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Abstract: Accurate traffic flow prediction can provide sufficient information for the formation of
symmetric traffic flow. To overcome the problem that the basic fruit fly optimization algorithm (FOA)
is easy to fall into local optimum and the search method is single, an improved fruit fly optimization
algorithm (IFOA) based on parallel search strategy and group cooperation strategy is proposed. The
multi-swarm mechanism is introduced in the parallel search strategy, in which each subswarm is
independent and multiple center positions are determined in the iterative process, thereby avoiding
the problems of reduced diversity and premature convergence. To increase communication between
fruit fly subswarms, the informative fruit flies selected from subswarms are guided by the randomly
generated binary fruit fly to achieve the crossover operation in the group cooperation strategy. Then
a hybrid framework model based on wavelet neural network (WNN) with IFOA (IFOA-WNN)
for traffic flow prediction is designed, in which IFOA is applied to explore appropriate structure
parameters for WNN to achieve better prediction performance. The simulation results verify that
the IFOA can provide high-quality structural parameters for WNN, and the hybrid IFOA-WNN
prediction model can achieve higher prediction accuracy and stability than the compared methods.

Keywords: traffic flow prediction; wavelet neural network; fruit fly optimization algorithm; group
cooperation strategy; parallel search strategy

1. Introduction

Accurate traffic flow prediction has become an important research focus of intelligent
transportation systems [1]. It can help traffic managers make reasonable traffic decisions
and provide more information to travelers to help them adjust their routes and change travel
plans in time. Moreover, the traffic flow prediction is also of great benefit for maintaining
the traffic flow in a symmetry condition. The formation of symmetrical traffic flow can
speed up the efficiency of traffic flow and relieve traffic congestion on arterials. However,
affected by meteorological conditions, traffic accidents, and road maintenance construction,
traffic flow presents a high degree of dynamics, randomness, and chaos [2], making traffic
flow prediction a challenging problem.

Many researchers and scholars have studied many methods to enhance prediction
performance in the past decade. The main traffic flow prediction methods can be roughly
classified into three categories: traditional statistical learning methods, artificial neural net-
works (NNs) methods, and hybrid NNs methods. Traditional statistical learning methods,
such as Kalman filtering [3], autoregressive integrated moving average [4] and Bayesian
method [5], are suitable for processing simple and low-dimensional traffic flow. The main
reason is that these methods are limited by the assumption of stationary processes and lin-
ear combinations of previous observations, making them difficult to predict the dynamics
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of time series [6]. Therefore, the traditional statistical learning models are less effective
in predicting traffic flow sequences with uncertainty and complexity and cannot meet
the current practical engineering needs. In this context, the NNs [7,8] are widely used
in traffic flow prediction tasks due to their uncertainty and nonlinear extraction ability.
Alqatawna et al. [9] introduced the NN as a predictive tool to explore the leading cause
of traffic accidents from multiple data sources. Sharma et al. [10] proposed the back prop-
agation neural network (BPNN) for traffic flow prediction of two-lane undivided roads,
and the experiments demonstrated that the prediction performance of the BPNN is better
than the machine learning methods. Although the NNs methods improve the prediction
accuracy, their generalization ability and prediction effectiveness are greatly influenced
by the network hyperparameters [11], and the appropriate network structure parameters
require several experiments to determine.

Swarm intelligence is an intelligent behavior formed by the interaction between simple
individuals and between individuals and the environment. The swarm intelligence opti-
mization algorithm can provide some new solutions to traffic prediction problems. Swarm
intelligence optimization algorithms, such as particle swarm optimization algorithm [12],
genetic algorithm (GA) [13], ant colony optimization algorithm [14], artificial bee colony
optimization algorithm [15], FOA [16], grey wolf optimizer algorithm [17], whale opti-
mization algorithm [18], have fewer parameters and simple evolutionary iteration process.
Their operation speed is fast, and their global search ability is strong, enabling them to be
suitable for solving high-dimensional and multi-objective optimization problems. In order
to improve the shortcomings of NNs and improve the generalization ability, many studies
have introduced a hybrid framework based on NNs and swarm intelligence algorithms for
traffic flow prediction [19–21]. The core of the hybrid NN model is to use the swarm intelli-
gence algorithm to adaptively optimize the layer connections and layer nodes in the neural
network. The traffic flow prediction accuracy can be improved in a complementary way
through the organic combination of swarm intelligence algorithms and the NNs. Abolghase
et al. [22] investigated a modified Elman recurrent neural network model that uses GA for
process optimization, thus allowing the model to prevent getting stuck in local minima and
find solutions quickly. Yan et al. [23] introduced a hybrid NNs framework for traffic flow
prediction where an adaptive FOA is used to optimize the model’s parameters. Li et al. [24]
used the firefly algorithm to obtain better initial network weights and thresholds, thereby
making up for the random defects of the BPNN. Peng et al. [25] proposed a traffic prediction
model based on GA. The original traffic flow data is first preprocessed by wavelet denoising
method. Then, the BP neural network is optimized by GA, and the optimized prediction
model has better accuracy. In summary, combining swarm intelligence algorithms with the
NNs methods is an effective measure to improve traffic flow prediction performance and is
receiving increasing attention from research scholars.

