used for modeling the asset price for
different types of option price valuations. The Black–Scholes (BS) formula is considered
the most important model in terms of application in the study of continuous-time financial
models based on a SDE [1]. The motivation of the BS model of normality of the returns
distribution and constant volatility was criticized in [2] because empirical studies provided
that volatility actually depends on time in a way that is not predictable. That observation
led to the construction of dynamic models based on non-constant volatility in order to
improve the understanding of the behavior of natural processes.

Recently, the Stochastic Functional Differential Equation (SFDE) has received increased
interest in many simulated dynamical systems based on some kind of past dependence.
Hobson and Rogers [3] provided a new non-constant volatility model with past dependency
in finance. Arriojas et al. [4] assumed that the stock price satisfies an SFDE with fixed or
variable delays. For Mao and Sabanis [5], it seems natural to consider this approach where
volatility can be regarded as a function of past events. In addition, the pricing of European
options on two underlying assets with delays is discussed in [6]. For reasons of notational
simplicity and elegance, previous work assumed that the stock price follows a special form
of SFDE; a Stochastic Delay Differential Equation (SDDE) with a constant delay time. The
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motivation for introducing SDDE is the estimation of the volatility function g(V(t− τ)) based on
a constant delay time t− τ. However, Liu [7] provided the weaknesses of the SDDE with a constant
delay time as: (1) The memory (past event) cannot be considered in t < τ; (2) The constant delay τ
is only suitable for short period memory (bounded memory).

The main question of this work is, is there another form of SFDE support that uses the
memory effect (past dependence) as a real-time variable function that can overcome the weaknesses
of SDDE in addition to increasing the prediction accuracy?

The aim of this paper is to consider another kind of SFDE with avariable delay [8–10].
The Stochastic Pantograph Differential Equation (SPDE) for modeling stock prices will be
obeyed. SPDE is a special type of past-dependence equation with many special properties
such as unbounded memory and a variable delay time (t − qt), which is namely the
pantograph delay and can be written as (qt). SDDE is the motivation for introducing a new
class of stock price-SPDE (SP-SPDE) models with non-constant volatility; it is the estimation of
volatility function based on the pantograph delay in order to overcome the weaknesses of SDDE and
increase the prediction accuracy. The proposed SP-SPDE model that has a unique non-negative
solution under relatively weak conditions imposed on its volatility function will be shown (i.e., the
SP-SPDE model is feasible for evaluating the underlying stock price).

Due to using financial models based on the past dependence, it can be observed that
there is a time lag, q, in the SP-SPDE model. In this work, it is proven that the small changes in
the time lag q of the SP-SPDE model have an analogously small impact on the values of the stock
price. The robustness of the delay effect on stock price valuation is shown (i.e., the variable delay
effect is not too sensitive to time lag changes).

Preserving non-negativity approximate solutions for stochastic models that meet
positivity solutions has received increased interest in recent times for use in financial
mathematics. Although Kahl [11] shows the different ways to avert the numerical negativity,
the balanced implicit method (BIM) method and the Milstein method have proven that the
numerical method based on the Euler scheme is a finite time for all SDE (i.e., the numerical
methods do not preserve positivity of the solution of SDEs), recently published research
still considers numerical methods based on the Euler scheme in order to approximate the
paths of stochastic models with respect to delay dependence in financial mathematics [5,12].
Based on Kahl’s work, there are few works in the literature discussing this issue; for
example, the fundamental analysis of Milstein-type methods with respect to non-negativity
has been discussed for a family of financial models [13–19]. Moreover, classes of the BIM
method were provided in [20–22]. Here, note that Kahl said, “the Milstein method has two
advantages in comparison with the BIM. On the one hand, the convergence rate is twice as
high as in the BIM and, on the other hand, positivity can be achieved without using control
functions”. In addition, there are are few studies discussing the Milstein-type schemes for
SPDE without considering the issue of the positivity of numerical solutions [23]. Therefore,
this paper will consider the stochastic theta Milstein (STM) method to numerically solve the SP-
SPDE model using real data. This paper will prove that the STM scheme can preserve the positivity
of the solution for a family of financial models based on SPDE, using real data. The comparison
will be performed for the proposed non-linear variable-delayed SP-SPDE model with a constant
delay SDDE model in [5] and the classical Black–Scholes model [1]. To the best of our knowledge,
such a comparison between variable and constant delay models has not yet been performed in the
financial literature.

The paper is organized as follows. In Section 2, the non-linear variable delay SP-SPDE
model for stock prices is provided. Furthermore, the paper shows how SPDE can overcome
the weaknesses of SDDE related to financial quantity. In Section 3, the paper proves how
the proposed model is feasible for evaluating the underlying stock price. The time-lag
sensitivity of the proposed model is discussed in Section 4. Section 5 proposes the numerical
STM method for the SP-SPDE model, and the non-negativity of the solution is discussed.
Numerical experiments for the variable delay model, constant delay model and classical
Black–Scholes model using real data for some firms in order to show the prediction accuracy
of the proposed model is shown in Section 6. The conclusion is provided in Section 8.
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2. Stock Price Model with a Variable Delay

A complete probability space is defined as (Ω,F , {Ft}t≥0, P) with a filtration {Ft}t≥0,
which satisfies the usual conditions, i.e., the filtration {Ft}t≥0 is right-continuous and each
{Ft}, t ≥ 0 contains all P-null sets. Let W(t), t ≥ 0 be Ft-adapted and independent of F0,
be a scalar Brownian motion defined on the above probability space. | · | is the Euclidean
norm in R. Let x0 be F0-measurable and E|x0|2 ≤ M < +∞. Moreover, R+ = [0,+∞) and
C(R+;R+) denote the space of all non-negative continuous functions defined on R+.

