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Abstract: In the recent past, multi-term fractional equations have been studied using symmetry meth-
ods. In some cases, many practical test problems with some symmetries are provided to demonstrate
the authenticity and utility of the used techniques. Fractional-order differential equations can be
formulated by using two types of differential operators: single-term and multi-term differential
operators. Boundary value problems with single- as well as multi-term differential operators have
been extensively studied, but several multi-term fractional differential equations still need to be for-
mulated, and examination should be done with symmetry or any other feasible techniques. Therefore,
the purpose of the present research work is the formulation and study of a new couple system of
multi-term fractional differential equations with delay, as well as supplementation with nonlocal
boundary conditions. After model formulation, the existence of a solution and the uniqueness
conditions will be developed, utilizing fixed point theory and functional analysis. Moreover, results
related to Ulam’s and other types of functional stability will be explored, and an example is carried
out to illustrate the findings of the work.

Keywords: fractional differential equations; multi-term operators; existence and uniqueness of
solution; functional stability; delay term
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1. Introduction

The study of fractional-order mathematical models, which govern real-world prob-
lems appearing in various disciplines of engineering, has been extensively improved by
the methods of fractional calculus. The main reason for the importance of the selection
of fractional-order differential and integral operators is the nonlocal behavior of these
operators. Theoretical and applied aspects of fractional-order differential equations have
been extensively explored. Agarwal et al. in [1] used Pettis integral and nonreflexive
Banach spaces to establish results related to the existence of Abel’s integral equation and
Cauchy type problem. A new aspect known as practical stability has been studied by the
authors in [2]. This new notion of stability enables us to study the behavior of a couple
of solutions when both initial values and intervals are different. Positive solutions for a
class of boundary value problem, equipped with p-Laplacian operator and multipoint, are
studied with the help of a fixed-point theorem of mixed-type monotone operators [3]. To
see the effect of initial conditions on the fractional derivative, a model is formulated in [4],
which also discusses the delay differential equation for the existence of a solution.

Besides the theoretical aspects of fractional differential equations, some applications
of this emerging field can also be found in economics, ecology, immune systems, pathology,
and chaos theory [5–10]. In this connection, various researchers have been inspired by the
great popularity of fractional differential equations (FDEs) and used the theory to some
extent. Numerical investigation of Whitham–Broer–Kaup equations was carried out by Ali
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et al. in [11], utilizing Laplace transform together with Adomian decomposition method.
For more exploration of the numerical solution of partial and ordinary FDEs, one can refer
to [12–15]. More information regarding the theoretical and practical development of FDE
can be found in [16–21] and the references therein.

Another important aspect of FDE is the investigation of the well posedness of a
model formulated via fractional differential operator. In this connection, the existence
and uniqueness of a solution studied by various techniques, such as monotone iterative
technique, were discussed in [22]; topological degree theory was the concern in [23]; a
method of successive approximation was developed in [24]; fixed point index theory was
used in [25], and tools of fixed point theory (FPT) were used in [26]. For more details, see
the recent work cited as [27–30].

Initial and boundary values problems (BVP) of ordinary and fractional-order dif-
ferential equations have many applications in the modeling of biological problems and
dynamical systems. Nevertheless, many physical, chemical, and other processes depend
not only on boundary points but on the interior of the domain. Therefore, to analyze the
underlying problem, we need a novel boundary and initial conditions called the nonlocal
conditions. These special types of conditions relate initial and boundary values of the
solution to their values in the interior points of the domain [31]. For further details, [32–34]
can enrich the reader’s understanding regarding nonlocal conditions.

The first FDE supplemented the classical boundary condition with two points and
was studied by Benchohra et al. in [35] using results from nonlinear analysis and FPT. The
authors first converted the underlying problem to the corresponding integral equation and
then used Schaefer’s fixed point theorem for the existence of a solution. Furthermore, the
solution uniqueness result was also developed by utilizing the Banach contraction principle.
To be precise, the model under consideration is given as follows:

cDα1V (t) = E (t, V (t)), 0 ≤ t ≤ T,

a0V (0) + a1V (1) = c,

where a0, a1, c, and T are arbitrary constants, with the given condition that the sum of a0
and a1 must be a non-zero real number together with T > 0. The fractional differential
operator used in the above-mentioned model is the Caputo operator, which is symbolized
as cDα1 , where α1 is any real number from the semi-open interval (0,1]. Furthermore, the
operator E is a given continuous function in the corresponding domain. The authors also
stated that the problem under consideration takes the form of an initial value problem for
a0 = 1 and a1 = 0, while the terminal value problem can be obtained by fixing a0 = 0 and
a1 = 1.. An appropriate example was also given to justify the obtained results.

The imposing nonlocal conditions on the unknown function of second-order FDE
were investigated in [36]. The author derived the desired result by using Krasnoselskii’s
fixed point theorem and Banach contraction to demonstrate the existence of a solution to
the following model:

cDα1V (t) = H (t, V (t)), 0 ≤ t ≤ 1,

a0V (0)− a1V
′(0) = a2V (σ1), b0V (1) + b1V

′(1) = b2V (σ2).

Here, the nonlinear function H : [0, 1] × R 7→ R is a given continuous function,
while ai, bi(i = 1, 2, 3) are taken from the set of all real numbers. The points σ1 and
σ2 are taken from the interior of the domain, and the considered model uses a Caputo
fractional derivative of order α1, which is mathematically symbolized as cDα1 , where
α1 ∈ (0, 2]. Moreover, the arbitrary constant should not satisfy the following condition:
(a2 + a3σ1)(b1 − b3) = (b1 + b2 − b3σ2)(a1 − a3).

Another example is related to geophysical morphodynamics. This type of investigation
is associated with the dynamical aspect of coastlines and sandbanks [37]. Based on these
applications, researchers recently studied mathematical aspects and different types of
stabilities for a coupled system of fractional-order differential equations.
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In real-world problems, there exist several phenomena that can be modeled and
studied by a coupled system of differential equations, rather than other types of differential
equations. Among various other applications, binary fluid convection is an example of
fractional calculus in physics [38]. In binary fluid convection, two ideal infinitely long
plates are considered as a channel for fluid flow.

In this regard, Ahmad et al. [39] investigated the following coupled system of panto-
graph differential equations:

cDηV1(t) = F (t, V1(t), V1(λt), V2(t)),
cDβV2(t) = K (t, V2(t), V2(λt), V1(t)), η, β ∈ (0, 1], 0 < λ < 1, t ∈ [0, 1],

h1(V1) = a1V1(0)− b1V1(ζ1)− c1V1(1), h2(V2) = a2V2(0)− b2V2(ζ2)− c2V2(1).

(1)

Here, the domain of the unknown function is unit interval [0,1], while the nonlinear
functions F , K : [0, 1] × (−∞, ∞)[3] 7→ (−∞, ∞) are continuous. The given continuous
function h1, h2 : C([0, 1], R) 7→ (−∞, ∞), which is involved in the auxiliary conditions,
makes the considered problem non-local, and the arbitrary constants aj, bj(j = 1, 2, 3) will be
chosen from the set of real numbers. The aforementioned system of FDEs utilized a Caputo
derivative of order η and β, symbolized as cDη and cDβ, respectively. The arbitrary constants
from the set of real numbers can be chosen such that aj − bj − cj 6= 0 for j=1,2. The solution’s
existence and uniqueness were obtained by using FPT and results from non-linear analysis.
Furthermore, after deriving the integral form of the solution, the considered problem
Equation (1) was studied with the help of an operator. Banach contraction principle and
Shafer’s fixed point theorems were considered in developing the desired results. Moreover,
the results for Ulam–Hyres (UH) and generalized Ulam–Hyres (GUH) stability together
with appropriate examples were also considered.