The number of vehicles in the road segments scene has a large order of magnitude
and strong temporal correlation. WNN [26] is a neural network based on the topology of
the BPNN, with a three-layer network structure, and the activation function of the hidden
layer is replaced by a wavelet function. Because the WNN integrates the advantages of the
fast convergence speed of the NNs and the time frequency local analysis of the wavelet
analysis [27], the WNN can more accurately approximate the time series of traffic flow
in the road segments. However, the random selection of its hyperparameters makes the
WNN easy to fall into the local optimum in the gradient descent process [28]. The FOA
can be used to solve the drawbacks of WNN. The FOA simulates the process of fruit fly
foraging through two iterative processes of smell search and visual search, and continuously
optimizes parameters to obtain the optimal solution [29,30]. The structure of the FOA
algorithm is relatively simple, requires few parameters, and has the advantages of strong
search ability, small computational complexity, and fast convergence performance [31].
Therefore, this study proposes a hybrid prediction framework based on the IFOA and
the WNN to realize traffic flow prediction tasks in the road segments scene. The main
contributions of this paper are as follows,
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(1) To solve the problem that the FOA easily falls into local optimum, the IFOA using
parallel search strategy and group cooperation strategy is designed to improve the
quality solution.

(2) A hybrid prediction model based on WNN with IFOA (IFOA-WNN) is introduced,
which combines the advantages of the nonlinear fitting ability and the fast convergence
ability to predict the traffic flow prediction in the road segments scene.

(3) Experiments are carried out on the real road dataset. The experiment results show
that the IFOA can select appropriate structure parameters for WNN, and the proposed
IFOA-WNN model can make accurate prediction results.

The rest of the paper is organized as follows. Section 2 presents some basic knowledge.
In Section 3, the parallel search strategy and group cooperation strategy are developed in
IFOA. Section 4 describes the details of our proposed IFOA-WNN model. The experiment
results are presented in Section 5, and Section 6 concludes this paper.

2. Basic Knowledge
2.1. Mathematical Model of Traffic Flow in Road Segments

The traffic flow characteristics of road segments include vehicle flow, average speed,
and vehicle density. For different road segments, the traffic flow change and the critical
value of the traffic flow index [32] are different. A single-lane road segment is with only
one entry lane and one exit lane. As shown in Figure 1, the traffic flow of the road segment
is determined by the number of vehicles entering and leaving the road segment within
5(n− 1) ∼ 5n minutes, and the number of vehicles included in the road segment at the
previous moments. Therefore, the number of vehicles on the road segment at the moment k
can be calculated as follows.

Q(k) =
k

∑
i=1

qin(i)−
k

∑
i=1

qout(i) + q0 (1)

where q0 is the number of vehicles included in the initial time; and qin(i) and qout(i) are the
number of vehicles entering and leaving the road segment, respectively.
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Figure 1. Extraction of the number of vehicles on a single-lane road segment.

The extraction of the number of vehicles on a multi-channel road segment is shown in
Figure 2. In order to predict the number of vehicles in this multi-channel road segment,
it is necessary to set up multiple detection sensors on the main line, on-ramp, off-ramp,
and intersection, and use the data collected from these sensors to calculate the number of
vehicles on the complex road segments. The number of vehicles at the moment k is defined
as follows.

Q(k) =
N

∑
i=1

k

∑
s=0

qin(i, s)−
M

∑
j=1

k

∑
s=0

qout(j, s) + q0 (2)
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where Q(k) is the total vehicle volume on the complex road segment; q0 is the number of
vehicles at the initial moment; and qin(i, s) and qout(j, s) are the number of vehicles entering
and exiting the section at the sth moment from the ith on-ramp and jth off-ramp, respectively.
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2.2. Fruit Fly Optimization Algorithm

The Fruit Fly Optimization Algorithm (FOA) is a swarm intelligence optimization
algorithm based on the foraging behavior of the fruit flies. When searching for food, a group
of the fruit flies first relies on the sense of smell to determine the approximate distance
between the fruit fly itself and the target food. The overall idea of the FOA algorithm in
solving the problem of finding the optimal solution is similar to that of a fruit fly population
searching for food.