In the literature of financial mathematics, the Black–Scholes in [1] assumes that the
value of the stock price at time t ∈ [0, T], S(t) follows an SDE as follows

dS(t) = rS(t)d(t) + σS(t)dW(t), (1)

where S(0) is given, r > 0 is the risk-free interest rate, and σ is the constant volatility of the
stock return per unit of time with one-dimensional standard Brownian motion process W.

In order to improve the understanding of the behavior of natural processes and
overcome the disadvantages of the classic Black–Scholes model (1), such as the normality of
the returns distribution and constant volatility, the new dynamic model has been provided
based on considering non-constant volatility and past dependency on the current and
future states of the stock price, which follows an SDDE with a constant delay time in [4–6].
They assumed that a stock price S(t) follows an SDDE with constant delay time as

dS(t) = r(S(t− τ))S(t)d(t) + g(S(t− τ))S(t)dW(t), (2)

with initial data S(u) = ξ(u) on u ∈ [−τ, 0]. The positive constant τ represents the past
length while T is the maturity date. The motivation for introducing SDDE is the estimation
of the volatility function g(S(t− τ)) based on a constant delay time t− τ. However, Liu
[7] provided the weaknesses of choice of the SDDE with a constant delay time as; (1) The memory
(past event) cannot be considered in t < τ. (2) The constant delay τ is only suitable for short period
memory (bounded memory).

In the following, another form of a dynamic model based on the memory effect (past
dependence) as a real-time variable function that can overcome the weaknesses of SDDE in
addition to the possibility of increasing the prediction accuracy is provided. In general, a
memory effect (influence past event) can be given in terms of delay function h(t) such that
the value at the current time t depends on the knowledge of the past (delay) time t− h(t).
For simplicity, a routine way is to take a delay function h(t) = τ, τ > 0, which leads to a
constant delay time (t− τ) in the SDDE model (2). In order to overcome the weaknesses of
the constant delay, the delay function h(t) = δt with 0 < δ < 1 is chosen, hence the delay
time will be t− h(t)=(1− δ)t = qt, where q = 1− δ and q ∈ (0, 1). This treatment leads to a
variable delay (pantograph delay), which is the main motivation of SPDE. It seems natural
to consider an approach where volatility can be regarded as a function of the variable’s
past states S(qt). It is assumed that the stock price process S(t) at time t ∈ [0, T] can be
governed by the following SPDE, which will be called the SP-SPDE model in this work.

dS(t) = r(S(qt))S(t)d(t) + g(S(qt))S(t)dW(t), (3)

with initial values S(0) = S0 and q ∈ (0, 1). r > 0 is the risk-free interest rate, and W(t) is
the scalar Brownian motion. g : R→ R is the volatility function.

In the beginning, in order to explain how SPDE can overcome the weaknesses of SDDE
in terms of financial quantity, the following example is provided.

Example 1. Lin et al. [6] considered stock price values whose value depends on the stock price
and time using an SDDE (2). On application with real data of Aaron’s. Inc. (AAN.N) from 17
October 2005 to 27 January 2006 (i.e., about 100 days), they assume that T = τ = 50, the data
between [17 October 2005 to 7 December 2005] are used as memory data (i.e., [−τ, 0] ' [−50, 0]),
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while those between [7 December 2005 and 27 January 2006] are used as the future data (i.e.,
[0, T] ' [0, 50]) for the models to predict.

We can explain the deficiencies in the use of the SDDE model (2) as follows (see
Figure 1).

Figure 1. Description of the concept of constant delay τ.

1. The past event cannot be considered in the interval of the future (predictable) data
[0, T] [7 December 2005 to 27 January 2006] since the past event S(t− τ) ∈ [−τ, 0] (i.e.,
the memory (past event) cannot be considered in [0, T] or t < τ),

2. There is no empirical evidence to explain the correlation between the current stock
price at t and its past price at t− τ and how to determine the value of time lag τ (i.e.,
what is the correlation between the stock price today and its price 50 days ago when
considering τ = 50),

3. The data in the memory interval [−τ, 0] [17 October 2005 to 7 December 2005] must
be available because the value S(t− τ) ∈ [−τ, 0] is wanted for simulating the model
(i.e., the constant delay τ is only suitable for short period memory (bounded memory)
with a restriction of the need for historical data during the period [−τ, 0]).

In the following points, we can see the advantage of choosing a variable delay in SPDE
vs. the weaknesses of a constant delay in SDDE (See Figure 2).

Figure 2. Description of the concept of variable delay qt.

1. The past event can be considered in the interval of the future (predictable) data [0, T]
[7 December 2005 to 27 January 2006] since the past event S(qt) ∈ [0, T]. Based on
q ∈ (0, 1), most of the interval [0, T] [7 December 2005 to 27 January 2006] can be
considered as memory; let q = 0.2, 0.5, 0.7 or 0.9, then 20%, 50%, 70% or 90% of this
data can be considered as memory (i.e., this property can overcome the weakness of
SDDE as “The memory (past event) cant be considered in t < τ.”).

2. It makes more sense to consider that the data in the recent past are more effective
in determining the stock price at the current and future events. This idea can be
considered by choosing the value of time lag q to control the correlation between the
past events and the current and future events in sight of the properties of a pantograph
delay time qt.
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3. Based on the feature of the initial value S(0) = S0 and past delay time qt, the SPDE
has special properties such that it is suitable for long period memory (unbounded
memory) (i.e., this property can overcome the weakness of SDDE as “The constant
delay τ is only suitable for short period memory (bounded memory))”.

However, one of the motivations of this work is the estimation of the volatility function
g(V(qt)) based on the variable past dependence qt (pantograph delay). Following [4,5,12,24],
the form of volatility functions that would be more suitable for the proposed model will not be
discussed because a lot of previous work on that point has made it clear that the conditions imposed
on it are very weak, so a wide class of volatility functions may be used to fit a wide range of financial
quantities. In the next sections we will prove the feasibility of the proposed non-constant
non-linear stochastic variable delay model (SP-SPDE) for simulating the stock price.