The study of differential equations equipped with multi-term differential operators of
fractional orders has been given very little attention. Exploration of the functional stability
of such kinds of multi-term differential operators has been given negligible attention.
Therefore, motivated by the existence results discussed above and applications of multi-
term FED, we formulate a new model here. This novel model consists of a coupled system
of FDEs containing more than one fractional derivative of first order supplemented with
non-local boundary conditions. The novel aspects of our newly formulated model are as
follows: To the best of our knowledge no contribution exists regarding the formulation
of coupled systems of FDEs, equipped with multi-term fractional differential operators.
Therefore, the formulation of a coupled system with n-fractional differential multi-term
differential operators is the first novel aspect of our work. As mentioned, less attention is
given to the functional stability of multi-term FDEs, so our analysis of the four types of UH
stability is our second novel aspect. The final novel aspect is the incorporation of nonlocal
conditions and proportional type delay. The model under consideration is given as follow:

n

∑
i=1

σi
cDαiV1(t) = f1(t, V1(t), V1(λ1t), V2(t)), λ1, λ2, t ∈ [0, 1],

n

∑
i=1

ηi
cDβiV2(t) = f2(t, V2(t), V2(λ2t), V1(t)), αi, βi ∈ (0, 1], for i = 1, 2, 3, . . . , n

g1(V1) = a1V1(0)− b1V1(ζ1)− c1V1(1), g2(V2) = a2V2(0)− b2V2(ζ2)− c2V2(1).

(2)

In the considered problem Equation (2), standard Caputo fractional-order derivatives
of order αi, βi ∈ (0, 1], symbolized as cDαi , cDβi (i = 1, 2 . . . , n), are utilized with the
conditions that α1 > αi and β1 > βi for i = 2, 3, . . . , n. The auxiliary conditions imposed on
the given problem are nonlocal due to the points ζ1 and ζ2 being chosen from the interior
of the domain. The arbitrary constants ηi, σi, aj, bj, cj, (j = 1, 2), (i = 1, 2, . . . , n) can be
selected from the set of real numbers, with conditions that η1 6= 0, σ1 6= 0, a1 6= b1 + c1,
and a2 6= b2 + c2. The non-linear functions f1, f2 : [0, 1] × R × R × R 7→ R and g1, g2 :
C([0, 1], R)× R 7→ R are continuous, where 1 ∈ R is any real number greater than zero.
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The scope of work for studying the model represented in Equation (2) is given as
follows: The tools of FPT and functional analysis will be used to obtain the conditions for
solution existence and uniqueness. In this regard, the problem under consideration will
be converted into an integral equation and then to a fixed point problem. To achieve our
goals, we will impose certain assumptions on the given functions and arbitrary constants.
Furthermore, Banach’s contraction principle and Krasnoselskii’s fixed point theorem will
be used in the investigation of uniqueness and at least one solution, respectively. Moreover,
the solution of the problem under consideration has interesting behavior under certain
assumptions imposed on the given data. In addition to the above, results regarding Ulam’s
type stability, such as UH, GUH, UH Rassias, and GUH Rassias, will be derived. For
verification of the obtained results, we give an appropriate example.

The structure of the rest of the paper is as follows. Basic supporting results will be
given in Section 2. The results that rely on Krasnoselskii’s fixed point theorem and Banach
contraction principle will be provided in Section 3. Stability-related results are explored in
Section 4. An elaborating example is provided at the end of the obtained results.

2. Preliminaries

This section of research is devoted to basic results and definitions of FPT and fractional
calculus, which will be needed for investigation of the main work.

Definition 1 ([17]). “The integral of fractional-order α of a function V (t) ∈ L[0, d] is denoted by
IαV (t) and defined as

IαV (t) =
∫ t

0

V (χ)

Γ(α)(t− χ)1−α
dχ,

provided that the right-hand side is pointwise convergent“.

Definition 2 ([17]). “The fractional-order Caputo derivative for a function V (t) ∈ L1([0, d], R+)
on the interval [0, d] is defined as

cDαV (t) =
∫ t

0

V n(χ)

Γ(n− α)(t− χ)α+1−n dχ,

provided that the right-hand side is pointwise convergent. Where n = dαe, and dαe is defined to be
the smallest integer equal or greater than α”.

Theorem 1 ([17]). “The solution of FDE

cDαV (t) = 0, where n− 1 < α ≤ n,

is given by

V (t) = A1 + A2t + A3t2 + A4t3 + ..........Antn−1,

where Ai ∈ R for i = 1, 2, . . . , n”.

Lemma 1 ([17]). “The relation between fractional-order integral and derivative is given as

Iα[cDαV (t)] = A1 + A2t + A3t2 + A4t3 + ..........Antn−1 + V (t),

where Ai ∈ R for i = 1, 2, . . . , n”.

Theorem 2 ([40]). “ Assume that H is a non-empty, convex, bounded, and closed subset of a
Banach space X . Let J1 and J1 be two operators, provided that J1U1 +J2U2 ∈ H whenever
U , U2 ∈ H, J1 is continuous and compact, and J2 is a contraction map. Then, we get U ∈ H,
provided that U = J1U +J2U ”.
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3. Main Result

This section is devoted to the main results associated with our newly formulated
model.

Theorem 3. For N1, N2 ∈ C(J, R), the solution of system of linear MFDDEs,

n

∑
i=1

σi
cDαiV1(t) = N1(t),

n

∑
i=1

ηi
cDβiV2(t) = N2(t), αi, βi ∈ (0, 1], for i = 1, 2, 3, . . . , n, t ∈ [0, 1],

g1(V1) = a1V1(0)− b1V1(ζ1)− c1V1(1), g2(V2) = a2V2(0)− b2V2(ζ2)− c2V2(1),

(3)

is given by

V1(t) = −d1g1(V1)−
d1b1

σ1Γ(α1)

∫ ζ1

0
(ζ1 −U )α1−1N1(U )dU

+
n

∑
i=2

d1b1σi
σ1Γ(α1 − αi)

∫ ζ1

0
(ζ1 −U )α1−αi−1V1(U )dU − d1c1

σ1Γ(α1)

∫ 1

0
(1−U )α1−1N1(U )dU

+
n

∑
i=2

d1c1σi
σ1Γ(α1 − αi)

∫ 1

0
(1−U )α1−αi−1V1(U )dU +

1
σ1Γ(α1)

∫ t

0
(t−U )α1−1N1(U )dU

−
n

∑
i=2

σi
σ1Γ(α1 − αi)

∫ t

0
(t−U )α1−αi−1V1(U )dU ,

V2(t) = −d2g2(V2)−
d2b2

η1Γ(β1)

∫ ζ2

0
(ζ2 −U )β1−1N2(U )dU

+
n

∑
i=2

d2b2ηi
η1Γ(β1 − βi)

∫ ζ2

0
(ζ2 −U )β1−βi−1V2(U )dU − d2c2

η1Γ(β1)

∫ 1

0
(1−U )β1−1N2(U )dU

+
n

∑
i=2

d2c2ηi
η1Γ(β1 − βi)

∫ 1

0
(1−U )β1−βi−1V2(U )dU +

1
η1Γ(β1)

∫ t

0
(t−U )β1−1N2(U )dU

−
n

∑
i=2

ηi
η1Γ(β1 − βi)

∫ t

0
(t−U )β1−βi−1V2(U )dU ,

(4)

where d1 = 1
−a1+b1+c1

, d2 = 1
−a2+b2+c2

, a1 − b1 − c1 6= 0, and a2 − b2 − c2 6= 0.

Proof. Applying fractional-order integral Iα1 , Iβ1 on Equation (3), and in view of Lemma (1),

V1(t) = A1 +
1

σ1Γ(α1)

∫ t

0
(t−U )α1−1N1(U )dU

−
n

∑
i=2

σi
σ1Γ(α1 − αi)

∫ t

0
(t−U )α1−αi−1V1(U )dU ,

V2(t) = B1 +
1

η1Γ(β1)

∫ t

0
(t−U )β1−1N2(U )dU

−
n

∑
i=2

ηi
η1Γ(β1 − βi)

∫ t

0
(t−U )β1−βi−1V2(U )dU .