The location information of the best fruit fly in the fruit fly population is determined
by the smell search method. However, the visual search method is different in that all the
fruit flies in the population search randomly outward from the location information of the
optimal fruit fly, and then the two steps of smell search and visual search are cycled until
the optimal solution of the problem is obtained. To describe the FOA algorithm in the more
detail, we take the optimization problem of a binary function g(x, y) as an example. The
process of solving the optimal solution of a binary function by FOA can be divided into the
following steps.

Step 1. Initializing the parameters of the fruit fly swarm. Initialize the number N of fruit flies
in the swarm, the initial position (x0, y0) of the fruit fly swarm, the search step size L,
and the maximum number Tmax of iterations.

Step 2. Smell search process. The fruit fly swarm starts from the initial position (x0, y0) and
searches randomly in all directions with step L to get the updated position (xi, yi),
i = 1, 2, . . . , N.

xi = x0 + L× Rand() (3)

yi = y0 + L× Rand() (4)

where Rand() is a random value of (0, 1). After completing the random search, the
smell concentration judgment value Smelli = g(xi, yi) of the current position of the
fruit fly is calculated, and the function g(·) is the smell concentration function.

Step 3. Visual search process. The fruit fly with the best smell concentration judgment value
bestSmell in the swarm is selected as the optimal fruit fly, and the global optimal
A value and the global optimal fruit fly location information are updated when the
optimal fruit fly’s bestSmell is better than the global optimal value Smellbest. The
update process is given by the following equation.

[bestSmell, bestIndex] = max(Smell1, Smell2, · · · , SmellN) (5)

Smellbest = bestSmell (6)

x0 = bestIndexx (7)

y0 = bestIndexy (8)
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Step 4. Determine the termination condition. If the maximum number of iterations is reached,
the algorithm terminates and outputs the optimal solution (bestIndexx, bestIndexy) that
leads to the optimal value of the function g(x, y); otherwise, it returns to step 2.

3. Improved Fruit Fly Optimization Algorithm
3.1. Parallel Search and Group Cooperation Strategies in IFOA

Although the FOA has strong search ability, it is easy to fall into local optimum. Mainly
because of the following two problems, (1) During the entire iterative optimization process,
the fruit fly swarm moves to the position of the current optimal fruit fly individual. Once
the optimal position of this iteration is determined, all the fruit fly individuals will gather,
which will weaken the diversity of the swarm. (2) A single search operation often makes the
new solutions generated in the iterative process more similar. The fruit fly individual in the
swarm tends to be consistent, making the search process easy to fall into a local optimum.

In order to solve the above problems, IFOA which uses parallel search strategy and
group cooperation strategy is developed to improve the solution quality of the algorithm.

(1) Parallel search strategy

By introducing a multi-swarm mechanism and determining multiple center locations
in the iterative process, the fruit fly swarm can be effectively avoided from concentrating
near one central location, thus maintaining the diversity of the swarm and improving the
global search ability of the algorithm. The parallel search strategy performs search food in
multiple fruit fly subswarms and then compares the optimal solutions of each subswarm to
determine the global optimal solution.

(2) Group cooperation strategy

If each subswarm searches independently, there will be no communication between
subswarms, resulting in lower search efficiency. Therefore, the group cooperation strategy
is designed to solve this problem. The main steps are as follows.

Step 1. The subswarms are sorted in descending order according to the fitness function value
and select the subswarm as the invariant subswarms whose fitness function value is
in the top 50% for group cooperation strategy.

Step 2. If the number of the subswarms is M, the pth subswarm and the (M− p + 1)th sub-
swarm after sorting will be cross-transformed, p = 1, 2, · · · , M/2.

Step 3. The fruit fly with optimal value in a subswarm is chosen as the information fruit
fly of the subswarm. A binary crossover fruit fly and the information fruit fly of
the subswarm have the same length. The crossover fruit fly is randomly generated
to perform the crossover operation on the pth subswarm and the (M− p + 1)th sub-
swarm informative fruit flies. The informative fruit fly of the pth subswarm does not
change, and the informative fruit fly of the (M− p + 1)th subswarm changes as the
crossover operation.