3. Feasibility of the SP-SPDE Model for Stock Price

The feasibility of the financial model is one of the most important characteristics to be
demonstrated in the sense that they admit pathwise unique positive solutions such that
S(t) > 0, almost surely ∀t ≥ 0 whenever the initial path S(0) > 0. In this section, the
feasibility of the proposed SP-SPDE model for simulating the stock price will be proven,
which can be considered as

dS(t) = rS(t)d(t) + g(S(qt))S(t)dW(t), (4)

In order to guarantee that the SP-SPDE model (4) has a unique global positive solution,
it is assumed that the volatility function g is bounded and satisfies the local Lipschitz
condition (see [10]). The following theorem proves that the model is feasible in the sense
that they admit a pathwise unique solution that S(t) > 0 almost surely for t ∈ [0, T], with
initial conditions S(0) > 0 and g(S(qt)) 6= 0 ∀ S(qt) ∈ R.

Theorem 1. The stock price model (4) has a pathwise unique global positive solution S(t) > 0 for
a given initial value S(0) > 0∀t ≥ 0, which can be computed step by step as follows

S(t) = S(0) exp
{

rt− 1
2

∫ t

0
g2(S(qu))d(u) +

∫ t

0
g(V(qu))dW(u)

}
. (5)

Moreover, the solution has the following property

E(S(t)) = S(0)ert, (6)

for every t ≥ 0.

Proof. From Equation (4), we have

dS(t) = S(t)[rd(t) + g(S(qt))dW(t)]. (7)

The semi-martingale is defined as

N(t) = r
∫ t

0
d(u) +

∫ t

0
g(S(qu))dW(u),

= rt +
∫ t

0
g(S(qu))dW(u),

and its quadratic variation is denoted by

[N, N](t) =
∫ t

0
g2(S(qu))d(u)

Then, (7) becomes
dS(t) = S(t)dN(t).
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which has the unique solution

S(t) = S(0) exp
{

N(t)− 1
2
[N, N](t)

}
,

= S(0) exp
{

rt− 1
2

∫ t

0
g2(S(qu))d(u) +

∫ t

0
g(S(qu))dW(u)

}
,

(8)

the above equation clearly⇒ S(t) > 0∀t ∈ [0, T] almost surely when S(0) > 0. Using a
similar approach, it is shown that S(t) > 0 for all t ∈ [T, 2T]. By induction S(t) > 0∀t ≥ 0.

Consider the stock price as M := {M(t)}t≥0, where M(t) = e−rtS(t)∀t ≥ 0 with an
initial value of M(0) = S(0). As a result

M(t) = e−rtS(0) exp
{

rt− 1
2

∫ t

0
g2(S(qu))d(u) +

∫ t

0
g(S(qu))dW(u)

}
= S(0) exp

{
−1

2

∫ t

0
g2(S(qu))d(u) +

∫ t

0
g(S(qu))dW(u)

}
= M(0) exp

{
−1

2

∫ t

0
g2(M(qu))d(u) +

∫ t

0
g(M(qu))dW(u)

}
,

(9)

which satisfies the following SPDE

dM(t) =
[
−1

2
g2(M(qt))d(t) + g(M(qt))dW(t)

]
·M(0)

· exp
{
−1

2

∫ t

0
g2(M(qu))d(u) +

∫ t

0
g(M(qu)dW(u)

}
=

[
−1

2
g2(M(qt))d(t) + g(M(qt))dW(t)

]
·M(t)

= −1
2

g2(M(qt))M(t)d(t) + g(M(qt))M(t)dW(t).

(10)

Due to the continuity of paths for S (and, consequently, for M), it is obtained that∫ t

0
g2(M(qu))M(u)d(u) < +∞.

By considering (10) with respect to the above equation yields

M(t) = M̄(0) +
∫ t

0
g(M(qu))M(u)dW(u),

which implies, of course, that L(t) := {L(t)}t≥0, where

L(t) =
∫ t

0
g(M(qu))M(u)dW(u),

is a (positive) local martingale and thus a super-martingale.
Then, it is further observed that M is a (true) martingale since ∀t ≥ 0∃ a positive

integer k = k(t) 3 t ∈ [qk, q(k + 1)],

E|M(t)| = E
(

M(0) exp
{
−1

2

∫ t

0
g2(M(qu))d(u) +

∫ t

0
g(M(qu))dW(u)

})
= E

(
M(0)E

(
exp

{
−1

2

∫ t

0
g2(M(qu))d(u) +

∫ t

0
g(M(qu))dW(u)

}
|Fqk

))
= E(M(0)) = E(E(· · ·E(M(0)|Fq(k−1)) · · · |Fqk)) = M(0) = V(0) < +∞,
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and by using the nested conditional expectations again for every 0 ≤ u ≤ t < +∞

E(Mt|Fu) = Mu

As a result, L is also a (true) martingale, and thus

E
(∫ t

0
g(S(qu))S(u)dW(u)

)
= 0,

for every t ≥ 0. Assertion (6) follows from above and Equation (4).

Remark 1. The above theorem shows that the local Lipschitz condition on g is unnecessary. This
idea was developed in [25] and used recently by [4] for SDDE. However, we will need the local
Lipschitz condition in the next sections when we study the sensitivity of the time lag. We still do
not know whether the results in the next section hold without the local Lipschitz condition.

4. Delay Effect on European Options

One of the main motivations for the proposed stock price SP-SPDE model (3) is the
estimation of the volatility function g(V(qt)) using a past dependency with respect to
variable delay time. However, a time lag qt is observed when estimating the volatility. It
is well known that the variable delay depends on the parameter q. Therefore, it is very
important to investigate whether a little change in q will have a significant effect on the
stock price or not.