(5)
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Now, by using the subsidiary condition Equation (3) in Equation (5),

A1 = −g1(V1)
1

−a1 + b1 + c1
− 1
−a1 + b1 + c1

b1

σ1Γ(α1)

∫ ζ1

0
(ζ1 −U )α1−1N1(U )dU

+
1

−a1 + b1 + c1

n

∑
i=2

b1σi
σ1Γ(α1 − αi)

∫ ζ1

0
(ζ1 −U )α1−αi−1V1(U )dU

− 1
−a1 + b1 + c1

c1

σ1Γ(α1)

∫ 1

0
(1−U )α1−1N1(U )dU

+
1

−a1 + b1 + c1

n

∑
i=2

c1σi
σ1Γ(α1 − αi)

∫ 1

0
(1−U )α1−αi−1V1(U )dU ,

B1 = −g2(V2)
1

−a2 + b2 + c2
− 1
−a2 + b2 + c2

b2

η1Γ(β1)

∫ ζ2

0
(ζ2 −U )β1−1N2(U )dU

+
1

−a2 + b2 + c2

n

∑
i=2

b2ηi
η1Γ(β1 − βi)

∫ ζ2

0
(ζ2 −U )β1−βi−1V2(U )dU

− 1
−a2 + b2 + c2

c2

η1Γ(β1)

∫ 1

0
(1−U )β1−1N2(U )dU

+
1

−a2 + b2 + c2

n

∑
i=2

c2ηi
η1Γ(β1 − βi)

∫ 1

0
(1−U )β1−βi−1V2(U )dU .

(6)

One can obtain the desired solution Equation (4) by using Equation (6) in (5) and
assuming that d1 = 1

−a1+b1+c1
6= 0, d2 = 1

−a2+b2+c2
6= 0.

Corollary 1. In view of Theorem (3), the solution of the given system of MFDDEs

n

∑
i=1

σi
cDαiV1(t) = f1(t, V1(t), V1(λ1t), V2(t)), λ1, λ2 ∈ [0, 1],

n

∑
i=1

ηi
cDβiV2(t) = f2(t, V2(t), V2(λ2t), V1(t)), αi, βi ∈ (0, 1], for i = 1, 2, 3, . . . , n, t ∈ [0, 1],

g1(V1) = a1V1(0)− b1V1(ζ1)− c1V1(1), g2(V2) = a2V2(0)− b2V2(ζ2)− c2V2(1),

is given by

V1(t) = −d1g1(V1)−
d1b1

σ1Γ(α1)

∫ ζ1

0
(ζ1 −U )α1−1 f1(U , V1(U ), V1(λ1U ), V2(U ))dU

+
n

∑
i=2

d1b1σi
σ1Γ(α1 − αi)

∫ ζ1

0
(ζ1 −U )α1−αi−1V1(U )dU

− d1c1

σ1Γ(α1)

∫ 1

0
(1−U )α1−1 f1(U , V1(U ), V1(λ1U ), V2(U ))dU

+
n

∑
i=2

d1c1σi
σ1Γ(α1 − αi)

∫ 1

0
(1−U )α1−αi−1V1(U )dU

+
1

σ1Γ(α1)

∫ t

0
(t−U )α1−1 f1(U , V1(U ), V1(λ1U ), V2(U ))dU

−
n

∑
i=2

σi
σ1Γ(α1 − αi)

∫ t

0
(t−U )α1−αi−1V1(U )dU ,
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V2(t) = −d2g2(V2)−
d2b2

η1Γ(β1)

∫ ζ2

0
(ζ2 −U )β1−1 f2(U , V2(U ), V2(λ2U ), V1(U ))dU

+
n

∑
i=2

d2b2ηi
η1Γ(β1 − βi)

∫ ζ2

0
(ζ2 −U )β1−βi−1V2(U )dU

− d2c2

η1Γ(β1)

∫ 1

0
(1−U )β1−1 f2(U , V2(U ), V2(λ2U ), V1(U ))dU

+
n

∑
i=2

d2c2ηi
η1Γ(β1 − βi)

∫ 1

0
(1−U )β1−βi−1V2(U )dU

+
1

η1Γ(β1)

∫ t

0
(t−U )β1−1 f2(U , V2(U ), V2(λ2U ), V1(U ))dU

−
n

∑
i=2

ηi
η1Γ(β1 − βi)

∫ t

0
(t−U )β1−βi−1V2(U )dU .

where d1 = 1
−a1+b1+c1

, d2 = 1
−a2+b2+c2

, a1 6= b1 + c1, and a2 6= b2 + c2.

Assumptions and Existence Results

There are several approaches for studying the existence of a solution and stability.
These include iterative methods, topological degree theory, fixed point theory, and so on.
In each approach, we need to impose some auxiliary information in the form of hypotheses.
Here, we use operator theory, fixed point theorems, and some results from functional
analysis. Therefore, the required solution of the underlying MFDDEs Equation (2) will
basically be expressed in the form of an operator equation and will also provide some
subsidiary assumptions for the proposed model.

Let X = C (J,R) denote the subspace of all continuous functions defined on interval J,
and let us formulate an operator T : X× X 7→ X× X by the following:

T
(
V1(t), V2(t)

)
=
(
T1
(
V1(t), V2(t)

)
, T2
(
V1(t), V2(t)

))
, where

(
X × X, ||(V1, V2)||

)
is Banach space with norm given as ||(V1, V2)|| = supt∈J{|V1(t)|} + supt∈J{|V2(t)|} =
||V1||+ ||V2|| for every V1, V2 ∈ X and

T1
(
V1(t), V2(t)

)
= −d1g1(V1) +

n

∑
i=2

d1b1σi
σ1Γ(α1 − αi)

∫ ζ1

0
(ζ1 −U )α1−αi−1V1(U )dU

− d1b1

σ1Γ(α1)

∫ ζ1

0
(ζ1 −U )α1−1 f1(U , V1(U ), V1(λ1U ), V2(U ))dU

− d1c1

σ1Γ(α1)

∫ 1

0
(1−U )α1−1 f1(U , V1(U ), V1(λ1U ), V2(U ))dU

+
n

∑
i=2

d1c1σi
σ1Γ(α1 − αi)

∫ 1

0
(1−U )α1−αi−1V1(U )dU

+
1

σ1Γ(α1)

∫ t

0
(t−U )α1−1 f1(U , V1(U ), V1(λ1U ), V2(U ))dU

−
n

∑
i=2

σi
σ1Γ(α1 − αi)

∫ t

0
(t−U )α1−αi−1V1(U )dU ,
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T2
(
V1(t), V2(t)

)
= −d2g2(V2) +

n

∑
i=2

d2b2ηi
η1Γ(β1 − βi)

∫ ζ2

0
(ζ2 −U )β1−βi−1V2(U )dU

− d2b2

η1Γ(β1)

∫ ζ2

0
(ζ2 −U )β1−1 f2(U , V2(U ), V2(λ2U ), V1(U ))dU

− d2c2

η1Γ(β1)

∫ 1

0
(1−U )β1−1 f2(U , V2(U ), V2(λ2U ), V1(U ))dU

+
n

∑
i=2

d2c2ηi
η1Γ(β1 − βi)

∫ 1

0
(1−U )β1−βi−1V2(U )dU

+
1

η1Γ(β1)

∫ t

0
(t−U )β1−1 f2(U , V2(U ), V2(λ2U ), V1(U ))dU

−
n

∑
i=2

ηi
η1Γ(β1 − βi)

∫ t

0
(t−U )β1−βi−1V2(U )dU .

We consider the following assumptions, which will be needed for further progress in
this work.

H1. For V1, V ∗1 ∈ X, there exist L f1 , L f λ
1

, L f c
1
≥ 0, such that,

| f1(t, V1(t),V1(λ1t), V2(t))− f1(t, V ∗1 (t), V ∗1 (λ1t), V ∗2 (t))|
≤ L f1 ||V1 − V ∗1 ||+L f λ

1
||V1(λt)− V ∗1 (λ1t)||+L f c

1
||V2 − V ∗2 ||.

H2. For V1, V ∗1 ∈ X, there exist L f1 , L f λ
1

, L f c
1
≥ 0, such that

| f2(t, V2(t),V2(λ2t), V1(t))− f2(t, V ∗2 (t), V ∗2 (λ2t), V ∗1 (t))|
≤ L f2 ||V2 − V ∗2 ||+L f λ

2
||V2(λ2t)− V ∗2 (λ2t)||+L f c

2
||V1 − V ∗1 ||.

H3. For Vj, V ∗j (j = 1, 2) ∈ X, there exist Lgj(j = 1, 2) > 0, such that

|gj(Vj(t))− gj(V
∗

j (t))| ≤ Lgj ||Vj − V ∗j ||.