As shown in Figure 3, we take a five-dimensional fruit fly individual as an example.
For the position where the information carried by the binary crossover fruit fly is 1, the
parameter values of the corresponding positions of the two information fruit flies are
exchanged. The position of the information carried by the binary crossover fruit fly is 0, and
no crossover operation is performed. xA1, xA2, . . . , xA5 is the position information of the
pth information fruit fly. xB1, xB2, . . . , xB5 is the position information of the (M− p + 1)th

information fruit fly.
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3.2. Execution Steps of the IFOA

Similarly, taking the optimization problem of a binary function g(x, y) as an example,
the process of solving the optimal solution when the function reaches the optimal value
by IFOA can be expressed as the following steps. The flowchart of the IFOA is shown
in Figure 4.

Step 1. Initializing parameters of the fruit fly swarm. The number of subswarms is initialized
as M, and the number of fruit fly in each subswarm is set to N. The fruit fly swarm
can be expressed as F = {F1, F2, · · · , FM}. Therefore, each fruit fly subswarm can be
expressed as Fi = {(xi,1, yi,1), (xi,2, yi,2), . . . , (xi,N , yi,N)}, i = 1, 2, . . . , M. The initial
position of the swarm is set to (x0, y0), the initial position of each subswarm is initial-
ized as (xi, yi), i = 1, 2, . . . , M. The search step size is L and the maximum iterations
is set to Tmax.

Step 2. Smell search process. Distance to each fruit fly is randomly assigned to carry out the
search process. The initial position of each fruit fly is (xi,j, yi,j), i = 1, 2, . . . , M, and
j = 1, 2, . . . , N, and each subswarm performs this process independently.

xi,j = xi + L× Rand() (9)

yi,j = yi + L× Rand() (10)

where Rand() is a random value of (0, 1). After completing the random search, the
smell concentration judgment value Smelli,j = g(xi,j, yi,j) of the current position of the
fruit fly is calculated. In this paper, the smell concentration judgment value Smelli,j
of different fruit flies is the prediction error value calculated by applying the WNN
network hyperparameters carried by different fruit flies to the WNN for traffic flow
prediction. In this case, the smaller the value of Smelli,j, the better.

Step 3. Visual search process with the group cooperation strategy. Firstly, we find the opti-
mal value bestSmelli and optimal solution bestIndexi = (bestIndexi,x, bestIndexi,y) in
each subpopulation, and the information exchange operation is executed between
subswarms according to the group cooperation strategy. Finally, we find the global
optimal value smellbest and optimal solution bestIndex in the whole swarm.

[bestSmelli, bestIndexi] = min(Smelli,1, Smelli,2, · · · , Smelli,N) (11)

Smellbest = min(bestSmell1, bestSmell2, . . . , bestSmellM) (12)

bestIndex = bestIndex(Smellbest) (13)

xi = bestIndexi,x (14)

yi = bestIndexi,y (15)

Step 4. Determining the termination condition. If the maximum number of iterations Tmax
is not reached, the position of each subswarm is updated. Then enter the iteration,
repeat step 2 to 4 until the number of iterations reaches Tmax. Otherwise, the algorithm
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terminates and outputs the optimal solution (x0, y0) that leads to the optimal value of
the function g(x, y).

x0 = bestIndexx (16)

y0 = bestIndexy (17)
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4. The Hybrid IFOA-WNN Model for Traffic Prediction
4.1. Wavelet Neural Network

WNN adds wavelet transform technology based on NNs. Compared with BPNN,
it can simplify the training process, and has more significant advantages and excellent
learning ability for predicting time series. Therefore, WNN is chosen to learn the nonlinear
and temporal characteristics of road segment traffic flow in our study. The prediction
process of WNN is divided into two parts: forward calculation of input signal and error
back propagation learning.

(1) Forward calculation of input signal

The hidden layer output hid(j) is defined as follows.

hid(j) = h


Ninput

∑
i=1

wijy(t− i)− Bj

Aj

, j = 1, 2, · · · , Nhid (18)

where u(t) = [y(t− 1), y(t− 2), · · · , y
(
t− Ninput

)
]
T is the input data; Nhid is the number

of hidden units; h(·) is the wavelet basis function; wij is the weight matrix between the
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input layer and the hidden layer; Aj and Bj are the scaling factor and translation factor of
the wavelet basis function, respectively.

The output ŷ(t) of the WNN is calculated as follows.

ŷ(t) =
m

∑
j=1

wjkhid(j), k = 1, 2, . . . , Nout (19)

where wjk is the weight matrix between the hidden layer and the output layer; Nout is the
number of output units.