The following situation is introduced in order to show a clear problem. Let a holder of
a European call option at t = 0 think that the underlying stock has an exercise price K at
the expiry date T, following the SP-SPDE (4)

dS(t) = rS(t)d(t) + g(S(qt))S(t)dW(t),

with initial an value S(0) = S0. Therefore, the price of the European call option at t = 0 is

Cq = e−rTE(S(T)− K)+. (11)

On the other side, some holders may be interested in estimating the volatility using
the corresponding option price at time qt instead of qt. In this case, the underlying stock
price could follow an alternative SP-SPDE

dS̄(t) = rS̄(t)d(t) + g(S̄(q̄t))S̄(t)dW(t), (12)

with initial value S̄(0) = S̄0. Hence, the price of the European call option at t = 0 could be

C̄q̄ = e−rTE(S̄(T)− K)+. (13)

Therefore, the holder can choose either (11) or (13) for the underlying stock price
if there is not much difference between Cq and C̄q̄ when the difference between q and q̄
is small; otherwise, the holder has to control the time delay tightly. Without the loss of
generality, we may assume that q̄ < q. Note that the underlying stock prices at time t = 0
(initial value) should be the same for both S(t) and S̄(t) (i.e., S0 = S̄0).

The difference Cq − C̄q̄ is due to the difference of the two time lags, namely qt− q̄t '
t(q− q̄) (i.e., the difference depends on q− q̄). Note that

|Cq − C̄q̄| = |e−rTE(S(T)− K)+ − e−rTE(S̄(T)− K)+|,
≤ e−rTE|S(T)− S̄(T)|. (14)
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Hence, if we can show

lim
q−q̄→0

E|S(T)− S̄(T)| = 0,

then
lim

q−q̄→0
E|Cq − C̄q̄| = 0.

This shows the continuity of the European call option price on the time lag. For this
purpose, a local Lipschitz condition of the volatility function is imposed.

Assumption 1. Assume that the volatility function g is a local Lipschitz conditions. ∃ is a positive
constant KR∀R > 0 3 ∀x, x̄ ∈ R with |x| ∨ |x̄| ∈ [0, R] and t ∈ [0, T] such that

|g(x)− g(x̄)|2 ≤ KR|x− x̄|2. (15)

Assume that the volatility function g satisfies the linear growth condition. ∃ is a positive
constant K 3 ∀x ∈ R and t ∈ [0, T] such that

|g(x)|2 ≤ KR|x|2. (16)

Let us first establish two lemmas.

Lemma 1. Let R be a positive constant such that R ≥ 1
2 KR and define the stopping time as follows

ρR = inf{t ≥ 0 : |S(t)| ≥ R}.

Let θ be a stopping time such that 0 ≤ θ ≤ ρR. Then for any 0 ≤ u < v < +∞,

E|S(v ∧ θ)− S(u ∧ θ)|2 ≤ 2R|v− u|[r2|v− u|+ K̄2
R],

where
K̄R = max

0≤x≤R
g(x).

Proof. It follows from (4) that

S(v ∧ θ)− S(u ∧ θ) =
∫ v∧θ

u∧θ
rS(t)d(t) +

∫ v∧θ

u∧θ
g(S(qt))S(t)dW(t).

Hence,

E|S(v ∧ θ)− S(u ∧ θ)|2 ≤ 2E
∣∣∣∣∫ v∧θ

u∧θ
rS(t)d(t)

∣∣∣∣2 + 2E
∣∣∣∣∫ v∧θ

u∧θ
g(S(qt))S(t)dW(t)

∣∣∣∣2,

Using ([25], Chapter 1, Pg 22, Theorem 5.8), yields

E|S(v ∧ θ)− S(u ∧ θ)|2 ≤ 2E
∣∣∣∣∫ v∧θ

u∧θ
rS(t)d(t)

∣∣∣∣2 + 2E
∫ v∧θ

u∧θ
|g(S(qt))S(t)|2dt,

Using K̄R = max0≤x≤R g(x) with respect to Assumption 1, we get

E|S(v ∧ θ)− S(u ∧ θ)|2 ≤ 2r2R|v− u|2 + 2K̄2
RR|v− u|,

≤ 2R|v− u|
(

r2|v− u|+ K̄2
R

)
.

(17)
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Lemma 2. Let Assumption 1 hold. Let R ≥ 1
2 K2

R and define the stopping times

ρR = inf{t ≥ 0 : S(t) ≥ R} and ρ̄R = inf{t ≥ 0 : S̄(t) ≥ R},

and set θR = ρR − ρ̄R. Then, for any T > 0

E

(
sup

0≤t≤T

∣∣S(t ∧ θR)− S̄(t ∧ θR)
∣∣) ≤ CR

√
T3eCRT(q− q̄). (18)

where cR is a positive constant independent of T and q− q̄. In particular,

lim
q−q̄→0

E
∣∣S(T ∧ θR)− S̄(T ∧ θR)

∣∣ = 0. (19)

Proof. It is clear that (19) follows from (18), so our proof is complete if we can prove (18).
Set Z(t) = S(t)− S̄(t) for t ≥ 0. It follows that

Z(t ∧ θR) =
∫ t∧θR

0
r(S(s)− S̄(s))d(s) +

∫ t∧θR

0
(g(S(qs))S(s)− g(S̄(q̄s))S̄(s))dW(s),

=
∫ t∧θR

0
rZ(s)d(s) +

∫ t∧θR

0
[g(S(qs))S(s)− g(S̄(q̄s))S(s)]dW(s)

+
∫ t∧θR

0
[g(S̄(q̄s))S(s)− g(S̄(q̄s))S̄(s)]dW(s).