H4. For any V1 ∈ X, there exist H f a
1
, H f b

1
.H f c

1
: C(J, R+), such that

| f1(t, V1(t), V1(λ1t)), V2| ≤H f a
1
(t) +H f b

1
(t)|V1|+H f c

1
(t)|V2|.

H5. For any V2 ∈ X, there exist H f a
2
, H f b

2
.H f c

2
: C(J, R+), such that

| f2(t, V2(t), V2(λ2t)), V1| ≤H f a
2
(t) +H f b

2
(t)|V1|+H f c

2
(t)|V2|.

H6. For any V2 ∈ X, there exist Hgj(j = 1, 2) ∈ C(J, R+), such that

|gj(Vj)| ≤Hgj(t).

Remark 1. To move the calculations from tedious operations, the following notations will be used
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L1 =|d1|Lg1 +
n

∑
i=2

(
|d1||b1|ζα1−αi

1 + |d1|c1|+ 1

)
|σi|

|σ1|Γ(α1 − αi + 1)
(7)

+

(
|d1||b1|ζα1

1 + |d1|c1|+ 1

)(L f1 +L f λ
1 +L f c

1

)
|σ1|Γ(α1 + 1)

, (8)

L2 =|d2|Lg2 +
n

∑
i=2

(
|d2||b2|ζ

β1−βi
2 + |d2|c2|+ 1

)
|ηi|

|η1|Γ(β1 − βi + 1)
(9)

+

(
|d2||b2|ζ

β1
2 + |d2|c2|+ 1

)(L f2 +L f λ
2 +L f c

2

)
|η1|Γ(β1 + 1)

, (10)

L1a =
n

∑
i=2

|σi|
|σ1|Γ(α1 − αi + 1)

+
L f1 +L f λ

1 +L f c
1

|σ1|Γ(α1 + 1)
, (11)

L2a =
n

∑
i=2

|ηi|
|η1|Γ(β1 − βi + 1)

+
L f2 +L f λ

2 +L f c
2

|η1|Γ(β1 + 1)
, (12)

R1 >
|d1|||Hg1(t)||+

[
||H f a

1
(t)||
]

|σ1|Γ(α1+1) (|d1||b1|σα1
1 + |d1||c1|+ 1)

1−

[
||H

f b
1
(t)||+||H f c

1
(t)||
]

|σ1|Γ(α1+1) (|d1||b1|σα1
1 + |d1||c1|+ 1)−∑n

i=2
|σi |(|d1||b1|σ

α1−αi
1 +|d1||c1|1)

|σ1|Γ(α1−αi+1)

, (13)

R2 >
|d2|||Hg2(t)||+

[
||H f a

2
(t)||
]

|η1|Γ(β1+1) (|d2||b2|ζ
β1
1 + |d2||c2|+ 1)

1−

[
||H

f b
2
(t)||+||H f c

2
(t)||
]

|η1|Γ(β1+1) (|d2||b2|ζ
β1
1 + |d2||c2|+ 1)−∑n

i=2
|ηi |(|d2||b2|ζ

β1−βi
1 +|d2||c1|1)

|η1|Γ(β1−βi+1)

. (14)

Theorem 4. Consider that (H1)–(H3) holds and L < 1; then, the operator T has at most one fixed
point, where L = max{L1, L2} and L1, L2 are defined by Equations (7) and (9), respectively.
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Proof. Consider that Vj(t), V ∗j (t)(j = 1, 2) ∈ X,∣∣∣∣T1
(
V1(t), V2(t)

)
− T1

(
V ∗1 (t), V ∗2 (t)

)∣∣∣∣ ≤ |d1||g1(V1)− g1(V
∗

1 )|

+
|d1||b1|
|σ1|Γ(α1)

∫ ζ1

0
(ζ1 −U )α1−1

∣∣∣ f1(U , V1(U ), V1(λ1U ), V2(U ))

− f1(U , V ∗1 (U ), V ∗1 (λ1U ), V ∗2 (U ))
∣∣∣dU

+
n

∑
i=2

|d1||b1||σi|
|σ1|Γ(α1 − αi)

∫ ζ1

0
(ζ1 −U )α1−αi−1

∣∣∣V1(U )− V ∗1 (U )
∣∣∣dU

+
|d1||c1|
|σ1|Γ(α1)

∫ 1

0
(1−U )α1−1

∣∣∣ f1(U , V1(U ), V1(λ1U ), V2(U ))

− f1(U , V ∗1 (U ), V ∗1 (λ1U ), V ∗2 (U ))
∣∣∣dU

+
n

∑
i=2

|d1||c1||σi|
|σ1|Γ(α1 − αi)

∫ 1

0
(1−U )α1−αi−1

∣∣∣V1(U )− V ∗1 (U )
∣∣∣dU

+
1

|σ1|Γ(α1)

∫ t

0
(t−U )α1−1

∣∣∣ f1(U , V1(U ), V1(λ1U ), V2(U ))

− f1(U , V ∗1 (U ), V ∗1 (λ1U ), V ∗2 (U ))
∣∣∣dU

+
n

∑
i=2

|σi|
|σ1|Γ(α1 − αi)

∫ t

0
(t−U )α1−αi−1

∣∣∣V1(U )− V ∗1 (U )
∣∣∣dU .

(15)

Now, by making use of (H1) and (H3) in the inequality Equation (15), we obtain the
following:∣∣∣∣T1

(
V1(t), V2(t)

)
− T1

(
V ∗1 (t), V ∗2 (t)

)∣∣∣∣ ≤ |d1||g1(V1)− g1(V
∗

1 )|

+
|d1||b1|

[(
L f1 +L f λ

1

)
||V1 − V ∗1 ||+L f c

1
||V2 − V ∗2 ||

]
|σ1|Γ(α1)

∫ ζ1

0
(ζ1 −U )α1−1dU

+
n

∑
i=2

|d1||b1||σi||V1 − V ∗1 |
|σ1|Γ(α1 − αi)

∫ ζ1

0
(ζ1 −U )α1−αi−1dU

+
|d1||c1|

[(
L f1 +L f λ

1

)
||V1 − V ∗1 ||+L f c

1
||V2 − V ∗2 ||

]
|σ1|Γ(α1)

∫ 1

0
(1−U )α1−1dU

+
n

∑
i=2

|d1||c1||σi||V1 − V ∗1 |
|σ1|Γ(α1 − αi)

∫ 1

0
(1−U )α1−αi−1dU

+

[(
L f1 +L f λ

1

)
||V1 − V ∗1 ||+L f c

1
||V2 − V ∗2 ||

]
|σ1|Γ(α1)

∫ t

0
(t−U )α1−1dU

+
n

∑
i=2

|σi||V1 − V ∗1 |
|σ1|Γ(α1 − αi)

∫ t

0
(t−U )α1−αi−1dU .

(16)

Evaluating the integral involved in Equation (16) and using Equation (7), we get∣∣∣∣∣∣∣∣T1
(
V1(t), V2(t)

)
− T1

(
V ∗1 (t), V ∗2 (t)

)∣∣∣∣∣∣∣∣ ≤ L1||(V1, V2)− (V ∗1 , V ∗2 )||. (17)

By similar calculations, one can infer the following expression:∣∣∣∣∣∣∣∣T2
(
V1(t), V2(t)

)
− T2

(
V ∗1 (t), V ∗2 (t)

)∣∣∣∣∣∣∣∣ ≤ L2||(V1, V2)− (V ∗1 , V ∗2 )||. (18)
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Now, from Equations (17) and (18), we obtain∣∣∣∣∣∣∣∣T (V1(t), V2(t)
)
− T

(
V ∗1 (t), V ∗2 (t)

)∣∣∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣T1
(
V1(t), V2(t)

)
− T1

(
V ∗1 (t), V ∗2 (t)

)∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣T2
(
V1(t), V2(t)

)
− T2

(
V ∗1 (t), V ∗2 (t)

)∣∣∣∣∣∣∣∣,
≤ L1||(V1, V2)− (V ∗1 , V ∗2 )||
+L2||(V1, V2)− (V ∗1 , V ∗2 )||,
≤ L ||(V1, V2)− (V ∗1 , V ∗2 )||.