The error between the output and the true value and the loss function is denoted
as follows.

e(t) = ŷ(t)− y(t) (20)

E =
1
2

e(t)2 (21)

(2) Error back propagation learning

The calculation formulas of the weights and wavelet factors of the WNN are follows.

w(d+1)
ij = w(d)

ij + ∆w(d+1)
ij

w(d+1)
jk = w(d)

jk + ∆w(d+1)
jk

A(d+1)
j = A(d)

j + ∆A(d+1)
j

B(d+1)
j = B(d)

j + ∆B(d+1)
j

(22)

where d is the iterative times; ∆wij, ∆wjk, ∆Aj, ∆Bj represent the adjustment amount in the
d + 1th iteration process, and its mathematical formula is as follows.

∆w(d+1)
ij = −η∂E/∂w(d)

ij

∆w(d+1)
jk = −η∂E/∂w(d)

jk

∆A(d+1)
j = −η∂E/∂A(d)

j

∆B(d+1)
j = −η∂E/∂B(d)

j

(23)

where η is the learning rate.
In the process of back propagation, the weight parameters wij, wjk, scaling factor Aj

and translation factor Bj in the WNN are continuously updated under the guidance of
the loss function, making the model’s predicted value constantly close to the real value.
However, the WNN is sensitive to the initial value of the structural parameters, so our
proposed IFOA needs to be used to adjust the initial parameters of the WNN to achieve a
better prediction effect.

4.2. The Hybrid IFOA-WNN Model

Based on the strong global search ability of IFOA and the nonlinear capture ability
of WNN, a hybrid structure IFOA-WNN model is established for traffic flow prediction
in the road segment scene. The IFOA-WNN prediction model is divided into two parts,
including the IFOA, to optimize the structural parameters of the WNN, and the optimized
WNN used to predict the traffic flow.

In the prediction process, the input of the WNN is the number of vehicles passing
through a section segment at multiple historical sampling times, and the output value
of the WNN is the predicted value at the next moment. It can be expressed to predict
the traffic flow of the next moment ŷt through the traffic flow of the historical moment
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u(t) = [yt−Ninput+1, · · · , yt−1, yt]
T . The main structural parameters of the WNN include

the input layer units Ninput, the hidden layer units Nhid, the learning rate of connection
weights LRw, the learning rate of translation factors LRA, and the learning rate of scaling
factors LRB. These structural parameters are used as the position vector of the IFOA, and
the position vector P of the individual fruit fly and the fitness function can be denoted
as follows.

P =
[
Ninput, Nhid, LRw, LRA, LRB

]
(24)

MAE =

( Ny

∑
i=1
|(yi − ŷi)|

)
/Ny (25)

where yt and ŷt represent the actual value and predicted traffic flow, respectively; and Ny

is the number of all traffic flow data samples.
The flowchart of the IFOA-WNN model is shown in Figure 5. The specific steps are

as follows.

Step 1. Traffic flow data preprocessing. Preprocess the original traffic flow data, the calculate
traffic flow data of the section segments by using the mathematical model, divide
the preprocessed data into the training set, the validation set and the test set, then
normalize them respectively.

Step 2. Initialize fruit fly swarm parameters. The number of subswarms M is 4, the swarm
size N is 10, the number of iterations Tmax is 100. Set the initial position of the
swarm as

[
Ninput, Nhid, LRw, LRA, LRB

]
, set the initial position of each subswarm

as
[

Ninput(i), Nhid(i), LRw(i), LRA(i), LRB(i)

]
, and the fruit fly in the subswarm can

be expressed as
[

Ninput(i,j), Nhid(i,j), LRw(i,j), LRA(i,j), LRB(i,j)

]
, i = 1, 2, · · · , M, j =

1, 2, · · · , N. The search step size L is [4, 3, 0.002, 0.0002, 0.0002], the upper bound of the
individual position of the fruit fly swarm ub is [50, 50, 0.1, 0.01, 0.01], and the lower
bound of the individual position of the fruit fly swarm lb is [3, 5, 0, 0, 0].

Step 3. Execute parallel search strategy. The swarm is divided by parallel search strategy, and
each subswarm performs the smell search process individually.

Step 4. Train the WNN model. The training set data and the structural parameters obtained
from IFOA are used as the input of WNN, and the WNN is fully trained in the process
of forward calculation and error back propagation.

Step 5. Validate the WNN model. The validation set data is used to get the predicted traffic
flow, and the MAE value between the real traffic flow data and the predicted value is
calculated.

Step 6. Calculate the optimal values of the subswarms. The MAE value obtained from the
step 5 is used as the smell concentration judgment value Smell(i,j) = MAEP(i,j) of the
individual fruit fly. Then, mark the optimal value bestSmelli in each subswarm.