(20)

Hence,

E

(
sup

0≤t≤T
|Z(t)|

)
≤ J1 + J2 + J3, (21)

where

J1 = E

(
sup

0≤t≤T

∣∣∣∣∫ t∧θR

0
rZ(s)d(s)

∣∣∣∣
)

,

J2 = E

(
sup

0≤t≤T

∣∣∣∣∫ t∧θR

0
[g(S(qs))S(s)− g(S̄(q̄s))S(s)]dW(s)

∣∣∣∣
)

,

J3 = E

(
sup

0≤t≤T

∣∣∣∣∫ t∧θR

0
[g(S̄(q̄s))S(s)− g(S̄(q̄s))S̄(s)]dW(s)

∣∣∣∣
)

.

(22)

Compute

J1 ≤ E
∫ T∧θR

0
r|Z(s)|d(s) ≤ E

∫ T

0
r|Z(s)|d(s) =

∫ T

0
rE|Z(s)|d(s). (23)

In what follows, cR denotes a positive constant depending on R, but is independent of
T and q− q̄ while it may change line by line. Then, compute, by the Burkholder–Davis–
Gundy inequality

J2 ≤
√

32E
(∫ T∧θR

0

∣∣(g(S(qs))− g(S̄(q̄s)))S(s)
∣∣2d(s)

) 1
2

,

with respect to |xy|2 ≤ |x|2.|y|2 and E
(

sup0≤s≤t |S(t)|2
)
≤ +∞ (See [26], pg 1145, Theo-

rem 2.2), yields

J2 ≤
√

32E
(∫ T∧θR

0

∣∣g(S(qs))− g(S̄(q̄s))
∣∣2|S(s)|2d(s)

) 1
2

,

≤ CRE
(∫ T∧θR

0

∣∣g(S(qs))− g(S̄(q̄s))
∣∣2d(s)

) 1
2

,
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using Assumption 1, with |a + b|2 ≤ |a|2 + |b|2, we get

J2 ≤ CRE
(∫ T∧θR

0

∣∣S(qs)− S̄(q̄s)
∣∣2d(s)

) 1
2

≤ CRE
(∫ T∧θR

0
|S(qs)− S(q̄s)|2 + |Z(q̄s)|2d(s)

) 1
2

≤ CRE
(∫ T∧θR

0
|S(qs)− S(q̄s)|2d(s)

) 1
2

+ CRE
(∫ T∧θR

0
|Z(q̄s)|2d(s)

) 1
2

,

≤ CRE
(∫ T

0
|S(qs ∧ θR)− S(q̄s ∧ θR)|2d(s)

) 1
2

+ CRE
(∫ T

0
|Z(q̄s ∧ θR)|2d(s)

) 1
2

,

(24)

Hence,

CRE
(∫ T

0
|S(qs ∧ θR)− S(q̄s ∧ θR)|2d(s)

) 1
2

≤ CRE
(∫ T

0
|qs− q̄s|2d(s)

) 1
2

≤ CR(q− q̄)E
(∫ T

0
|s|2d(s)

) 1
2

≤ CR
√

T3(q− q̄),

(25)

Moreover, following [5] (pg 308, proof of lemma 3.3), using the Gronwall inequality
yields

CRE
(∫ T

0
|Z(q̄s ∧ θR)|2d(s)

) 1
2

≤ CRE
(∫ T

0
|Z(s)|2d(s)

) 1
2

≤ CRE

([
sup

0≤s≤T
|Z(s)|

] ∫ T

0
|Z(s)|d(s)

) 1
2

≤ CR

∫ T

0
E|Z(s)|d(s) + 1

4
E

(
sup

0≤s≤T
|Z(s)|

)
,

(26)

Substituting Equations (25) and (26) into (24), yields

J2 ≤ CR
√

T3(q− q̄) + CR

∫ T

0
E|Z(s)|d(s) + 1

4
E

(
sup

0≤s≤T
|Z(s)|

)
. (27)

Similarly, with respect to Z(t) = S(t)− S̄(t) and K̄R = max0≤x≤R g(x), we can estimate

J3 ≤
√

32E
(∫ T∧θR

0

∣∣g(S̄(q̄s))
∣∣2∣∣S(s)− S̄(s)

∣∣2ds
) 1

2

≤ CRE
(∫ T

0

∣∣S(s ∧ θR)− S̄(s ∧ θR)
∣∣2ds

) 1
2

≤ CRE
(∫ T

0
|Z(s)|2ds

) 1
2

≤ CRE

([
sup

0≤s≤T
|Z(s)|

] ∫ T

0
|Z(s)|d(s)

) 1
2

≤ CR

∫ T

0
E|Z(s)|d(s) + 1

4
E

(
sup

0≤s≤T
|Z(s)|

)
.

(28)
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Substituting Equations (23), (27) and (28) into (21), we obtain

E

(
sup

0≤t≤T
|Z(t)|

)
≤
∫ T

0
rE|Z(s)|d(s) + CR

√
T3(q− q̄)

+ CR

∫ T

0
E|Z(s)|d(s) + 1

4
E

(
sup

0≤s≤T
|Z(s)|

)

+ CR

∫ T

0
E|Z(s)|d(s) + 1

4
E

(
sup

0≤s≤T
|Z(s)|

)

≤ CR
√

T3(q− q̄) + CR

∫ T

0
E|Z(s)|d(s)

≤ CR
√

T3(q− q̄) + CR

∫ T

0
E

(
sup

0≤t≤s
|Z(t)|

)
d(s).

(29)

Since this holds for any T ≥ 0, the Gronwall inequality implies

E

(
sup

0≤t≤T
|Z(t)|

)
≤ CR

√
T3eCRT(q− q̄). (30)

It is now easy to show the following theorem.

Theorem 2. Under Assumption 1, with the definition of (11) and (13), we have

lim
q−q̄→0

∣∣Cq − C̄q̄
∣∣ = 0. (31)

Proof. Equation (14) implies that it is sufficient to show

lim
q−q̄→0

E|S(T)− S̄(T)| = 0.