Therefore, the use of the Banach contraction principle implies that the operator T
possesses a fixed point. Consequently, our proposed model Equation (2) has a solution.
Furthermore, this solution is unique.

Theorem 5. The considered model Equation (2) possesses at least one solution if (H1) and (H1)
and (H4)–(H6) hold together with La < 1, where La = max(L1a , L2a) and L1a , L2a are defined
by Equations (11) and (12), respectively.

Proof. In order to prove the existence of at least one solution, we define the operators

F ,G : X × X 7→ X × X given by F
(
V1(t), V2(t)

)
=
(
F1
(
V1(t), V2(t)

)
,F2

(
V1(t), V2(t)

))
and G

(
V1(t), V2(t)

)
=
(
G1
(
V1(t), V2(t)

)
,G2
(
V1(t), V2(t)

))
, where

F1
(
V1(t), V2(t)

)
= −d1g1(V1) +

n

∑
i=2

d1b1σi
σ1Γ(α1 − αi)

∫ ζ1

0
(ζ1 −U )α1−αi−1V1(U )dU

− d1b1

σ1Γ(α1)

∫ ζ1

0
(ζ1 −U )α1−1 f1(U , V1(U ), V1(λ1U ), V2(U ))dU

− d1c1

σ1Γ(α1)

∫ 1

0
(1−U )α1−1 f1(U , V1(U ), V1(λ1U ), V2(U ))dU

+
n

∑
i=2

d1c1σi
σ1Γ(α1 − αi)

∫ 1

0
(1−U )α1−αi−1V1(U )dU ,

F2
(
V1(t), V2(t)

)
(t) = −d2g2(V2) +

n

∑
i=2

d2b2ηi
η1Γ(β1 − βi)

∫ ζ2

0
(ζ2 −U )β1−βi−1V2(U )dU

− d2b2

η1Γ(β1)

∫ ζ2

0
(ζ2 −U )β1−1 f2(U , V2(U ), V2(λ2U ), V1(U ))dU

− d2c2

η1Γ(β1)

∫ 1

0
(1−U )β1−1 f2(U , V2(U ), V2(λ2U ), V1(U ))dU

+
n

∑
i=2

d2c2ηi
η1Γ(β1 − βi)

∫ 1

0
(1−U )β1−βi−1V2(U )dU ,

G1
(
V1(t), V2(t)

)
=

1
σ1Γ(α1)

∫ t

0
(t−U )α1−1 f1(U , V1(U ), V1(λ1U ), V2(U ))dU

−
n

∑
i=2

σi
σ1Γ(α1 − αi)

∫ t

0
(t−U )α1−αi−1V1(U )dU ,

G2
(
V1(t), V2(t)

)
=

1
η1Γ(β1)

∫ t

0
(t−U )β1−1 f2(U , V2(U ), V2(λ2U ), V1(U ))dU

−
n

∑
i=2

ηi
η1Γ(β1 − βi)

∫ t

0
(t−U )β1−βi−1V2(U )dU .
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Moreover, we construct a ball H = {(V1, V2) ∈ X × X : ||(V1, V2)|| ≤ R}, with
positive radius R > max(R1,R2), where R1 and R2 are defined by Equations (13) and
(14). For simplicity, we divide the proof into various steps.

Step 1: We claim in this step that F
(
V1(t), V2(t)

)
+ G

(
V ∗1 (t), V ∗2 (t)

)
∈ H ⊂ X × X

for every
(
V1(t), V2(t)

)
,
(
V ∗1 (t), V ∗2 (t)

)
∈ H. To do this, we proceed as follows:∣∣∣F1

(
V1(t), V2(t)

)
+ G1

(
V ∗1 (t), V ∗2 (t)

)∣∣∣ ≤ |d1|g1(V1)|

+
|d1||b1|
|σ1|Γα1)

∫ ζ1

0
(ζ1 −U )α1−1∣∣ f1(U , V1(U ), V1(λ1U ), V2(U ))

∣∣dU

+
n

∑
i=2

|d1||b1||σi|
|σ1|Γ(α1 − αi)

∫ ζ1

0
(ζ1 −U )α1−αi−1∣∣V1(U )

∣∣dU

+
|d1||c1|
|σ1|Γ(α1)

∫ 1

0
(1−U )α1−1∣∣ f1(U , V1(U ), V1(λ1U ), V2(U ))

∣∣dU

+
n

∑
i=2

|d1||c1||σi|
|σ1|Γ(α1 − αi)

∫ 1

0
(1−U )α1−αi−1∣∣V1(U )

∣∣dU

+
1

|σ1|Γ(α1)

∫ t

0
(t−U )α1−1∣∣ f1(U , V1(U ), V1(λ1U ), V2(U ))

∣∣dU

+
n

∑
i=2

1|σi|
|σ1|Γ(α1 − αi)

∫ t

0
(t−U )α1−αi−1∣∣V1(U )

∣∣dU .

(19)

Now, by making use of (H4) and (H6) in the inequality Equation (19), we get∣∣∣∣∣∣F1
(
V1(t), V2(t)

)
+ G1

(
V ∗1 (t), V ∗2 (t)

)∣∣∣∣∣∣ ≤ |d1|||Hg1(t)||

+

[
||H f a

1
(t)||+ ||H f b

1
(t)||||V1||+ ||H f c

1
(t)||||V2||

]
|σ1|Γ(α1 + 1)

(|d1||b1|ζα1
1 + |d1||c1|+ 1)

+
n

∑
i=2

|σi|||V1||
|σ1|Γ(α1 − αi + 1)

(|d1||b1|ζα1−αi
1 + |d1||c1|+ 1).

or ∣∣∣∣∣∣F1
(
V1(t), V2(t)

)
+ G1

(
V ∗1 (t), V ∗2 (t)

)∣∣∣∣∣∣ < R1. (20)

Similarly, one can obtain the following inequality for F2:

∣∣∣∣∣∣F2
(
V1(t), V2(t)

)
+ G2

(
V ∗1 (t), V ∗2 (t)

)∣∣∣∣∣∣ < R2. (21)

Hence, from Equations (20) and (21), one can infer thatF
(
V1(t), V2(t)

)
+G

(
V ∗1 (t), V ∗2 (t)

)
∈ H.

Step 2: In this step, we claim that F is uniformly bounded. For verification, we
proceed as follows:

Let V1, V2 ∈ X. Then, we have
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∣∣∣F1
(
V1(t), V2(t)

)∣∣∣ ≤ |d1|g1(V1)|+
d1|b1|
|σ1|Γ(α1)

∫ ζ1

0
(ζ1 −U )α1−1∣∣ f1(U , V1(U ), V1(λ1U ), V2(U ))

∣∣dU

+
n

∑
i=2

|d1||b1||σi|
|σ1|Γ(α1 − αi)

∫ ζ1

0
(ζ1 −U )α1−αi−1∣∣V1(U )

∣∣dU

+
|d1||c1|
|σ1|Γ(α1)

∫ 1

0
(1−U )α1−1∣∣ f1(U , V1(U ), V1(λ1U ), V2(U ))

∣∣dU

+
n

∑
i=2

|d1||c1||σi|
|σ1|Γ(α1 − αi)

∫ 1

0
(1−U )α1−αi−1∣∣V1(U )

∣∣dU .

(22)

Now, by making use of (H4) and (H6) in the inequality Equation (22), we get∣∣∣∣∣∣F1
(
V1(t), V2(t)

)∣∣∣∣∣∣ ≤ |d1|||Hg1(t)||

+
|d1|
[
||H f a

1
(t)||+ ||H f b

1
(t)||||V1||+ ||H f c

1
(t)||||V2||

]
|σ1|Γ(α1 + 1)

(|b1|ζα1
1 + |c1|)

+
n

∑
i=2

|d1||σi|||V1||
|σ1|Γ(α1 − αi + 1)

(|b1|ζα1−αi
1 + |c1|).

(23)

Similarly, one can obtain the following inequality for F2:∣∣∣∣∣∣F2
(
V1(t), V2(t)

)∣∣∣∣∣∣ ≤ |d2|||Hg2(t)||

+
|d2|
[
||H f a

2
(t)||+ ||H f b

2
(t)||||V2||+ ||H f c

2
(t)||||V1||

]
|η1|Γ(β1 + 1)

(|b2|ζ
β1
1 + |c2|)

+
n

∑
i=2

|d2||ηi|||V2||
|η1|Γ(β1 − βi + 1)

(|b2|ζ
β1−βi
1 + |c2|).