[bestSmelli, bestIndexi] = min(Smelli,1, Smelli,2, · · · , Smelli,N) (26)

Step 7. Select the global optimal value Smellbest from the subswarms and update the swarm
location coordinates

[
Ninput, Nhid, LRw, LRA, LRB

]
.

Smellbest = min(bestSmell1, bestSmell2, . . . , bestSmellM) (27)

bestIndex = bestIndex(Smellbest) (28)

Ninput = bestIndexi,Ninput (29)

Nhid = bestIndexi,Nhid (30)

LRw = bestIndexi,LRw (31)

LRA = bestIndexi,LRA (32)

LRB = bestIndexi,LRB (33)
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Step 8. Circulation Stops. When the number of iterations reaches the maximum, the circula-
tion terminates and step 10 is executed; otherwise, go to step 9.

Step 9. Structural parameters continue to be optimized by IFOA. The position of each sub-

swarm
[

Ninput(i), Nhid(i), LRw(i), LRA(i), LRB(i)

]
is updated and the information ex-

change operation is executed between subswarms according to the group cooperation
strategy. Then enter the iteration, repeat step 2 to 8 repeated until the number of
iterations reaches.

Step 10. Finish traffic flow prediction task. Retrain the WNN using the optimal structural
parameters

[
Ninput, Nhid, LRw, LRA, LRB

]
, and then input the test set into the trained

WNN model for prediction.

Ninput = bestIndexNinput (34)

Nhid = bestIndexNhid (35)

LRw = bestIndexLRw (36)

LRA = bestIndexLRA (37)

LRB = bestIndexLRB (38)

Symmetry 2022, 14, x FOR PEER REVIEW 11 of 20 
 

 

AA LRLR bestIndex=  (37) 

BB LRLR bestIndex=  (38) 

 

Figure 5. The flowchart of IFOA-WNN prediction model. 

5. Simulation Experiments 

5.1. Dataset 

The dataset in our experiment is the traffic flow data of California Highway 1 from 1 

March 2019 to 31 March 2019, for a total of 31 days. The training set, validation set and 

test set are divided in the ratio of 6:2:2. The traffic flow data from 1 March to 19 March are 

selected as the training set, the traffic flow data from 20 March to 25 March as the valida-

tion set, and the traffic flow data from 26 March to 31 March as the test set. Since this 

dataset is a cross section dataset, we use the mathematical model mentioned in Section 2 

Begin

Initialize fruit fly swarm 
parameters

Traffic flow data 
preprocessing

Obtain structural 
parameters of WNN

Train WNN

Validate WNN

Record the optimal 

value Smellbest1

Parallel search strategy

Smell search process
[Ninput(1,j),Nhid(1,j),LRw(1,j),

LRA(1,j),LRB(1,j)] 

Smell search process
[Ninput(2,j),Nhid(2,j),LRw(2,j),

LRA(2,j),LRB(2,j)] 

Smell search process
[Ninput(M,j),Nhid(M,j),LRw(M,j),

LRA(M,j),LRB(M,j)] 

Record the optimal 

value Smellbest2

Record the optimal 

value SmellbestM

Calculate Smelli,j of the 
fruit flies

Select the global optimal  value Smellbest ; 
Update the swarm location position [Ninput,Nhid,LRw,LRA,LRB] 

Circulation stops?

End

Execute crossover 
operation between the 

information fruit fly in the 
subswarms

Update the position of each 
subswarm 

[Ninput(M),Nhid(M),LRw(M),LRA(M),LRB(M)] 

Group cooperation strategy

Yes

No

Output the global optimal position 
[Ninput,Nhid,LRw,LRA,LRB] 

  as the structure parameter of the WNN
Train WNN

Finish traffic flow 
prediction task

Test WNN

Figure 5. The flowchart of IFOA-WNN prediction model.



Symmetry 2022, 14, 1333 11 of 19

5. Simulation Experiments
5.1. Dataset

The dataset in our experiment is the traffic flow data of California Highway 1 from
1 March 2019 to 31 March 2019, for a total of 31 days. The training set, validation set and
test set are divided in the ratio of 6:2:2. The traffic flow data from 1 March to 19 March are
selected as the training set, the traffic flow data from 20 March to 25 March as the validation
set, and the traffic flow data from 26 March to 31 March as the test set. Since this dataset is
a cross section dataset, we use the mathematical model mentioned in Section 2 to calculate
the traffic flow data in the road segment scene. The one-day and one-week traffic flow
comparison of the road segment and the cross-sectional lane is shown in Figure 6. It can be
seen that the traffic flow of the road segment is larger in magnitude, more time-correlated,
and time-lagged.
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5.2. Compared Methods

To better demonstrate the prediction performance of the IFOA-WNN model, the
BPNN, recurrent neural network (RNN), WNN, and a hybrid model based on WNN with
an improved whale optimization algorithm (IWOA-WNN) are selected as baseline methods.
The details of the baseline methods are as follows.