For any sufficiently large R, let θR be the stopping time as defined in Lemma 2. Then,
one observes that

E|S(T)− S̄(T)| = E
(
|S(T)− S̄(T)|I{θR>T}

)
+ E

(
|S(T)− S̄(T)|I{θR≤T}

)
≤ E|S(T ∧ θR)− S̄(T ∧ θR)|+ E

(
|S(T)− S̄(T)|I{θR≤T}

)
,

(32)

and also
E(S(T ∧ ρR)) ≥ E

(
S(T ∧ ρR)I{ρR≤T}

)
= RP(ρR ≤ T). (33)

which yields (in view of [26], pg 1145, Lemma 2.3 and [10], pg 941, Theorem 2.1) that

P(θR ≤ T) ≤ P(ρR ≤ T) + P(ρ̄R ≤ T) ≤ 2ξ(S0)eCRT

R2 → 0 as R→ +∞,

while
E|S(T)− S̄(T)| ≤ ξ(S0)eCrT .

Hence, by the classical dominated convergence theorem,

lim
R→+∞

E
(
|S(T)− S̄(T)|I{θR≤T}

)
= 0.
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Given any ε > 0, we can then find a sufficiently large R for

E
(
|S(T)− S̄(T)|I{θR≤T}

)
<

1
2

ε.

For this R, by Lemma 2, we can find a δ > 0 sufficiently small such that if q− q̄ < δ,

E|S(T ∧ θR)− S̄(T ∧ θR)| ≤
1
2

ε.

As a result,
E|S(T)− S̄(T)| ≤ ε

whenever q− q̄ < δ1. This means

lim
q−q̄→0

E|S(T)− S̄(T)| = 0,

and the desired assertion (31) follows.

5. The STM Numerical Method and Non-Negativity

Kahl [11] shows that the numerical methods based on the Milstein scheme have more
advantages than others for sharing the positivity solution for stochastic models in the sense
that they can be used in financial mathematics. For a non-linear SDDE with a constant
delay, the stochastic theta Milstein (STM) method is investigated in [27]. First, the STM
method for numerically solving the stock price SP-SPDE (3) model is extended

dS(t) = rS(qt)S(t)d(t) + g(S(qt))S(t)dW(t), S(0) = S0.

We can introduce the STM method as follows

Sn+1 = Sn + θrS[q(n+1)]Sn+1h + (1− θ)rS[qn]Snh + g(S[qn])Sn∆Wn

+
1
2

[
g2(S[qn])Sn + g(S[qn])g′(S[qn])S

2
n

](
(∆Wn)

2 − h
)

.
(34)

The problem for the current time step is that the delay argument may not hit a previous
time step, which is arisen from a numerical method in dealing with a variable delay. Here,
this problem is addressed by interpolating the undetermined approximate values of the
solution at the nearest grid point on the left endpoint of the interval containing the delay
argument using piecewise constant polynomials.

Second, the following theorem will prove that the STM method can preserve the
positivity of the solution for the SP-SPDE model based on the definition of the eternal
lifetime for a numerical solution (see Kahl [11], Def. 4.1, P. 47). Here these concepts are
considered for a numerical solution for the stock price model (3).

Definition 1. Let S(t) be a stochastic process with

P({S(t) ≥ 0 ∀t}) = 1. (35)

Then, the stochastic integration scheme possesses an eternal lifetime if

P({Sn+1 ≥ 0|Sn ≥ 0, S[qn] ≥ 0}) = 1. (36)

Otherwise, it has a finite lifetime.

Theorem 3. The STM method (34) has an eternal lifetime for the stochastic stock price model (3) if
the following properties hold

h <
1

θrS[q(n+1)]
, (37)
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(1− θ)rS[qn] ≥
1
2

K̄2, (38)

where
K̄ = max

0≤x≤R
g(x). (39)

Proof. Following the idea of ([11], Theorem 4.7, Pg. 50), a theorem of the same idea and a
similar process is proven as follows; one integration step of STM method is

Sn+1 = Sn + θrS[q(n+1)]Sn+1h + (1− θ)rS[qn]Snh + g(S[qn])Sn∆Wn

+
1
2

[
g2(S[qn])Sn + g(S[qn])g′(S[qn])S

2
n

](
(∆Wn)

2 − h
)

.
(40)

In an elementary way we can eliminate the implicitness

Sn+1 =
N(Sn)

D(Sn)
, (41)

where
N(Sn) = Sn + (1− θ)rS[qn]Snh + g(S[qn])Sn∆Wn

+
1
2

[
g2(S[qn])Sn + g(S[qn])g′(S[qn])S

2
n

](
(∆Wn)

2 − h
)

,

and
D(Vn) = 1− hθrS[q(n+1)].

Considering requirement (37), the fact that the denominator D(Vn) value is greater
than zero is guaranteed. Now, there is only the verification that the numerator N(Sn) is
positive, considering the properties of the volatility function (39), the following equation
is obtained

N(Sn) = Sn +

[
(1− θ)rS[qn] −

1
2

K̄2
]

Snh + K̄Sn∆Wn +
1
2

K̄2Sn(∆Wn)
2. (42)

Define G(z) := g(x)z + 1
2 g(x)g′(x)z2 with g(x) = K̄x). According to property (39)

and Definition 1, which lead to g(x)g′(x) ≥ 0 such that K̄ ≥ 0 and Vn ≥ 0, G possesses a
global minimum. For that purpose an obvious calculation shows that

G′(z) = g(x) + g(x)g′(x)z. (43)

Hence we get

z̃ = − 1
g′(x)

with G(z̃) = − g(x)
2g′(x)

= −1
2

x. (44)

For this reason we can calculate the lower bound for all random terms Wn. This
enables us to exchange the value of G(∆Wn) by its minimum

N(Sn) = Sn +

[
(1− θ)rS[qn] −

1
2

K̄2
]

Snh ++G(∆Wn),

= Sn +

[
(1− θ)rS[qn] −

1
2

K̄2
]

Snh ++ min
∆Wn∈R

G(∆Wn),

= Sn +

[
(1− θ)rS[qn] −

1
2

K̄2
]

Snh ++G(∆W̃n),

= Sn +

[
(1− θ)rS[qn] −

1
2

K̄2
]

Snh +−1
2

Sn,

=
1
2

Sn +

[
(1− θ)rS[qn] −

1
2

K̄2
]

Snh,

(45)
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The analytical positivity occurs when the properties (38) hold.