(24)

Therefore, from Equations (23) and (24), one can get that F is uniformly bounded.
Step 3: Now, we claim that F is continuous. For the proof, consider a sequence

(V1n , V2n) ∈ H, which converges to (V1, V2). Now, we need to prove the relation that
< F (V1n , V2n) > converges to < F (V1, V2) >, as n 7→ ∞. Consider the following:∣∣∣∣F1

(
V1n(t), V2n(t)

)
−F1

(
V1(t), V2(t)

)∣∣∣∣ ≤ |d1||g1(V1n)− g1(V1)|

+
|d1||b1|
|σ1|Γ(α1)

∫ ζ1

0
(ζ1 −U )α1−1

∣∣∣ f1(U , V1n(tU , V1n(λ1U ), V2n(U ))

− f1(U , V1(tU , V1(λ1U ), V ∗2 (U ))
∣∣∣dU

+
n

∑
i=2

|d1||b1||σi|
|σ1|Γ(α1 − αi)

∫ ζ1

0
(ζ1 −U )α1−αi−1

∣∣∣V1n(U )− V1(U )
∣∣∣dU

+
|d1||c1|
|σ1|Γ(α1)

∫ 1

0
(1−U )α1−1

∣∣∣ f1(U , V1n(tU , V1n(λ1U ), V2n(U ))

− f1(U , V1(tU , V1(λ1U ), V ∗2 (U ))
∣∣∣dU

+
n

∑
i=2

|d1||c1||σi|
|σ1|Γ(α1 − αi)

∫ 1

0
(1−U )α1−αi−1

∣∣∣V1(U )− V1(U )
∣∣∣dU .

Hence, by Lebsegue’s dominated convergent theorem, we have
||F1(V1n , V2n)−F1(V1(t), V2(t))|| 7→ 0, as n 7→ ∞.
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In the same way, the operator F2 can be proved continuous. Furthermore, from the
continuity of F1 and F2, we infer that F is continuous.

Step 4: In this step, it will be proved that bounded sets will map to equicontinuous
sets under F . Consider for t1, t2 ∈ J, t1 < t2 and (V1, V2) ∈ H ⊂ X× X,∣∣∣∣∣∣∣F1

(
V1(t2), V2(t2)

)
−F1

(
V1(t1), V2(t1)

)∣∣∣∣∣∣∣ ≤ |d1||g1(V1(t2))− g1(V1(t1))|.

Clearly, as t1 7→ t2, we have ||F1
(
V1(t2), V2(t2)

)
− F1

(
V1(t1), V2(t1)

)
|| = 0. By a

similar procedure, it can be shown that bounded sets map to the set of equicontinous
functions under the operator F2. Moreover, the aforementioned result also holds for F .

Step 5: The contraction G can be derived in a similar manner as for Theorem 4.
Thus, all requirements of Krasnoselskii’s fixed point theorem are fulfilled; therefore,

the model of fractional-order differential equations has at least one solution.

4. Stability Analysis

The results carried out in this part of paper are specific to the functional stability of
the model under consideration in Equation (2). Four types of functional-stability-related
results will be explored in the context of fractional calculus. Initially, definitions of these
kinds of stability results will be provided. Later on, based on some auxiliary hypotheses,
results related to the existence of functional stability will be explored.

Definition 3. The Ulam–Hyres stability for the model Equation (2) can be achieved if one can find
B = max(B1,B2)(constant) > 0 such that for each solution (V1, V2) ∈ X× X of the following
differential inequality and ε = max(ε1, ε2) > 0,

∣∣∣∣∣ n

∑
i=1

σi
cDαiV1(t)− f1(t, V1(t), V1(λ1t), V2(t))

∣∣∣∣∣ ≤ ε1, t ∈ [0, 1],∣∣∣∣∣ n

∑
i=1

ηi
cDβiV2(t)− f2(t, V2(t), V2(λ2t), V1(t))

∣∣∣∣∣ ≤ ε1, t ∈ [0, 1].

(25)

and a unique solution (V ∗1 , V ∗2 ) ∈ X× X of the given problem Equation (2) such that |(V1, V2)−
(V ∗1 , V ∗2 )| ≤ Bε, while the solution satisfies the definition of generalized Ulam–Hyers (GUH)
stability, if a positive function K : (0, ∞) 7→ (0, ∞) can be found with the condition K(0) = 0
such that |(V1, V2)− (V ∗1 , V ∗2 )| ≤ BK(t).

Definition 4. The problem Equation (2)’s solution satisfies the UH Rassias stability criteria, with re-
gard to a continuous function χ = max(χ1, χ2) ∈ X× X if we have B∗ = max(B∗1 ,B∗2 )(positive
constant) > 0, and ε = max(ε1, ε2) > 0, for each solution (V1, V2) ∈ X × X of the following
differential inequality:

∣∣∣∣∣ n

∑
i=1

σi
cDαiV1(t)− f1(t, V1(t), V1(λ1t), V2(t))

∣∣∣∣∣ ≤ χ1(t)ε1, t ∈ [0, 1],∣∣∣∣∣ n

∑
i=1

ηi
cDβiV2(t)− f2(t, V2(t), V2(λ2t), V1(t))

∣∣∣∣∣ ≤ χ2(t)ε2, t ∈ [0, 1].

(26)

and a unique solution (V ∗1 , V ∗2 ) ∈ X× X for the given problem Equation (2) such that |(V1, V2)−
(V ∗1 , V ∗2 )| ≤ B∗χ(t)ε.
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Definition 5. The solution of the considered problem is GUH Rassias stable, with regard to
continuous function χ = max(χ1, χ2) ∈ X× X if we have B∗ = max(B∗1 ,B∗2 )(positive constant)
> 0, and for each solution (V1, V2) ∈ X× X of the following differential inequality

∣∣∣∣∣ n

∑
i=1

σi
cDαiV1(t)− f1(t, V1(t), V1(λ1t), V2(t))

∣∣∣∣∣ ≤ χ1(t), t ∈ [0, 1],∣∣∣∣∣ n

∑
i=1

ηi
cDβiV2(t)− f2(t, V2(t), V2(λ2t), V1(t))

∣∣∣∣∣ ≤ χ2(t), t ∈ [0, 1].

(27)

and a unique solution (V ∗1 , V ∗2 ) ∈ X× X of the given problem Equation (2) such that |(V1, V2)−
(V ∗1 , V ∗2 )| ≤ B∗χ(t).

Remark 2. The solution of the inequality Equation (25) is (V1, V2) ∈ X × X, iff one can find
functions, ξ1, ξ2 ∈ X such that

(i) |ξ1(t)| ≤ ε1, |ξ2(t)| ≤ ε2, t ∈ J,

and

(ii)


n

∑
i=1

σi
cDαiV1(t) = f1(t, V1(t), V1(λ1t), V2(t)) + ξ1(t), t ∈ [0, 1],

n

∑
i=1

ηi
cDβiV2(t) = f2(t, V2(t), V2(λ2t), V1(t)) + ξ2(t), t ∈ [0, 1].

Remark 3. The solution of the inequality Equation (26) is (V1, V2) ∈ X × X, iff one can find
functions ξ1, ξ2 ∈ X such that

(i) |ξ1(t)| ≤ χ1(t)ε1, |ξ2(t)| ≤ χ2(t)εv, t ∈ J,

and

(ii)


n

∑
i=1

σi
cDαiV1(t) = f1(t, V1(t), V1(λ1t), V2(t)) + ξ1(t), t ∈ [0, 1],

n

∑
i=1

ηi
cDβiV2(t) = f2(t, V2(t), V2(λ2t), V1(t)) + ξ2(t), t ∈ [0, 1].

Remark 4. The solution of the inequality Equation (27) is (V1, V2) ∈ X × X, iff one can find
functions, ξ1, ξ2 ∈ X such that

(i) |ξ1(t)| ≤ χ1(t), |ξ2(t)| ≤ χ2(t), t ∈ J,

and

(ii)


n

∑
i=1

σi
cDαiV1(t) = f1(t, V1(t), V1(λ1t), V2(t)) + ξ1(t), t ∈ [0, 1],

n

∑
i=1

ηi
cDβiV2(t) = f2(t, V2(t), V2(λ2t), V1(t)) + ξ2(t), t ∈ [0, 1].

