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Abstract: The theoretical study of the effect of electron beam parameters, in particular, the emittance
and its asymmetry on the radiation from relativistic electrons in undulators is conducted both
analytically and numerically. The reasons for the odd and even harmonic generation and radiation
are explored. The difference in the underlying physical reasons for the spontaneous and stimulated
radiation of harmonics in free electron lasers (FELs) is elucidated. The generalized forms of the
special functions of the Bessel and Airy type are employed to account analytically for the off-axis
and angular effects together with the effect of the beam energy spread. A comparative analysis
of the radiation spectra for undulators with different beams is performed. The examples of the
radiation at SPARC and LEUTL are given. The effect of the asymmetry of the beam on the radiation
properties is analyzed. The alternative theoretical approaches of other authors are also employed for
the analytical calculation of the harmonic powers in FELs. The results are compared with existing
experimental data.
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1. Introduction

The radiation from relativistic electrons in a spatially periodic magnetic field was
first obtained and explored by Motz [1], following the hypothesis of Ginzburg [2]. It was
named undulator radiation (UR) as it was generated in a device, called an undulator; the
UR is incoherent. The coherent radiation from electrons in undulators was discovered by
Madey [3] few decades after the discovery of the UR. Madey also developed a theory, that
described the interaction of electrons with the radiation in the undulator and consequent
grouping of the electrons in microbunches, whose lengths are shorter than the wavelength
of the radiation. This was the theory for the coherent radiation in free electron lasers (FELs),
whose main elements are the undulator and a high quality beam of quasi-monoenergetic
electrons. In the 21st century, FEL radiation is used for studies in various branches of science.
The theory and applications are well described in literature (see, for example, [4–10] etc.).
FELs are the fourth generation of radiation sources and they represent ulterior development
of the third generation sources—electron storage rings [11–14]. The principle of a FEL is
based on the phenomenon that electrons in an undulator lag slightly behind the wave of
the radiation and the appearing lag is such that the Lorenz force always pushes electrons
toward the nodes of the UR wave in the undulator. Thus bunching occurs at the radiation
wavelength; similarly, bunching occurs also at the harmonic wavelengths, but it is weaker
and more sensitive to all kind of losses related to the diffraction, imperfections of the
assembly and alignment, magnetization errors, beam energy spread, divergence etc. In the
high frequency range, such as UV- and X-rays, particularly tight requirements for beams
must be fulfilled for the FEL to operate properly. Moreover, in the X-ray band few materials
are capable of reflecting efficiently and the most common construction of a UV- and X-ray
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FEL is a single pass design, where the radiation interacts with electrons during one pass
along the FEL. The wavelengths of the UR resonances read as follows:

λn =
λu

2nγ2

(
1 +

k2
e f f

2
+ (γΘ)2

)
, (1)

where n is the harmonic number, Θ is the off-axis angle, k2
e f f = k2v is the undulator

parameter, k = H0λue/2πmc2 ≈ 0.9337H0[T]λu[cm], v = 1 + (d/h)2, H0 is the magnetic
field amplitude on the undulator axis, whose typical value is H0~1 T, dH0 is the field
harmonic amplitude if present in the undulator, whose typical value is small, d << 1, and h
is the field harmonic number, e is the electron charge, and λu is the undulator period, whose
typical value is λu~1–3 cm. For the UR in visible range the electron energy has a typical
value of ~0.1–0.2 GeV, a γ–factor of ~102, and a total undulator length of a dozen meters, for
the X-ray FEL, the undulator lengths reaches 100 m and the beam energy E~5–15 GeV, γ~104.
Modern installations use beams with low energy spread of σe~10−3–10−4; the emittances
vary: εx,y~0.5–25 mm × mrad and beam sections are typically σx,y~10–300 µm. The on-axis
spectrum of the UR is determined mainly by the undulator; for a planar undulator with an
ideal beam it consists of odd harmonics and even harmonics appear off the axis. In real
undulators even harmonics are also radiated on the axis. This is due to several reasons,
mainly the finite emittance of the beam and the betatron oscillations in the beam. For FEL
radiation, the harmonic content is usually smaller than that for the spontaneous UR from
the same undulator; in a single pass FEL usually the second, third and sometimes fifths
harmonics are radiated. This is due to the nature of FEL radiation, driven by the electron-
photon interaction, which is more sensitive to losses at higher harmonic wavelengths.
In addition, FEL radiation requires good beams with the conditions for the emittance
εx,y ≤ λ0/4π and for the energy spread σe ≤ ρ/2 (see [4–10]); in practice they are not
always satisfied, but in weaker conditions, εx,y~λ0/4π and σe ≈ ρn, the generation may be
possible. Typically, the single pass FEL radiation spectrum has the third harmonic content
#1–2%, second harmonic: #0.1%, (see, for example, [15–19]), and the fifth harmonic is
rarely detected. Computation of a FEL harmonic power evolution is a complex engineering
problem, which is solved by numerical simulations in special programs [20–22]. It requires
prepared technical personnel and good computational facilities. Numerical solutions to a
set of equations for the motion of the charges, their interaction and energy exchange with
the wave, usually yield FEL powers with an accuracy of one order of magnitude for the
fundamental and one–two orders of magnitude for the harmonics as compared with the
measurements. This is a quite good result, considering that technical procedures, such
as adjustment of the magnet pole strengths along the undulators, alignment of the beam
and other fine tuning procedures can change the harmonic powers by approximately the
same value. Moreover, in a numerical simulation it is difficult to trace the exact effect of
each parameter of the beam and undulator on the final harmonic power and such analysis
requires highly experienced personnel. A simple alternative way to estimate and analyze
FEL harmonic behavior employs the analytical modeling of FEL harmonics evolution. Exact
analytical solutions are not available for FELs because of the large number of particles
and equations, but our phenomenological modelling gives results with close to numerical
simulation accuracy. It is based on some early studies in [23–26] and in its current form
it involves all main parameters, and accounts for main losses and variable sensitivity of
the electron-photon interaction, dependently on harmonic numbers. It was calibrated with
all available data for major FELs in the range from visible to hard X-rays and agrees with
the data for operating FELs and with results of numerical simulations [20,21,27–29]. The
analytical approach allows the tracing of the effects of each parameter on the harmonic
radiation and thus it reveals the underlying physical reasons for the harmonics.

In what follows we will analyze the harmonic radiation in the undulators of several
free electron lasers: SPARC [19], “Sorgente Pulsata ed Amplificata di Radiazione Coerente”,
i.e., Pulsed and Amplified Source of Coherent Radiation, LEUTL [17,18], “Low-Energy
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Undulator Test Line”, and LCLS [15,16], “Linac Coherent Light Source”, and compare the
results for the spontaneous and stimulated UR with existing data for FELs and numerical
simulations for the spontaneous UR. We will explain the reasons for the proper harmonic
content and spectrum with the beam and undulator data.