(1) BPNN is a classic neural network model. The input layer, hidden layer units are set to
6 and 15, respectively. The activation function is sigmoid function, and the learning
rate is set to 0.01.

(2) RNN is suitable for time series prediction. The input layer, hidden layer units are set
to 6 and 15, respectively. The activation function is tanh function, and the learning
rate is set to 0.01.

(3) WNN is an improved BPNN network. The input layer, hidden layer units are set
to 6 and 15, respectively, and the learning rate is set to 0.01. The connection weight
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learning rate LRw, the translation factor learning rate LRA, and the scaling factor
learning rate LRB are set 0.01.

(4) IWOA-WNN is a hybrid framework network. The swarm size N is set to 10, the
number of iterations Tmax is set to 100, the upper bound ub and the lower bound lb of
the individual position of the swarm are set to [50, 50, 0.1, 0.01, 0.01] and [3, 5, 0, 0, 0].

We use the traffic flow data from the past 30 min to predict the traffic flow in the next
5 min.

5.3. Evaluation Metric

Mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean
square error (RMSE) are selected as evaluation functions to measure the prediction effect of
the model, defined as follows.

MAPE =
100%

Ny

Ny

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (39)

RMSE =

√√√√( Ny

∑
i=1

(yi − ŷi)
2

)
/Ny (40)

where yt and ŷt represent the predicted value and actual value, respectively; Ny is the
number of all traffic flow data sample. The lower value of MAE, RMSE, and MAPE means
that the proposed model has higher accuracy and stronger predictive ability.

5.4. Experiments Analysis

In this study, the IFOA-WNN model for traffic flow prediction in road segments scene
is constructed, and the BPNN, RNN, WNN and IWOA-WNN models are introduced as
comparison models. The analysis of experiment results is mainly divided into two parts.

(1) The prediction performance comparison of different NNs models

The wavelet basis function is applied as the activation function of the WNN, and
choosing an appropriate wavelet basis function is of great help for the WNN to obtain
accurate traffic flow prediction results. The Mexican-hat wavelet function and the Morlet
wavelet function have better prediction effects on time series data, so the evaluation metrics
of the Mexican-hat wavelet function and the Morlet wavelet function are shown in Table 1.
The better values are marked in bold in the Table 1. The MAE, RMSE, and MAPE values
of Morlet are better than the Mexican-hat wavelet function. Therefore, the Morlet wavelet
function is selected as the activation function of the WNN in our experiments.

Table 1. Evaluation metrics of WNN using two different activation functions.

Activation Function MAE RMSE MAPE (%)

Mexican-hat 3.43 4.31 10.32
Morlet 3.06 3.99 9.12

The evaluation metric of the BPNN, RNN, and WNN models are shown in Table 2.
The better values are marked in bold in the Table 2. The traffic flow data of road segments
have strong temporal correlation. The MAE, RMSE, and MAPE value of the WNN are
smaller than the RNN and BPNN models, indicating that the average error between the
predicted value and the true value of WNN is the smallest. Compared with BPNN, WNN
has obvious prediction performance, e.g., the MAPE value of the WNN drops by 3.1%
compared to the BPNN. The main reason is that the BPNN takes the traffic flow data as a
common training sample, while the RNN and WNN models take the traffic flow data as
a time series. At the same time, the prediction effect of WNN is also slightly better than
RNN, which is due to the better time-frequency characteristics of the wavelet basis function.
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Although RNN can capture the time correlation of the traffic flow, the prediction result of
RNN exists a certain lag, leading to a decrease in its accuracy.

Table 2. Prediction performance of the BPNN, RNN, and WNN.

Compared Models MAE RMSE MAPE (%)

BPNN 3.34 4.24 10.22
RNN 4.16 5.43 9.43
WNN 3.06 3.99 9.12

To intuitively display the prediction effect of the three models, 10 sample data are
randomly selected from the test set, and the bias between the predicted value and the real
traffic flow of the ten sample data is calculated in Table 3. The better biases are marked in
bold in the Table 3. From it, we can see that the prediction accuracy of WNN is higher than
RNN and BPNN.