6. Applications with Real Stock Price Data

The goal of this numerical simulation is to demonstrate that the proposed model is
efficient in modeling the underlying stock price. Furthermore, the proposed SP-SPDE
model with a variable delay (3) and non-linear SDDE with constant delay (2) are compared
using a real dataset in order to show the prediction accuracy of the present model. To the
best of our knowledge, such a comparison has little consideration in the financial literature.

The data on stock returns come from “Yahoo finance”. In fact, the dataset used
includes all the parameters that are needed. All the simulations are performed in Python
3.7. Note that the SDDE model with a constant delay needs memory data (i.e., the interval
does not contain predicted data but just contains historical data) in order to predict future
data (i.e., the interval that contains predicted data) that we want to predict (see Figure 3).
However, the proposed SP-SPDE and classical BS models do not need that memory data
for simulation. Therefore, in the main graphs that will compare the simulation of those
three models, the memory data of SDDE will be omitted to show a more clear comparison.
Furthermore, the blue-star line is the predicted price compared to the solid-red line for the
real stock price.

Figure 3. Stock sample paths using SDDE with memory interval time.

Throughout the empirical study, the volatility σ in the BS model (1) is known, and so
is the constant volatility parameter of the memory part. Furthermore, the non-constant
volatility function in SP-SPDE (3) and SDDE (2) will follow the power function, which was
recommended in [3] as

g(x) = σx(α−1)

where σ is the constant volatility parameter, and α is the threshold.
To show the prediction accuracy of the proposed SP-SPDE model compared with

others models, the STM numerical method is useful for approximating solutions. Real data
are used from the following firms

• C1 Aaron’s, Inc. (AAN co.),
• C2 Alcoa Corporation (AA co.),
• C3 Tesco PLC (TSCO.L),
• C4 Barclays PLC (BCS).

A total of 400 samples are plotted from the numerical solution for the models along
with their means (blue-star curves). The curves of the stock price as a function of time
are shown as (red-solid curves). The means of the numerical samples are intended (blue
curves) to fit the stock price well S (thick red curves) with moderate standard derivations
(small spread of the numerical samples compared to its mean); this will be the aim of the
comparisons.
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Fifty days from 22 January 2010 to 6 April 2010 and 150 days from 16 June 2010 to 19
January 2011 observed for the Aaron’s, Inc. (AAN Co., Atlanta, CA, USA) company were
considered as the real data of the stock price. It is compared with the predicted stock price
of BS, SDDE and the proposed SP-SPDE models in Figure 4. Note that the memory data
of SDDE is considered as 50 and 150 days just before the observed interval. The risk-free
interest rate and the time-step size are set as 0.008 and 0.03, respectively. The relating
parameters in SDDE τ = 50, 150 and SP-SPDE are q = 0.5, σ = 1.6, α = 0.8.

(a) BS model, 50 days (b) BS model, 150 days

(c) SDDE model, 50 days (d) SDDE model, 150 days

(e) SPDE model, 50 days (f) SPDE model, 150 days

Figure 4. The graphs for corporation C1 AAN co. 50 and 150 days are shown on the left and right,
respectively. The top (a,b) corresponds to the BS model, while the middle (c,d) corresponds to the
SDDE model with a constant delay τ = 50, 150, and the graphs at the bottom (e,f) correspond to the
SP-SPDE model with a variable delay q = 0.5.

In Figure 5, 50 days from 22 January 2010 to 6 April 2010 and 150 days from 16 June
2010 to 19 January 2011 are considered as the real data observed for the Alcoa Corporation
(AA Co., Pittsburgh, PA, USA) company. It is compared with the predicted stock price
of the BS, SDDE and proposed SP-SPDE models. Note that the memory data of SDDE is
considered as 50 and 150 days just before the observed interval. The risk-free interest rate
and the time-step size are set as 0.008 and 0.03, respectively. The relating parameters in
SDDE τ = 50, 150 and SP-SPDE are q = 0.5, σ = 2, α = 0.8.
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(a) BS model, 50 days (b) BS model, 150 days

(c) SDDE model, 50 days (d) SDDE model, 150 days

(e) SPDE model, 50 days (f) SPDE model, 150 days

Figure 5. The graphs for corporation C2 AA co. 50 and 150 days are shown on the left and right,
respectively. The top (a,b) corresponds to the BS model, while the middle (c,d) corresponds to the
SDDE model with a constant delay τ = 50, 150, and the graphs at the bottom (e,f) correspond to the
SP-SPDE model with a variable delay q = 0.5.

Fifty days from 1 December 2016 to 14 February 2017 and 150 days from 1 December
2016 to 9 July 2017 observed for the Tesco PLC (TSCO. L, Welwyn Garden City, UK)
company were considered as the real data of the stock price. It is compared with the
predicted stock price from the BS, SDDE and proposed SP-SPDE models in Figure 6.
Note that the memory data of SDDE is considered as 50 and 150 days just before the
observed interval. The risk-free interest rate and the time-step size are set as 0.0002 and
0.03, respectively. The relating parameters of SDDE τ = 50, 150 and SP-SPDE simulation
are set as q = 0.3, σ = 2.3, α = 0.8. Note that TSCO.L’s share price has been multiplied by
0.1 to maintain the accuracy of the chart.