2. Analytical Estimates for the Harmonic Powers Using Bessel Coefficients

The analytical tool for the study of the UR is based on the formalism of the generalized
Bessel functions. In the most general case it involves very complex integrals to account for
field harmonics and the resulting expressions can be rather cumbersome when multiple
field harmonics in both directions are considered for the radiation off the undulator axis (see
for details, for example, [28–39]). In most cases, however, single period planar undulators
are used with weak field harmonic content; it has minor effect on the radiation. In this
common case the account for the angular and other effects is much simpler. The intensity
of UR from one electron is given by the following well-known formula, which goes back to
the well-known radiation formulae, for example, in [30]:

d2 I
dωdΩ

∼=
e2γ2N2k2

c
(

1 +
(

k2
e f f /2

)
+ (γθ)2

) ∞

∑
n=−∞

n2sinc2
(νn

2

)(
f 2
n;x + f 2

n;y

)
, (2)

where νn = 2πnN((ω/ωn)− 1) is the detuning parameter from the resonance ωn = 2πc/λn;
the Bessel coefficients fn;x,y for the x- and y-polarizations depend on the parameters of
the beam and the undulator. Omitting the field harmonics effect, which is a stand-alone
subject addressed in [23,25,26,31], et al., the Bessel coefficients fn;x,y in (2) reduce for a
planar undulator to the following rather simple form:

fn;x = ∑
p

J̃p
∣∣(Jn

n+1 + Jn
n−1
)
+ 2

k γθ cos ϕJn
n
∣∣,

fn;y = ∑
p

(
J̃p
∣∣ 2

k γθ sin ϕJn
n
∣∣+ Jn

n

√
2πy0
λu

(
J̃p+1 − J̃p−1

))
,

(3)

where we explicitly account for the finite beam size y0 and for the effects of the off-axis
angle θ. The summation over p accounts for all betatron harmonics with numbers p; ϕ is
the polar angle around the undulator axis and Jm

n and J̃p are the Bessel functions, which
implicitly account for the angular effects and the beam size in their arguments as follows:

Jm
n ≡ Jm

n (ζ, ξ) ∼=
π∫
−π

dα
2π exp[i(nα + mζ sin α + mξ sin(2α))],

ζ = θ cos ϕ λuk
nλnγ , ξ = λuk2

8nλnγ2 ,
(4)

J̃p ≡ J1
p(−τ,−ς), τ =

4πθy0γ2

λu(1 + (k2/2))
, ς =

π2γy2
0k√

2λ2
u(1 + (k2/2))

. (5)

Generalized forms of the special functions that we use contain integrals of elementary
functions and in some cases they can be taken by the program Mathematica analytically for
the given initial parameters. However, in most cases the integral is evidently best taken
by standard numerical procedures in the same Mathematica or another program. We use
numerical calculations of the same Mathematica and get results instantly. Note that the
calculation of the integral of these integrals, such as, for example, (6), may take a second,
and numerical calculation of more cumbersome integral (8) may take a minute or so; times
vary, dependently on the hardware.

Betatron oscillations in a finite-sized real beam split each radiation line of the harmonic
n at the frequency ωn = 2πc/λn into an array of betatron radiation harmonics, which
are distant from each other by ωβ

∼= ωnk√
2nγ

(see, for example, [40]). Since ωβ ∝ ωn/γ, it
is evident that ωβ << ωn for relativistic electrons with γ >>1, and thus the split of each
radiation line occurs in very fine betatron lines close to each other within the line of the



Symmetry 2022, 14, 1353 4 of 19

harmonic n. The degree of the split depends on the beam and to some extend also on the
undulator parameters. Expressions (3) for the Bessel coefficients and integrals (4) for the
Bessel functions are used for both the spontaneous and the stimulated radiation analysis.
Note, that the angular dependence in (3)–(5) is explicit for the Bessel coefficients, but the
broadening effect of the UR lines is not yet described by it; neither is the broadening caused
by the energy spread accounted for in (2).

Simple and accurate account for the effect of the finite energy spread σe in electron
beams can be done by the following common convolution, taken along the undulator with
N periods:

d2 I(σe)

dωdΩ
=
∫ +∞

−∞
d2 I(νn + 4πnNε)e−ε2/2σ2

e dε/dωdΩ
√

2πσe, (6)

the non-periodic dipole magnetic component Hd = κ1H0, where H0 is the amplitude of the
field H0 sin kλz on the undulator z-axis, κ1 =

√
κ2 + ρ2, ρ = Hd,x/H0, κ = Hd,y/H0, may

appear due to imperfections, magnetizing errors, external fields etc. It causes synchrotron-
like effect: bends the electrons trajectory into the effective angle θH = 2π√

3
k
γ Nκ1 [41–44]; its

effect is accumulated along the undulator length. Off the undulator axis in the angle θ, the
interplay with θH appears. The UR line broadens and the red-shift of the resonances appear
(see [43,44]). The resonances are as follows:

ωn =
2nω0γ2

1 +
k2

e f f
2 + (γθ)2 + (γθH)

2 − γ2θHθ
√

3 ρ sin φ−κ cos φ
κ1

, (7)

where ϕ is the polar angle. The shape of the UR line is described by the generalized Airy-
type function S(νn, η, β) ≡

∫ 1
0 ei(νnτ+ητ2+βτ3)dτ (see [41–45]). Differently from the effect of

the energy spread and associated with it symmetric broadening, the angular effects cause
asymmetrical broadening and red shift. The stronger the Hd, the more the degradation
of the spectral line shape. The last term in the denominator of (7) describes the interplay
of the off-axis angle θ and the induced angle θH. It follows from (7) that θH can in part
compensate the spectrum for the deviation of the beam in angle θ: maximum compensation
reches θ/2, if the field Hd induces the angle θ̃H = ∓θ

√
3

2
κ
κ1

for ϕ = 0,π, and θ̃H = ±θ
√

3
2

ρ
κ1

for ϕ = ±π/2.
We omit cumbersome convolution for the UR intensity, which involves the integral

form of the generalized Airy-type function for conciseness and also because engineers
usually screen out or compensate for non-periodic fields after calculating field integrals.
However, the angular effects that are due to the emittance or misalignment of the beam
remain and they can also be perceived on the axis. Omitting the dipole fields, only the term
~τ remains in the exponential of the Airy-type functions [41–44] and complex convolution
for the differential UR intensity simplifies to the following formula, where only the angular
effects and the energy spread are accounted for:

d2 I(θ,σe)
dωdΩ

∼= e2γ2 N2k2

c
(

1+
(

k2
e f f /2

)
+γ2θ2

)×
∞
∑

n=−∞
n2
(

f 2
n;x + f 2

n;y

) ∞∫
−∞

dεe−ε2/2σ2
e√

2πσe

 1∫
0

exp

iτ

 νn + 4πnNε+
2πnN(γθ)2

1+(ke f f
2/2)+(γθ)2

dτ

2

.
(8)

For a real beam further integration over the angles should be performed with proper
distribution across the beam, such as, for example, Gaussian. However, the effective values
for the divergences can be used instead for a simpler estimate. This appears in good
agreement with numerical results. Moreover, the difference in the UR intensity computed
with (8) and (6) is usually minor, so that common simple expression (6) is good in most cases.
However, it is not always so. In what follows we will demonstrate that for the UR from
some electron beams with large emittance, the difference between the harmonic intensities
obtained with (6) and (8) can be non indifferent and the results from (8) appear much
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closer to the numerical results, where all effects are carefully included in the numerical
modelling. Equation (8) analytically describes the harmonic content and the individual
spectrum line broadening for the radiation from the undulator of N periods, affected by the
energy spread and angular effects of the beam with finite section. The harmonic radiation is
more sensitive to all kind of losses than the radiation at the fundamental. This sensitivity is
even higher for the harmonics of free electron lasers, where the electron-photon interaction
at the harmonic lengths matters. In what follows it is addressed phenomenologically in the
framework of the analytical model for FEL radiation, where the same Bessel coefficients
fn;x,y as above are used.