Lemma 2. Consider that (V1, V2) ∈ X× X is a solution of system of MFDDEs

n

∑
i=1

σi
cDαiV1(t) = f1(t, V1(t), V1(λ1t), V2(t)) + ξ1(t), λ1, λ2, t ∈ [0, 1],

n

∑
i=1

ηi
cDβiV2(t) = f2(t, V2(t), V2(λ2t), V1(t)) + ξ2(t), αi, βi ∈ (0, 1], for i = 1, 2, 3, . . . , n,

g1(V1) = a1V1(0)− b1V1(ζ1)− c1V1(1), g2(V2) = a2V2(0)− b2V2(ζ2)− c2V2(1).

(28)
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that satisfies the following relations:

∣∣∣∣∣∣V1(t)− T1(V1, V2)
∣∣∣∣∣∣ ≤ (|d1||b1|ζα1

1 + |d1||c1|+ 1
)
ε1

|σ1|Γ(α1 + 1)
,

∣∣∣∣∣∣V2(t)− T2(V1, V2)
∣∣∣∣∣∣ ≤ (|d2||b2|ζ

β1
2 + |d2||c2|+ 1

)
ε2

|η1|Γ(β1 + 1)
.

Proof. Suppose (V1, V2) ∈ X× X to be the solution of the problem Equation (28). Then, by
corollary, (1), we have

V1(t) = −d1g1(V1)−
d1b1

σ1Γ(α1)

∫ ζ1

0
(ζ1 −U )α1−1 f1(U , V1(U ), V1(λ1U ), V2(U ))dU

+
n

∑
i=2

d1b1σi
σ1Γ(α1 − αi)

∫ ζ1

0
(ζ1 −U )α1−αi−1V1(U )dU

− d1c1

σ1Γ(α1)

∫ 1

0
(1−U )α1−1 f1(U , V1(U ), V1(λ1U ), V2(U ))dU

+
n

∑
i=2

d1c1σi
σ1Γ(α1 − αi)

∫ 1

0
(1−U )α1−αi−1V1(U )dU

+
1

σ1Γ(α1)

∫ t

0
(t−U )α1−1 f1(U , V1(U ), V1(λ1U ), V2(U ))dU

−
n

∑
i=2

σi
σ1Γ(α1 − αi)

∫ t

0
(t−U )α1−αi−1V1(U )dU − d1b1

σ1Γ(α1)

∫ ζ1

0
(ζ1 −U )α1−1ξ1(U )dU

− d1c1

σ1Γ(α1)

∫ 1

0
(1−U )α1−1ξ1(U )dU +

1
σ1Γ(α1)

∫ t

0
(t−U )α1−1ξ1(U )dU ,

(29)

V2(t) = −d2g2(V2)−
d2b2

η1Γ(β1)

∫ ζ2

0
(ζ2 −U )β1−1 f2(U , V2(U ), V2(λ2U ), V1(U ))dU

+
n

∑
i=2

d2b2ηi
η1Γ(β1 − βi)

∫ ζ2

0
(ζ2 −U )β1−βi−1V2(U )dU

− d2c2

η1Γ(β1)

∫ 1

0
(1−U )β1−1 f2(U , V2(U ), V2(λ2U ), V1(U ))dU

+
n

∑
i=2

d2c2ηi
η1Γ(β1 − βi)

∫ 1

0
(1−U )β1−βi−1V2(U )dU

+
1

η1Γ(β1)

∫ t

0
(t−U )β1−1 f2(U , V2(U ), V2(λ2U ), V1(U ))dU

−
n

∑
i=2

ηi
η1Γ(β1 − βi)

∫ t

0
(t−U )β1−βi−1V2(U )dU − d2b2

η1Γ(β1)

∫ ζ2

0
(ζ2 −U )β1−1ξ2(U )dU

− d2c2

η1Γ(β1)

∫ 1

0
(1−U )β1−1ξ2(U )dU +

1
η1Γ(β1)

∫ t

0
(t−U )β1−1ξ2(U )dU .

(30)
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For simplicity, let us introduce T1(V1, V2) and T2(V1, V2) in Equations (29) and (30).
Then, we obtain

V1(t)− T1(V1, V2) =−
d1b1

σ1Γ(α1)

∫ ζ1

0
(ζ1 −U )α1−1 + ξ1(U )dU

− d1c1

σ1Γ(α1)

∫ 1

0
(1−U )α1−1ξ1(U )dU

+
1

σ1Γ(α1)

∫ t

0
(t−U )α1−1ξ1(U )dU ,

V2(t)− T2(V1, V2) =−
d2b2

η1Γ(β1)

∫ ζ2

0
(ζ2 −U )β1−1ξ2(U )dU

− d2c2

η1Γ(β1)

∫ 1

0
(1−U )β1−1ξ2(U )dU

+
1

η1Γ(β1)

∫ t

0
(t−U )β1−1ξ2(U )dU .

By taking the absolute and using Remark (2), we have

∣∣∣∣∣∣V1(t)− T1(V1, V2)
∣∣∣∣∣∣ ≤ (|d1||b1|ζα1

1 + |d1||c1|+ 1
)
ε1

|σ1|Γ(α1 + 1)
,

∣∣∣∣∣∣V2(t)− T2(V1, V2)
∣∣∣∣∣∣ ≤ (|d2||b2|ζ

β1
2 + |d2||c2|+ 1

)
ε2

|η1|Γ(β1 + 1)
.

This proves the required result.

Theorem 6. Under the assumptions (H1)–(H3), the fractional-order model Equation (2) is UH sta-
ble and GUH stable if L < 1, where L = max(L1, L2) and L1, L2 are defined by
Equations (7) and (9), respectively.

Proof. Given any solution (V1, V2) ∈ ×X, and the unique solution (V ∗1 , V ∗2 ) of the given
problem Equation (2), the following holds:

||(V1, V2)− (V ∗1 , V ∗2 )|| = ||(V1, V2)− T (V ∗1 , V ∗2 )||,
≤ ||V1 − T1(V1, V2)||+ ||T1(V

∗
1 , V ∗2 )− T1(V1, V2)||+ ||V2 − T2(V1, V2)||

+ ||T2(V
∗

1 , V ∗2 )− T2(V1, V2)||.

Using Theorem 4 and Lemma 2, we have

||(V1, V2)− (V ∗1 , V ∗2 )|| ≤≤
(
|d1||b1|ζα1

1 + |d1||c1|+ 1
)
ε1

|σ1|Γ(α1 + 1)
+

(
|d2||b2|ζ

β1
2 + |d2||c2|+ 1

)
ε2

|η1|Γ(β1 + 1)

+L ||(V1, V2)− (V ∗1 , V ∗2 )||,

≤
[(
|d1||b1|ζα1

1 + |d1||c1|+ 1
)
ε1

|σ1|Γ(α1 + 1)

+

(
|d2||b2|ζ

β1
2 + |d2||c2|+ 1

)
ε2

|η1|Γ(β1 + 1)

]
1

1−L
,

≤ Bε.
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Let B = max
[(
|d1||b1|ζ

α1
1 +|d1||c1|+1

)
|σ1|Γ(α1+1)(1−L )

,
(
|d2||b2|ζ

β1
2 +|d2||c2|+1

)
|η1|Γ(β1+1)(1−L )

]
; then, the solution of the

considered problem Equation (2) is UH stable. Furthermore, we can set K(ε) = ε,; then,
the considered problem Equation (2) is GUH stable.

To prove the next stability result, we need the following assumption, given as (H7).
For any non-decreasing function χ1, χ2 ∈ X, there exist the positive constants G1 and G2,
such that

1
Γ(α)

∫ t

0
(t−U )α1−1χ1(U )dU ≤ G1χ1(t),

1
Γ(β)

∫ t

0
(t−U )β1−1χ2(U )dU ≤ G2χ2(t).