Symmetry 2022, 14, 1358 17 of 21

(a) BS model, 50 D (b) BS model, 150 D

(c) SDDE model, 50 D (d) SDDE model, 150 D

(e) SPDE model, 50 D (f) SPDE model, 150 D

Figure 6. The graphs for corporation C3 Tesco PLC 50 and 150 days are shown on the left and right,
respectively. The top (a,b) corresponds to the BS model, while the middle (c,d) corresponds to the
SDDE model with a constant delay τ = 50, 150, and the graphs at the bottom (e,f) correspond to the
SP-SPDE model with a variable delay q = 0.3.

In Figure 7, the 50 days from 1 December 2016 to 14 February 2017 and 150 days from 1
December 2016 to 9 July 2017 are used as the real data observed for the Barclays PLC (BCS,
London, UK) company, and it is compared with the predicted stock price of the BS, SDDE
and proposed SP-SPDE models. Note that the memory data of SDDE is considered as 50
and 150 days just before the observed interval. The risk-free interest rate and the time-step
size are set as 0.0002 and 0.03, respectively. The relating parameters of SDDE τ = 50, 150
and SP-SPDE simulation are set as q = 0.3, σ = 1.5, α = 0.8.
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(a) BS model, TSCO.L. (b) BS model, BSC.

(c) SDDE model, TSCO.L. (d) SDDE model, BSC.

(e) SPDE model, TSCO.L. (f) SPDE model, BSC.

Figure 7. The graphs for corporations C3 and C4 at the top (a,b) correspond to the BS model, while
the graphs in the middle (c,d) correspond to the SDDE model with a constant delay with memory
data τ = 150, and the graphs at the bottom (e,f) correspond to the SP-SPDE model with a variable
delay q = 0.3.

7. Discussion

The daily stock data from Yahoo finance are used. Figure 8a shows the stock sample
paths of Aaron’s. Inc. (AAN.N) and Alcoa Corporation (AA.N) from 9 November 2009
to 8 November 2019 and our prediction results are shown in Figures 4 and 5. Over the
considered period, the price of the two companies tends to rise. It can be seen that the
prediction accuracy of the proposed model SP-SPDE with a variable delay is better than
that of the SDDE model with a constant delay and the BS model with constant volatility.
In Figure 8b, the data for Tesco PLC (TSCO.L) and Barclays PLC (BCS) are covered from
3 May 2016 to 1 November 2019. Over this period, the price of the two companies tends
to go down, and they are considered for testing the prediction accuracy of the SP-SPDE
model (see Figures 6 and 7). The simulation of the stock paths shows that the proposed
method is better than the others. The real data with the rise and fall of the stock price are
used in order to show that the proposed SP-SPDE model is efficient for predicting 50 and
150 days of stock prices.
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(a) AAN.N and AA.N (b) TSCO.L and BCS

Figure 8. Stock sample paths.

This is attributed to the improvement in prediction accuracy for using the past de-
pendence volatility function based on a pantograph delay qt (variable delay) in SP-SPDE
(3), which, in turn, depends on the value of the stock in the recent past. For C1 and C2,
q = 0.5, which means that the prediction of the current stock price depends on the past
stock price in the middle of the period between the current event and the starting event
at all mesh prediction points in [0,T]. While for C3 and C4, q = 0.3 has been used, which
means that the prediction of the current stock price depends on the past stock price for a
third of the period between the current event and the starting event at all mesh prediction
points in [0,T]. This case is compared by using the volatility function based on a constant
delay t− τ in the SDDE model (2), which means that in the case of τ = 150 the prediction
of the current stock price depends on the past stock price at the event from 150 days ago at
all mesh prediction points in [0,T].

It can be seen that the accuracy of the proposed method of the periods of stock paths
with jumps can be said to be acceptable, but it is not very good compared to other periods
of paths without jumps. Figure 9 shows that the stock path of AAN co. has two jumps on
29 June 2010 and 13 September 2010. It can be seen that the predicted path does not have
a high accuracy close to these points compared to the other periods of the path without
jumps. Therefore, in future work, the SP-SPDE model with jumps will be considered in
order to discuss this point.

Figure 9. Stock sample paths of AAN co. with jumps.

8. Conclusions

The SP-SPDE model was derived based on an SPDE and examined in this paper as an
alternative approach to modeling stock prices. The motivation for introducing a new class
of a non-constant volatility SPDE model is the estimation of the volatility function based on
the variable past dependence (variable delay) in order to overcome the weaknesses of the
SDDE model with a constant delay and increase the prediction accuracy. The feasibility of
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the proposed SP-SPDE model for simulating the stock price that will take into account the
sensitivity of the model for time lag qt is considered. Furthermore, it is proven that there
is a numerical method that can share the non-negativity feature of the proposed models’
solution. Finally, the model is tested using real data, and the results are compared with that
of the SDDE model with a constant delay and a classic BS model in order to show that the
proposed model could improve the prediction accuracy.

In future work, we will extend the SPDE to modeling the corporate claim value. Fur-
thermore, the robust numerical method based on the balanced technique will be discussed
to meet the non-negativity solution. Using the real financial corporate data, we will com-
pare the accuracy of the numerical solution based on the balanced technique with that of
the stochastic theta method.
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Abbreviations
The following abbreviations are used in this manuscript:

S(t) stock price
r risk-free interest rate
σ constant volatility of the stock return per unit time
g(x) volatility function of the stock return per unit time
t0 Initial time
T maturity date
K exercise price
C European call option
h(t) delay function
t− τ constant delay time
qt variable delay time
W standard Brownian motion process
α threshold
SFDE Stochastic Functional Differential Equation
SDDE Stochastic Delay Differential Equation
SPDE Stochastic Pantograph Differential Equation
SP-SPDE stock price Stochastic Pantograph Differential Equation
STM stochastic theta Milstein method
BS Black-Scholes model
BIM Balanced implicit method
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