Omitting the detailed description of the phenomenological model for FEL harmonics,
based on the early versions in [46,47] and presented in its current form in recent publications
(see [23–26,28–39]), we briefly outline that in a FEL the interaction of the radiation with elec-
trons in the undulator causes qualitative change of the power growth along undulators. The
quadratic growth at the beginning of a FEL, where the spontaneous radiation dominates,
changes to the exponential growth P(z) ∝ P0ez/Lg0 of the power from bunched electrons;
the initial power is P0, and it can originate from a seeding laser in an amplifier FEL or from
coherent fluctuations of the initial noise of a bunch in a SASE FEL; in the latter case it reads
as follows: Pn,noise ≈ 1.6ρ2

ne4πcPbeam/(I0λn) [48]. The FEL gain length Lg0 = 1/
√

3g0 is
reciprocal to the gain g0 and related to the Pierce parameter ρ = (λug0)/4π [4–7]. The
latter is defined by the properties of the undulator, keff, λu, the Bessel coefficients fn;x,y for
the n-th harmonic, and by the relativistic factor γ of the beam, its current I0 and the beam
its cross section Σ (see [4–10]):

ρn =
1

2γ

(
I0/Σ
4πi

)1/3(
λuke f f | fn|

)2/3
, (9)

where i = 4πε0mc3/e ∼= 1.7045× 104 is the Alfven current dimensional constant [A] and Σ
is related to beam emittances εx,y, Twiss parameters βx,y, divergences θx,y and beam sections
σx,y as follows:

Σ = 2πσxσy, σx,y =
√

εx,yβx,y, σx,y = εx,y/θx,y, θx,y =
√

εx,y/βx,y (10)

Losses arise from diffraction, energy spread, emittance etc.; they have detrimental
effect on the FEL radiation. While the effect on the spontaneous UR can be quantified
precisely in a convolution (8) or in more complex formulae, the exact analytical account for
FELs can not be done because of the complexity of the problem, involving equations for
the electrons, radiation and their interaction in the undulator. Phenomenological approxi-
mations were developed for it. Excellent accurate analytical formula of Ming Xie [49,50]
gives correction to the gain length: Lg = Lg0(1 + Λ), where Λ is the polynomial with 19
coefficients for the factors and fractional powers of the terms. This correction is in very
good agreement with measurements, but it is cumbersome and proper expressions for
the harmonics become even more cumbersome. Good agreement with the approxima-
tion of Ming Xie can be achieved by using the accordingly corrected Pierce parameter
ρ̃ = ρ/κ [46,47]:

ρn → ρ̃n = ρn/κ, κ = 3

√
1 +

λuλn

16πρnΣ
. (11)

With modified Pierce parameter ρn the theoretical gain length L0
n,g
∼= λu/

(
4π
√

3n1/3ρn

)
increases and agrees with that of Xie; the saturated length also increases and the maximum
theoretical harmonic power in the regime of the independent harmonic growth, PF,n ≈√

2ρnPbeam, where Pbeam = EI0 is the beam power, decreases. Expressions for the gain,
saturation and power read respectively as follows [46,47]:
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Ln,g = L0
n,gκΦn, Ls ∼= 1.07Lg ln

9η1PF
P0

, Pn,F ∼=
√

2
η1

κ2 ρnPbeam, (12)

where the effects of the energy spread σε and the emittance εx,y are phenomenologically
described by the coefficients, and verified for FELs in the wide radiation range from infrared
to hard X-rays [25–37]:

Φn ∼=
(

ζ
√

n + 0.165µ2
ε,n

)
e0.034µ2

ε,n , µε,n ∼= 2σε

n1/3 ρ̃n
,

ηn ∼= 0.942
(

e−Φn(Φn−0.9) + 1.57(Φn−0.9)
Φ3

n

)
.

(13)

The coefficient ζ describes the effect of the emittance and it is usually close to unity,
ζ ∼= 1− 1.03, for a matched beam; rarely for beams with large emittances can it increase to
ζ ≈ 1.1− 1.2; general expression is very cumbersome, it can be found in [47] and we omit
it for brevity. The effect of ζ on the second and third harmonics is usually minor, while for
the fundamental it is negligible. However, for large emittances, a proper account should be
done with ζ just as we use convolution (8) instead of (6) in this case for the spontaneous
UR intensity. The details of the phenomenological model can be found in our preceding
publications (see, for example, [32–39]).

The harmonic power in the nonlinear generation is induced by the fundamental; the re-
spective harmonic power grows faster, ∝ enz/Lg , than its independent growth
∝ ez/Ln,g [4–10,47,48,51]. The saturation of a FEL occurs usually because of the funda-
mental, because Ln,g > L1,g and the saturated harmonic powers in the nonlinear generation
are lower than the saturated powers harmonic in the independent growth; the latter can be
reached farther along the undulators, if the fundamental is suppressed. When limited by
the fundamental, the harmonic powers reach the following saturated values [46,47]:

Pn,F = ηn
P1,F√

n

(
fn

n f1

)2
. (14)

Just as for the spontaneous UR, the spectral characteristics of the FEL radiation are
therefore largely determined by the Bessel coefficients fn;x,y, where all main effects are
accounted for, while the corrections (13) in Equation (12) are influent if the respective losses
are non negligible. The harmonic powers obtained with the above formula have proved to
be in good agreement with the known documented data of all major FELs [31–38].