Lemma 3. Consider that (V1, V2) ∈ X× X is a solution of a system of MFDDEs,

n

∑
i=1

σi
cDαiV1(t) = f1(t, V1(t), V1(λ1t), V2(t)) + ξ1(t), λ1, λ2, t ∈ [0, 1],

n

∑
i=1

ηi
cDβiV2(t) = f2(t, V2(t), V2(λ2t), V1(t)) + ξ2(t), αi, βi ∈ (0, 1], for i = 1, 2, 3, . . . , n,

g1(V1) = a1V1(0)− b1V1(ζ1)− c1V1(1), g2(V2) = a2V2(0)− b2V2(ζ2)− c2V2(1).

(31)

that satisfies the following relations,

∣∣∣∣∣∣V1(t)− T1(V1, V2)
∣∣∣∣∣∣ ≤ (|d1||b1|+ |d1||c1|+ 1

)
G1χ1(t)ε1

|σ1|Γ(α1 + 1)
,∣∣∣∣∣∣V2(t)− T2(V1, V2)

∣∣∣∣∣∣ ≤ (|d2||b2|+ |d2||c2|+ 1
)
G2χ2(t)ε2

|η1|Γ(β1 + 1)
.

Proof. Suppose a solution (V1, V2) ∈ X × X of the problem Equation (31). Then, by Corol-
lary (1), we have

V1(t)− T1(V1, V2) =−
d1b1

σ1Γ(α1)

∫ ζ1

0
(ζ1 −U )α1−1 + ξ1(U )dU

− d1c1

σ1Γ(α1)

∫ 1

0
(1−U )α1−1ξ1(U )dU

+
1

σ1Γ(α1)

∫ t

0
(t−U )α1−1ξ1(U )dU ,

V2(t)− T2(V1, V2) =−
d2b2

η1Γ(β1)

∫ ζ2

0
(ζ2 −U )β1−1ξ2(U )dU

− d2c2

η1Γ(β1)

∫ 1

0
(1−U )β1−1ξ2(U )dU

+
1

η1Γ(β1)

∫ t

0
(t−U )β1−1ξ2(U )dU .

By taking the absolute and using Remark (3), we have

∣∣∣∣∣∣V1(t)− T1(V1, V2)
∣∣∣∣∣∣ ≤ (|d1||b1|+ |d1||c1|+ 1

)
G1χ1(t)ε1

|σ1|Γ(α1 + 1)
,∣∣∣∣∣∣V2(t)− T2(V1, V2)

∣∣∣∣∣∣ ≤ (|d2||b2|+ |d2||c2|+ 1
)
G2χ2(t)ε2

|η1|Γ(β1 + 1)
.

This proves the required result.
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Theorem 7. If the assumptions (H1)–(H3) and (H7) are supposed, then the problem Equation (2)
is UHR stable and GUHR stable, if L < 1, where L = max(L1, L2) and L1, L2 are given by
Equations (7) and (9), respectively.

Proof. Suppose a given general solution U ∈ CJ, R), as well as a unique solution U ∗, for
the model Equation (2). Then,

||(V1, V2)− (V ∗1 , V ∗2 )|| ≤ ||V1 − T1(V1, V2)||+ ||T1(V
∗

1 , V ∗2 )− T1(V1, V2)||+ ||V2 − T2(V1, V2)||
+ ||T2(V

∗
1 , V ∗2 )− T2(V1, V2)||.

Using Theorem (4) and Lemma (3), we have

||(V1, V2)− (V ∗1 , V ∗2 )|| ≤
[(
|d1||b1|+ |d1||c1|+ 1

)
G1χ1(t)ε1

|σ1|Γ(α1 + 1)

+

(
|d2||b2|+ |d2||c2|+ 1

)
G2χ2(t)ε2

|η1|Γ(β1 + 1)

]
1

1−L
,

≤ B∗χ(t)ε.

Let B∗ = max

[(
|d1||b1|+|d1||c1|+1

)
G1

|σ1|Γ(α1+1)(1−L )
,
(
|d2||b2|+|d2||c2|+1

)
G2

|η1|Γ(β1+1)(1−L )

]
; then, the solution of the

considered problem Equation (2) is UHR stable. Furthermore, set ε = 1,; then, the proposed
problem Equation (2) is GUHR stable.

To see the applications of the obtained results, an illustrative example is provided in
the next part.

Example 1. Taking some specific functions in the model Equation (2), we construct the following
MFDDEs:

100

∑
i=1

14
3i

cD
3
5i V1(t) =

e− sin(t)

14
V1(t) +

log(1 + sin(t))
71

V1(
t
5
)− coh(et)

34
V2(t) +

cosh(t3)

9et − t2 ,

100

∑
i=1

33
8i

cD
3
7i V2(t) =

tan(x)
45

V2(t) +
cos−1(t− 0.5))

13
V2(

t
7
)− coh(t2 + 1)

53
V1(t) +

cosh(t3)

9et − t2 ,

3V1

18 + |V1|
=

1
14

V1(0)− V1(ζ1)−
2

50
V1(1), t ∈ [0, 1]

etV2

12(t2 + 5) + |V2|
=

2
15

V2(0)−
3
4
V2(ζ2)−

1
100

V2(1).

(32)

Here, n = 100, αi =
3
5i , βi =

3
7i , a1 = 1

14 , a2 = 2
15 , b1 = 1; b2 = 3

4 , c1 = 2
50 , c2 =

1
100 , σi =

14
3i ,

ηi =
33
8i , ζ1 = 1

24 , ζ2 = 2
31 , λ1 = 1

5 , λ2 = 1
7 ,

f1(t, V1(t), V1(λ1t), V2(t)) =
e− sin(t)

14
V1(t) +

log(1 + sin(t))
71

V1(
t
5
)− coh(et)

34
V2(t) +

cosh(t3)

9et − t2 ,

f2(t, V2(t), V2(λ2t), V1(t)) =
tan(x)

45
V2(t) +

cos−1(t− 0.5))
13

V2(
t
7
)− coh(t2 + 1)

53
V1(t)

+
cosh(t3)

9et − t2 ,

g1(V1) =
3V1

18 + |V1|
, and g2(V2) =

etV2

12(t2 + 5) + |V2|
.

(33)
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Now, the reader can easily obtain from Equation (33) that L f1 = 1
14 , L f λ

1
=

log(1+sin(1))
71 ,

L f c
1
= cosh(e)

34 , L f2 = tan(1)
45 , L f λ

2
= 1.0471975512; L f c

2
= cosh(2)

53 , Lg1 = 3
18 , Lg2 = e

65 ,
consequently L = 0.9539 < 1. Therefore, by Theorem (4), the problem Equation (32) has a unique
solution. Set χ1(t) = t + 1, and χ2(t) = 2t2 + 3 ∀t ∈ [0, 1]. Then, we can get the following:

1
Γ( 3

5 )

∫ t

0
(t−U )

3
5−1(U + 1)dU ≤ 1.12(t + 1),

1
Γ( 3

5 )

∫ t

0
(t−U )

3
5−1(2U 2 + 3)dU ≤ 1.12(t + 1) ≤ 1.13(2t2 + 3)

As a condition, (H7) is satisfied with G1 = 1.12 and G2 = 1.13. Therefore, all requirements of
Theorem (7) are fulfilled, so this leads to the fact that the solution of the problem Equation (2) is UHR
stable with respect to a continuous function χ(t) = 2t2 + 3 together with constant B∗ = 13.1184.
Furthermore, the solution of the aforementioned problem is GUHR stable. In addition to this, the
problem Equation (2) is UH and GUH stable because of Theorem (6).

5. Conclusions

Findings of the research are described here. We derived some adequate results regard-
ing the existence and functional stability of a class of nonlocal BVP of coupled systems
of MFDEs with proportional type delay term. We have used the results from functional
analysis and FPT to derive the conditions for the solution’s existence and uniqueness.
Furthermore, results related to UH stabilities were also investigated. The results reached
in this manuscript generalize some results from the existing literature. In addition, the
outcomes have been illustrated through a proper example. Moreover, the special case of the
considered problem Equation (2) can be obtained by fixing the parameters, ηi = σi = 0, for
i = 2, 3, . . . , n), which was investigated in [39]. As future work, we recommend studying
the present problem, as well as other similar expected problems, using symmetry methods.
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