An alternative formulation of Huang and co-authors [52] for the FEL harmonic power
in the nonlinear generation regime expresses the third harmonic power P3, in terms of the
inducing it fundamental P1:

PHuang3 = ΘρPbeam(P1/(ρPbeam))
3; (15)

where the numerical coefficient has approximate value Θ~10−1 and it is given by a triple
integral in [52]. Evaluations of the authors of (15) in [52] and our estimations show that
(15) predicts excessively high power of the third harmonic, higher than experimental by
roughly one order of magnitude. Based on the measured data for many FELs, we propose
the phenomenological correction to it as follows: Pcorrected

Huang3 ≈ 0.1PHuang3. Then estimations
for P3 are in agreement with the data for many FELs. Estimates of the second harmonic
power in [52] involve the beam section σx,y, the power of the near odd harmonic P1 or P3,
and the bunching for the harmonics b2 and b1 or b3. This yields the estimate

PHuang2 ≈ Pn

(
λuk f2

γ2πσx,y fn

b2

bn

)2
, n = 1.3. (16)

Evidently, it is supposed that the harmonic powers and bunching values for the first
and third harmonics are harmonized with each other so that the calculated result for the
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second harmonic should not depend much on whether we choose the first or third harmonic
for reference in (16). In reality the predicted P2 values may vary by more than one order of
magnitude, dependent on whether we refer to n = 1 or n = 3 in (16). We phenomenologically
correct the systematically lower than measured predictions of Huang by the factor 10 as
follows: Pcorrected

Huang2 ≈ 10PHuang2. Then the predictions agree better with the measurements.
Another formula for P2 was derived by Geloni and coauthors in [53], where the second
harmonic power P2 is expressed in terms of the fundamental power P1 and the Fresnel
number Γ = Σ/Luλ1. The latter accounts for the difference in phases of the secondary
waves at the wavelength λ1, reaching the end of the undulator at the length Lu from the
center and edges of the beam of the cross section Σ. We rewrite formula from [53] in the
following explicit form:

PGeloni2 ≈ P1
∆
Γ

, ∆ =
(K(J0(K)− J2(K)) + J1(K))

2 + (J1(K))
2

(24π)2K(J0(K/2)− J1(K/2))2 , (17)

where Jn(K) are the Bessel functions of the argument K = k2/
(
2
(
1 + k2/2

))
[53]. It should

be noted that the conclusions of Huang and Geloni on the effect of the deflection angles are
opposite each other: according to Huang, “the deflection angle increases the radiation of the
2nd harmonic”, while according to Geloni, “the total power of the 2nd harmonic radiation
does not depend on the deflection angles, or even can decrease due to the presence of
deflection angles”. In what follows we will apply and test both formulations of Huang and
Geloni for the FELs we consider.

3. Spectral Analysis of the Radiation from the SPARC Undulators

Consider the radiation in the undulators of SPARC FEL [19,27]. Some data for the beam
and the undulators of SPARC are collected in Table 1. We calculated the spontaneous radia-
tion from SPARC both analytically and numerically with the SPECTRA program [54–57].
The SPARC UR spectrum consists of strong odd harmonics and weak even ones. This is
common for the UR from an electron beam with quite small absolute emittance εx,y~9 ×
10−9 m × rad, small divergence θdivγ ≈ 0.02 and low energy spread.

Table 1. Parameters of the beam and undulator of SPARC [19].

Electron Beam Undulator

Parameter Value Parameter Value Parameter Value

I0, A 53 σe, % 0.05–0.1 λu, cm 2.8

E, MeV 152 βx, m 1.5 Lu, m 2.1

γεx, m × rad 2.9 × 10−6 βy, m 1.5 N 75

γεy, m × rad 2.5 × 10−6 radius, µm 120 k 2.07

kE f f 2.07

3.1. The Effect of the Energy Spread

Analytical results for the harmonic intensities, obtained with (6) and (8), are undis-
tinguishable from each other; we present one of each for the spread σe = 0.1% and for
σe = 0.05% in Figure 1; they are in good agreement with numerical results, obtained with
SPECTRA code and shown in Figure 2. The effect of the energy spread on the harmonic
radiation is evidently detrimental. The comparison of the spectrum for the energy spread
σe = 0.05% with the spectrum for larger spread σe = 0.1% (Figure 1a vs. Figures 1b and 2a
vs. Figure 2b) shows expectedly weaker high harmonics for higher energy spread. The
higher the number of the harmonic, the more the losses caused by the energy spread; the
fundamental is less affected than other harmonics. Note that higher absolute values and
different shape of the envelope of the spectrum for σe = 0.05% as compared with that for
σe = 0.1%. Lower energy spread, σe < 0.05%, does not significantly modify the spectrum.
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High energy spread in a beam not only cuts off the harmonics, but prevents efficient
bunching in FELs, where the condition σe#ρn/2 determines the stable bunching at the
n-th harmonic wavelength. Since the Pierce parameter ρ is of the order of magnitude of
~10−3–10−4, a beam with high energy spread is not unsuitable for modern insertion de-
vices in UV- and X-ray range, where close to monoenergetic beams are needed to generate
coherent radiation.

Symmetry 2022, 14, x FOR PEER REVIEW 9 of 21 
 

 

 

in FELs, where the condition σeρn/2 determines the stable bunching at the n-th harmonic 

wavelength. Since the Pierce parameter ρ is of the order of magnitude of ~10−3–10−4, a beam 

with high energy spread is not unsuitable for modern insertion devices in UV- and X-ray 

range, where close to monoenergetic beams are needed to generate coherent radiation.  

 

Figure 1. Analytically computed spontaneous SPARC UR spectrum for γε = 2.8 μrad × m and the 

beam energy spread: (a) σe = 0.05%, (b) σe = 0.1%. 

  

Figure 2. Numerical SPECTRA simulation of SPARC UR spectrum for γεx,y = 2.8 μrad × m and the 

beam energy spread: (a) σe = 0.05%, (b) σe = 0.1%. 

3.2. The Effect of the Asymmetry of the Beam  

Here we analyze the effect of the divergence and asymmetry of an electron beam on 

the UR spectrum of the planar undulator. Indeed, the planar undulator distinguishes the 

direction across its field, where almost the whole power radiation is polarized. Real elec-

tron beam has finite size; this causes a weak component of radiation with the polarization 

in the plane, containing the undulator field, differently from the ideal case, when all the 

radiation is polarized across the undulator field. Moreover, the finite size of the beam 

induces even harmonics on the undulator axis and not only off the axis. Asymmetry of 

the beam affects both UR polarizations. The emittance along the undulator field causes 

even harmonics polarized across this field and vice versa. The comprehensive result for 

the harmonic power, however, does not depend significantly on the asymmetry of the 

beam. We considered the examples for the SPARC with the beam emittances γε = 2.2 μrad 

× m and γε = 3.4 μrad × m. We interchanged the parameters of the beam for the axes x ↔ 

y and showed the proper spectrum in Figures 3 and 4, distinguishing the polarizations. 

Figure 1. Analytically computed spontaneous SPARC UR spectrum for γε = 2.8 µrad ×m and the
beam energy spread: (a) σe = 0.05%, (b) σe = 0.1%.

Symmetry 2022, 14, x FOR PEER REVIEW 9 of 21 
 

 

 

in FELs, where the condition σeρn/2 determines the stable bunching at the n-th harmonic 

wavelength. Since the Pierce parameter ρ is of the order of magnitude of ~10−3–10−4, a beam 

with high energy spread is not unsuitable for modern insertion devices in UV- and X-ray 

range, where close to monoenergetic beams are needed to generate coherent radiation.  

 

Figure 1. Analytically computed spontaneous SPARC UR spectrum for γε = 2.8 μrad × m and the 

beam energy spread: (a) σe = 0.05%, (b) σe = 0.1%. 

  

Figure 2. Numerical SPECTRA simulation of SPARC UR spectrum for γεx,y = 2.8 μrad × m and the 

beam energy spread: (a) σe = 0.05%, (b) σe = 0.1%. 

3.2. The Effect of the Asymmetry of the Beam  

Here we analyze the effect of the divergence and asymmetry of an electron beam on 

the UR spectrum of the planar undulator. Indeed, the planar undulator distinguishes the 

direction across its field, where almost the whole power radiation is polarized. Real elec-

tron beam has finite size; this causes a weak component of radiation with the polarization 

in the plane, containing the undulator field, differently from the ideal case, when all the 

radiation is polarized across the undulator field. Moreover, the finite size of the beam 

induces even harmonics on the undulator axis and not only off the axis. Asymmetry of 

the beam affects both UR polarizations. The emittance along the undulator field causes 

even harmonics polarized across this field and vice versa. The comprehensive result for 

the harmonic power, however, does not depend significantly on the asymmetry of the 

beam. We considered the examples for the SPARC with the beam emittances γε = 2.2 μrad 

× m and γε = 3.4 μrad × m. We interchanged the parameters of the beam for the axes x ↔ 

y and showed the proper spectrum in Figures 3 and 4, distinguishing the polarizations. 

Figure 2. Numerical SPECTRA simulation of SPARC UR spectrum for γεx,y = 2.8 µrad ×m and the
beam energy spread: (a) σe = 0.05%, (b) σe = 0.1%.

3.2. The Effect of the Asymmetry of the Beam

Here we analyze the effect of the divergence and asymmetry of an electron beam
on the UR spectrum of the planar undulator. Indeed, the planar undulator distinguishes
the direction across its field, where almost the whole power radiation is polarized. Real
electron beam has finite size; this causes a weak component of radiation with the polar-
ization in the plane, containing the undulator field, differently from the ideal case, when
all the radiation is polarized across the undulator field. Moreover, the finite size of the
beam induces even harmonics on the undulator axis and not only off the axis. Asymme-
try of the beam affects both UR polarizations. The emittance along the undulator field
causes even harmonics polarized across this field and vice versa. The comprehensive
result for the harmonic power, however, does not depend significantly on the asymme-
try of the beam. We considered the examples for the SPARC with the beam emittances
γε = 2.2 µrad × m and γε = 3.4 µrad × m. We interchanged the parameters of the beam
for the axes x↔ y and showed the proper spectrum in Figures 3 and 4, distinguishing the
polarizations. The finite size of the beam causes even harmonics and the asymmetry of the
beam evidently affects polarizations of the UR. Note in Figures 3b and 4b as the interchange
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of the asymmetry of the beam practically does not affect odd harmonics, radiated with
the polarization across the plane of the planar undulator field. On the contrary, the beam
asymmetry affects even harmonics in the same plane, as seen in Figures 3a and 4a. The
difference in the intensities of the even harmonics is roughly 1.5 times which matches the
degree of the asymmetry: the ratio of the emittances is ~1.5 times. The average value of
the emittance matters fir the total harmonic power, so that the results for the symmetric
beam with the emittance γεx,y = 2.8 µrad×m, shown in Figures 1b and 2b, are very close
to the total harmonic power from the asymmetric beam, no matter along which axis the
emittances is greater and lower. The sum of the two polarizations for the even harmonics
in Figure 3a,b is the same as the sum of the harmonic powers in Figure 4a,b and it is
nearly identical to that shown in Figure 2b for the symmetric beam with average emittance
γεx,y = 2.8 µrad ×m.
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These results are in line with our earlier theoretical results in [43], where the analytical
calculations with generalized forms of Airy-type functions accounted for the non-periodic
two-component magnetic field across the undulator axis in both directions along and across
the field. Here we formulate the result, which follows from [43] and consists in that weak
non-periodic magnetic component, ~0.01% of the undulator field, deviates the electrons
off the undulator axis and disrupts the coherence of the electron oscillations along the
undulator, if the latter is few meters long, the effect can be noticeable. In this case, the total
power of the even harmonics, induced by the off-axis effects, depends on the degree of the
deviation of the beam off the axis, but not on the specific direction of the beam deviation
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across the undulator axis. The asymmetry is determined by the distinguished direction of
the planar undulator field and the direction of the beam deviation off the axis.

3.3. The Analysis of the FEL Harmonics in SPARC

Differently from the spontaneous radiation, the spectrum of a single-pass FEL is
usually limited to few harmonics; this is due to the nature of the FEL radiation, where
the electrons in the bunch interact with the electromagnetic wave of the radiation and the
bunching occurs at the harmonic wavelengths, which ensures their coherent radiation.
The evolution of FEL harmonics along SPARC undulators is shown in Figure 5; we show
the power evolution for the first three harmonics, n = 1,2,3, although fifth harmonic is
allowed by the conditions on the beam emittance: εx,y~λ5/4π fulfilled and the energy
spread of the beam is as low as the Pierce parameter for the fifth harmonic, σe ≈ ρ5, so
the bunching at its wavelength is possible. To demonstrate the effect of the energy spread
we modeled FEL harmonic powers for σe = 0.1% and σe = 0.05% as shown respectively in
Figure 5a,b. The saturation was not achieved in the experiment and the measurements after
the last undulator are at ≈12.5 m of pure undulator length. We calculated the gain length
Lg ≈ 0.65 m and the saturation is expected after Lg ≈ 13 m of undulator length.
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Figure 5. (a) Harmonic power evolution along SPARC undulators, λ1 = 498 nm. (a) σe = 0.05%
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Only the fundamental tone and the third harmonic were measured; the measurements
are shown by the intervals of the values after each undulator section, following the reports
in [19]. The saturation was not achieved in the SPARC experiment and maximum pulse
energy Eγ ≈ 0.01 mJ was collected after the sixth undulator close to saturation. For the
reported bunch length τe ≈ 2.5 ps we estimate photon pulse time τγ

∼=
√

2πτe
√

Lg/Ls ≈
1.5 ps and this yields the FEL power for the collected energy Eγ Pmax ≈ 7.2 × 107 W. This
value matches our result for the energy spread σe = 0.05% exactly.

Various numerical programs were used by the authors of this FEL experiment to
simulate their FEL [19,27]. They gave predictions with the discrepancy of about one order
of magnitude for the fundamental and up to two orders of magnitude for the third harmonic.
Our theoretical results are at the high end of the measured values for the maximum tuning
of the FEL and within the range of the numerical simulations, reported in [19,27]. We
calculated the amplification factor for SPARC FEL ~107 and the following harmonic content:
~0.15% for the second, ~1% for the third and ~0.08% for the fifth harmonic (the latter is not
shown in Figure 5).

Following the theoretical approach of Huang et al. as proposed in [52], we get the
third harmonic power prediction one order of magnitude higher than that measured. With
our phenomenological correction Θ in (15), we get the right result ~1%. For the second
harmonic, following [52], and using correction factor of ten in (16), we get, dependently
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on that first or third harmonics are used for reference in (16), the content of the second
harmonic P2/P1 ≈ 0.04–0.2%, in accordance with our result ~0.15%. Using the theory
from [53], we get the second harmonic power one order of magnitude higher than in
Figure 5. Our analytical calculation accounts for the effective angle of the photon-electron
interactions, γθ ≈ 0.06, which is three times the divergence angle, θdivγ ≈ 0.02, and this
yields correct values for the FEL parameters, such as the gain Lg, the saturation Ls, and
the harmonic powers. This confirms the validity of our approach, also verified in earlier
publications with other FEL experiments. For the second harmonic, our theoretical result
agrees with the results of Huang; for the fifth harmonic we get P5~0.1P3, which is expected,
though not reported, despite the fifth harmonic is being allowed: εx,y~λ5/4π and σe ≈ ρ5.
The measured radiation spectral density was 0.35% [19]. Our analytical estimation of the
spectral width with the Bessel coefficients (3) is in agreement with the experiment. The
usual estimate for SASE is ∆λ/λ ∼=

√
ρ1/(Ls/λu) ≈ 0.2%, and it is about of half of the

measured width value.

4. Spectral Analysis of the Spontaneous and Stimulated UR at LEUTL

At LEUTL FEL [17,18], the radiation wavelength λ1~530 nm is close to that at SPARC
FEL. However, the parameters of the installation are somewhat different: the beam section,
σx,y = 0.25 mm, is twice as wide as that at SPARC; the divergence, θdiv ≈ 0.17 mrad,
γθdiv ≈ 0.085, is four times larger than at SPARC, the smallest measured emittance, γεx,y~6
× 10−8 m × rad, is seven times larger than at SPARC. Thus, the main difference between
LEUTL and SPARC is in the beam emittance, which is much larger at LEUTL. Some data
for the beam and undulators of LEUTL are given in Table 2.

Table 2. Parameters of the beam and undulator of LEUTL [18].

Electron Beam Undulator

Parameter Value Parameter Value Parameter Value

I0, A 210 σe, % 0.1 λu, cm 3.3

E, MeV 217 βx, m 1.5 Lu, m 2.4

γεx, m × rad 5.9π × 10−6 βy, m 1.5 N 72

γεy, m × rad 6.4π × 10−6 radius, µm 430 k 3.1

kE f f 3.1

Considering the given characteristics of the LEUTL beam, the betatron effects may
contribute in it to the harmonic radiation from LEUTL undulators. We have studied the
case carefully and accounted for the betatron effects and large emittance by taking the
convolution (8) with the Bessel coefficients (3), where the contributions from betatron
oscillations are distinguished; we compared the result with that we obtained with the
simple energy spread convolution (6). The analytical spectrum of the spontaneous UR from
LEUTL is shown in Figure 6. Note that the rate of even harmonics in LEUTL is significant,
contrary to the spectrum of SPARC. This is mainly due to the angular effects, rather than
to the betatron oscillations; the latter contribute less than a quarter to the total intensities,
while three quarters and more for high harmonics come from the angular effects. The Bessel
coefficients for the harmonics n = 1, . . . , 10 read as follows: fn = {0.753, 0.073, 0.334, 0.077,
0.218, 0.078, 0.158, 0.078, 0.119, 0.076}. The betatron contributions to the odd harmonics are
absolutely negligible. For even harmonics n = 2,4,6,8,10 the betatron terms of the Bessel
coefficients read as follows: f 2,4,6,8,10 beta = {0.019, 0.014, 0.011,0.009, 0.008}. They produce
some effect on the intensities of even harmonics, but the difference in figures can be barely
noticed and we omit them for brevity.
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Figure 6. Analytically computed LEUTL spontaneous UR spectrum, γε = 6.2 µrad × m:
(a)—with comprehensive energy spread and angle convolution (8), (b)—with common energy spread
convolution (6).

The account for the energy spread and angular effects on the UR is done with the
comprehensive convolution (8) and the resulting spectrum is shown in Figure 6a. The
UR spectrum that accounts only for the energy spread is computed with the common
convolution (6) and is shown in Figure 6b. The emittance of LEUTL beam is significant and
the associated angular effects spread the radiation lines to a kind of Airy-type function,
different from the ideal sinc-type function. This affects high harmonics more than low
ones and for the considered LEUTL it makes a difference: when counting with (8), the
fifth harmonic is weaker than the fundamental contrary to that when counting with (6),
when the fifth harmonic is stronger than the fundamental. Note, that for SPARC the results
obtained with (8) vs. (6) were the same.

Complex numerical simulation with SPECTRA code yields upon numerical solution of
the set of equations for charges, the spectrum of LEUTL spontaneous UR in Figure 7. Note,
that the spectrum in Figure 7 is closer to that in Figure 6a, obtained with comprehensive
convolution (8); The result of simple energy spread convolution (6) in Figure 6b agrees less
well with the accurate numerical result of SPECTRA in Figure 7.
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Figure 7. LEUTL spontaneous UR spectrum: numerical result of SPECTRA.

We estimated the split of the radiation line that was due to the betatron oscillations
in the beam and found the distance between betatron harmonics within the UR line δλ ∼=
kλ/n

√
2γ
∣∣∣
n=1
∼= 2.7 nm. For the Bessel function J̃p (4), describing the betatron split, we

found for the betatron harmonics p = –3, . . . , 3 the values J̃p = {0.00, 0.08, 0.47, 0.75, 0.43,
0.16, 0.04}. The main contribution thus comes from p = −1,0,1. Then we get the split width
∆ ≈ 5.5 nm for the radiation wavelength λ1 = 532 nm. This yields the spectral density
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∆/λ ≈ 0.01, comparable with the natural line width at its half-height: 0.9/N = 0.0125 for
the undulator of 72 periods at LEUTL.

Among many FEL experiments at LEUTL, we consider that where the most complete
set of measurements for the radiation was performed and documented in [18] (see some
data in Table 2). The fundamental and the second harmonics were carefully measured
along the undulators [18]; experimental values are shown in Figure 8a by colored dots; the
domain 1–2% for the third harmonic is shown by the green area after 16 m. Our theoretical
results for the harmonic evolution are shown by the colored lines. Importantly, when
computing the FEL harmonic powers, we must account not only for the emittance and
betatron effects, but also for the effective angles of the electron-photon interaction in the
beam. Otherwise the calculated second harmonic power is significantly lower than that
measured. This was underlined in our earlier publications [32–36].
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Figure 8. (a) Harmonic power evolution along LEUTL undulators, λ1 = 540 nm; the harmonics
are denoted by colored lines: n = 1—red solid, n = 2—orange dash-dotted, n = 3—green dashed,
experimental range for the third harmonic content, 1–2%, is shown by the green area, experimental
values for the second and fundamental are shown by colored dots, following the reports in [18];
(b) radiation spectral density: theoretical calculation—blue line, measured bandwidth—red line.

We also estimated the harmonic powers using the theory of Huang [52] without
corrections and using the theory of Geloni [53]. Following Huang with our corrections,
we get for the third harmonic the estimate P3~1 MW, matching our prediction and the
measured range denoted by the green zone in Figure 8a. For the second harmonic power,
following Huang with our corrections, dependently on whether we refer to the third or
first harmonic power, we respectively get the range P2~100–600 kW, which is within the
experimental range of values, denoted by the orange dots after 15 m. Estimate for the
second harmonic power, using the approach of Geloni yields the value P2~350 kW, in
the middle of the experimental range of saturated powers of the second harmonic. Our
own theoretical result is obtained accounting for the effective angle θ of interactions of the
electrons with radiation in the undulator on one gain length Lgain = 0.75 m: θ ≈ σx,y/Lgain

≈ 0.28 mrad, γθ ≈ 0.12. This angle exceeds, but not greatly, the divergence at LEUTL:
γθdiv ≈ 0.07. Accounting for θ, we obtain the following Bessel coefficients for the first
five harmonics: fn=1,2,3,4,5 ≈ {0.75, 0.14, 0.31, 0.15, 0.18} and the resulting harmonic power
evolution nicely agrees with the measurements in both linear and nonlinear generation
regimes (see Figure 8a). Otherwise, accounting only for emittances and betatron oscillations,
we get the theoretical value for the power of the second harmonic one order of magnitude
lower than that measured. For even harmonics we distinguish analytically and compute
the Bessel factor terms, associated with betatron effects; they are small and comparable
with the terms in y-polarization because of the angular effects (see (3)): f β

n=2,p~ fn=2,y ≈ 0.02;
we get larger contribution in x-polarization from the electron-photon interaction angle
θ; the relation is as follows: fn=2,x ≈ 0.14 >> fn=2,y~ f β

n=2,p ≈ 0.02. Our theoretical curves
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nicely lay between the measured values. The calculated gain Lg = 0.75 m and saturation
Ls = 16 m lengths agree with the experiment report in [18].

Estimates from the original Huang work [52] without our correction for the third
harmonic appears one order of magnitude higher than the measured P3; for the second
harmonic the original theory [52] predicts one order of magnitude lower values than the
measured P2. The estimate for P2 from Geloni [53] is within the range of the measured
values between the orange dots after 16 m in Figure 8a.

Note, that the conditions εx,y ≤ λ0/4π,σe ≤ ρ/2 are fully satisfied only for the funda-
mental; for the harmonics they are just weakly satisfied: εx,y~λ2,3/4π and
σe ≈ ρ2 ≈ 0.7ρ3. We also estimated spectral density of the radiation at LEUTL; accounting
for p = {0,±1} in (3), which gives the main contribution, we obtain spectral density
δλ/λ~0.8%, in agreement with the reports in [18]; proper measured result is shown by the
red line in Figure 8b, while our theoretical estimate is shown by the blue line in Figure 8b.

5. Spectral Analysis of the Spontaneous and Stimulated UR at LCLS

In this section we address the spontaneous and stimulated radiation properties of the
first ever built and arguably best documented X-ray FEL, LCLS [15,16]. It has undulators
with fixed deflection parameter k = 3.5 and it generates radiation at 1.5 nm and 0.15 nm
for two different energies of the beam. Some data on the LCLS beam and undulators are
collected in Table 3.

Table 3. Parameters of the beam and undulator of FEL LCLS.

Electron Beam Undulator

Parameter Value Parameter Value Parameter Value

γ-factor 8400 I0, kA 1 λu, cm 3

γεx,y, µm × rad 0.4 βx,y, m 10 L, m 3.4

σx,y, µm ~23 σe, % 0.03 N 113

γ-factor 26,600 I0, kA 3.5 k 3.5

γεx,y, µm × rad 0.4 βx,y, m 25 ke f f 3.5

σx,y, µm ~30 σe, % 0.01

The spontaneous UR spectrum of LCLS undulators displays a long array of odd
harmonics, while even harmonics are minor even at angles close to divergence as shown in
Figure 9a; our numerical simulations with SPECTRA yield the result, shown in Figure 9b.
Low content of even harmonics is due to low emittance of the beam and high content of
higher odd harmonic is due to large value of the deflection parameter k and low losses.
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Regarding the contribution from betatron oscillations, the proper Bessel factor, for
example, for the second harmonic reads f beta

2 ~0.002; however, the total value of the Bessel
coefficients for the harmonics n = 2,4,6 is one order of magnitude larger: f 2,4,6~0.02. The
effect of the betatron oscillations on the spectrum is minor if not negligible; it can-not be
distinguished by the naked eye in figures and we omit proper plots. The radiation line
splits in betatron harmonics that are due to the betatron oscillations. In the low emittance
beam of LCLS, the main contribution comes from p = −2, . . . , 2; the betatron harmonics
in the split are distant by δλ ∼= kλ/n

√
2γ
∣∣∣
n=1
∼= 0.45 pm from each other. The total split

width is therefore ∆ ≈ 1.8 pm and proper spectral density ∆/λ ≈ 0.1%; this is much less
than the natural UR line width of the LCLS undulator with N = 113 periods: 0.9/N = 0.8%.
Thus, the betatron split width is well within the radiation line width.

The LCLS FEL experiments [15,16], have been explored theoretically in a long array of
studies in the preceding publications [23–39]. We briefly outline the theoretical predictions
of our formalism and the predictions, based on the corrected formulae by Huang and Geloni
for the harmonic powers for the FEL radiation from beam with the energy E = 4.3 GeV. Our
results are demonstrated in Figure 10 together with the experimentally measured saturated
harmonic powers [15,16].
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Figure 10. (a) The harmonic power evolution along the undulators in LCLS FEL, λ1 = 1.5 nm. The
harmonics are denoted by colored lines: n = 1—red solid, n = 2—orange dashdotted, n = 3—green
dashed, n = 5—blue dotted. The reported harmonic power range [16] is shown by the colored areas.
Estimations for the 2nd harmonic powers are denoted by the orange lines: by Huang with our
correction—solid thick and thin orange lines, by Geloni—dotted orange line. Estimate for the third
harmonic power by Huang with our correction—dashed green line. (b) Radiation spectral density:
theoretical calculation—blue line, design bandwidth—red line.

The measured third harmonic content was ≈2% (green line and area in Figure 10);
occasional drop off to 0.2% because of poor FEL performance on the day of the measurement
is omitted here. The content of the fifth harmonic was estimated at the experimental station
at ~1/10 of the third harmonic content, i.e., ~0.2%. The proper area and theoretical result are
denoted in blue in Figure 10. The measured second harmonic content was ~0.04–0.1% and is
shown by the orange area in Figure 10. Our theoretical result for the second harmonic power
is denoted by the orange dotdashed line; it is in the orange area of measured saturated
power values. The collected FEL pulse energy in the experiment was Eγ = 1 mJ; for the
reported electron bunch length τe = 0.2 ps we get the power ≈ 7 GW. The average reported
saturated energy in all experiments was 1–2 mJ for the photon pulses of ~100–300 fs; this
yields similar average power: 7.5 GW and the experimental range is denoted by the red
area in the saturation domain after 26 m. Our result also fits these measurements. For the
third and the fifth harmonic powers we obtain theoretical values also laying within the
experimental range. Predictions for the third harmonic by Huang with our correction are
close to the experimental result. For the second harmonic original theory of Huang predicts,
as usual, one order of magnitude lower power than measured; however, the corrected
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formula of Huang yields right result. The theory of Geloni (17) predicts second harmonic
some stronger than experimental at LCLS in soft X-ray band.

The design spectral density for LCLS radiation was ~0.1%; our calculations agree with
it as shown in Figure 10b. The estimate for SASE also yields ∆λ/λ ∼=

√
ρ1/(Ls/λu) ≈

0.1%. In real device the performance was sometimes less good and the measured values
varied: ~0.1–0.5%.

6. Conclusions

In this work we addressed the spectral properties of the radiation from some FEL
undulators and beams and explored the effect of the beam parameters and beam symmetry
on the spectrum and on the radiation of harmonics. Special attention was paid to the
effect of the symmetry and divergence of the beam on the radiation properties. For two
FELs SPARC and LEUTL both radiating at λ~500 nm, and their proper undulators and
beams with similar energies and energy spread, but different emittances, we compared
the spontaneous and single-pass FEL radiation. At the end we considered the LCLS FEL
X-ray radiation. In our analytical technique we used the generalized forms of Bessel and
Airy-type functions to account for all main factors affecting the radiation. We computed
the common convolution with the Gaussian energy spread distribution and the advanced
convolution with generalized Airy-type function to account for the shape and asymmetry
of the spectral line of the spontaneous UR in beams with large emittances. We especially
compared the spectrum for asymmetric beams and explored the effect of the beam axial
asymmetry on the UR spectrum. Numerical studies with SPECTRA program were done for
that purpose. Spectra simulations also confirmed our other analytical results for the effect
of the energy spread etc. We also studied FEL harmonic powers using several different
theoretical approaches, developed by different authors, and applied them to SPARC, LEUTL
and LCLS.

Our theoretical analysis fully agrees with the existing data for SPARC, LEUTL and LCLS.
For the spontaneous UR we found that the asymmetry of the beam and its deviation

off the axis in one plane expectedly causes asymmetry in the radiation pattern in the normal
plane. We considered the UR in the case of the break of the symmetry that was due to the
distinguished direction of the field of a planar undulator and of the definite asymmetry
of the beam imposed by its different from each other emittances. This appeared to have
no effect on the resulting harmonic powers. The latter depend on the degree of the beam
deviation off the axis and the direction does not matter. Similarly, the asymmetry of the
beam caused by different emittances in the directions across the axis itself does not affect the
total harmonic power, but effects the distribution of the harmonic power in polarizations.
The total harmonic power, however, senses the average emittance and divergence and
is not affected by the asymmetry of the beam, provided the average vale of emittance
is preserved.

Large emittance of the beam, such as at LEUTL, may increase even harmonic radiation
on the axis but the asymmetry of the beam sections does not matter for the harmonic
power. Spontaneous radiation of LEUTL presents a high rate of even harmonics in the
direction of divergence, while their rate is minor on the axis. At the same time relatively
large angular contributions asymmetrically broaden the radiation line, so that the account
for the energy spread alone with typical symmetric Gaussian convolution did not match
the numerical results of SPECTRA. We had to account analytically for the change of the UR
line shape from symmetric sinc function to the asymmetric Airy-type generalized function.
The convolution with the latter yielded the spectrum in agreement with the numerically
simulated by SPECTRA program. The change of the harmonic powers, described by
the Airy-type function, reached ~30–50% as compared with the common symmetric sinc
function. Contrary to LEUTL, the SPARC and LCLS undulators with their proper beams
radiate weak even harmonics because of small emittances.

For the FEL radiation we confirm the detrimental effect of the energy spread on the
harmonic in particular, but for the range of the spread σe~0.05–0.1% simulations matched
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the experimental range of values for the FEL powers along the undulators. Even harmonics
in the FEL radiation appear because of the effective angles of photon–electron interaction
in the beam and they do not sense the asymmetry of the beam. Off the axis beam deflection
may affect FEL harmonic powers, but the direction of the deflection has no effect. In
LCLS the beam deflection may be comparable with the effective angle of electron-photon
interaction in a very narrow beam; the second harmonic in LCLS ~0.04–0.1% is due to both
angles. LEUTL FEL has quite high second harmonic content ~0.5% because of the wide
beam and large effective angle. SPARC second harmonic content ~0.1% is also explained
by the effective angles of photon–electron interaction, while the emittance is small. The
third harmonic in all three FELs has ~1% content. A fifth harmonic is possible in LCLS and
SPARC, while in LEUTL it is limited by large beam divergences. The results agree with
known measured values for all three FELs.

The estimates with the original theory from [52] for the FEL harmonic powers yield
a too strong third harmonic and a too weak second harmonic. We have introduced phe-
nomenological corrections, which restore agreement with experiments for the formalism
of Huang [52]. We confirm the conclusions of Huang et al. that the second FEL harmonic
power depends on the off-axis angles in particular, on the deflection angle and it increases
if they rise; however, we specify that for a FEL the angle of photon–electron interaction in
the undulator on the gain length usually exceeds the deflection angles and it plays a role
rather than other angular effects. The theory from [53] gives reasonable estimates for the
second FEL harmonic powers except for SPARC, where the prediction appears too high.
The conclusion of Geloni et al. that off-axis deflection has no effect on the even harmonics
is contradictory. It is true in the sense that the even harmonics in a FEL originate mainly
from the angles of electron-photon interaction and not from the beam deflection. However,
even harmonics originate from the angular effects, as we have analytically demonstrated,
and if the deflection is comparable with the electron–photon interaction angles, then both
of them matter like in LCLS undulators.

The proposed analytical technique gives correct and accurate estimates for the har-
monic content in undulator radiation even in the cases when the beam is far from ideal,
in the presence of noticeable angular and betatron effects, distorting the radiation lines.
The betatron effects, as we have demonstrated analytically, have minor effect for harmonic
powers, but they may split the radiation lines noticeably. Our approach can be applied
to any other FEL for theoretical analysis of its UR and FEL radiation and study of possi-
ble effects of the beam parameters on the harmonic radiation. This may be used in both
operating FELs and in the installations under upgrade or being built.
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