Table 3. The predicted value and real traffic flow of the BPNN, RNN, and WNN.

Sample Actual Data

WNN RNN BPNN

Predicted
Value Bias (%) Predicted

Value Bias (%) Predicted
Value Bias (%)

5 14.01 14.47 3.26% 15.27 9.02% 16.10 14.92%
65 5.61 5.84 4.15% 5.47 3.27% 5.18 7.68%
99 39.84 41.82 4.97% 46.23 16.04% 39.67 0.44%
123 55.07 54.63 0.80% 54.76 0.56% 52.39 4.86%
138 55.85 55.83 0.03% 54.70 2.05% 59.80 7.07%
174 77.12 80.3 4.12% 76.06 1.37% 80.9 4.90%
175 74.56 76.30 2.33% 76.46 2.55% 87.37 17.19%
244 30.26 30.07 0.63% 28.99 4.20% 31.88 5.35%
261 28.64 31.05 8.41% 31.28 9.22% 33.64 17.47%
281 13.77 14.21 3.20% 15.65 13.65% 13.85 0.58%

The prediction results and prediction errors of the WNN, BPNN, and RNN are shown
in Figure 7. As Figure 7a shows, the predicted value of the BPNN in the three prediction
models deviates greatly from the real value, indicating that its prediction ability is weak.
The prediction results of RNN have a certain lag relative to the actual value, while the
prediction results of WNN closely follow the changes in the real traffic flow. Figure 7b
presents that the error fluctuation of the WNN is smaller than the BPNN and WNN,
indicating that the WNN has more robust stability and better prediction performance.
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Figure 7. The prediction performance comparison of the BPNN, RNN, and WNN models in one day.
(a) The predicted value and the real traffic flow in one day. (b) The error between the predicted value
and the real value in one day.

The changes in traffic flow data are always affected by complex factors. To verify the
stability of the prediction models, the BPNN, RNN, and WNN are applied to carry out the
prediction task of the evening peak from 15:00 to 18:00. The traffic flow prediction results
of the BPNN, RNN, and WNN models are shown in Figure 8. As shown in Figure 8a,
the traffic flow of the road segment during the evening peak period is heavy and the
change is more obvious compared with the Figure 7a. The prediction result of the WNN is
closer to the real traffic flow than the other models, and the prediction error value of the
WNN fluctuates less in Figure 8b. This indicates that the WNN has better stability and
nonlinear extraction ability, and can make accurate predictions of traffic flow affected by
external factors.
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Figure 8. The prediction performance comparison of the BPNN, RNN and WNN models in one day.
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(2) The prediction performance comparison of different hybrid NNs models

After the above experiments, the WNN is selected as the traffic flow prediction model.
Because the structural parameters of the WNN have a great influence on the prediction
performance, the swarm intelligence algorithm is used to optimize the structural parameters
of the WNN. In this experiment, two swarm intelligence algorithms, the IWOA and the
IFOA, are chosen to optimize the structural parameters of the WNN. Table 4 shows the
structural parameters of the WNN optimized by the IWOA and the IFOA.

Table 4. The structural parameters of WNN in two different hybrid frameworks.

Compared Models Ninput Nhid LRw LRA LRB

IWOA-WNN 14 23 0.013 0.001 0.001
IFOA-WNN 10 37 0.012 0.004 0.004

The evaluation metric value of WNN, IWOA-WNN and IFOA-WNN are shown in
Table 5. The better values are marked in bold in the Table 5. The IWOA-WNN model and
the IFOA-WNN model have better prediction results than WNN. The main reason is that
the structural parameters that significantly impact the prediction performance are explored
in IWOA and IFOA. The MAE, RMSE, and MAPE value of the IFOA-WNN model are all
smaller than the IWOA-WNN model, indicating that the IFOA has better optimization
ability than the IWOA. The global search strategy and group strategy of IFOA solve the
drawback of quickly falling into local optimum, which enhances the quality of the WNN
structural parameters and makes the WNN network have stronger nonlinear extraction
ability and better prediction effect.

Table 5. Prediction performance of the WNN, IWOA-WNN, and IFOA-WNN.

Compared Models MAE RMSE MAPE (%)

WNN 3.06 3.99 9.12
IWOA-WNN 2.04 2.66 6.12
IFOA-WNN 1.79 2.36 4.62

Ten sample data are randomly selected from the test set, and the bias between the
predicted value obtained from the WNN, IWOA-WNN, and IFOA-WNN models and the
real traffic flow are recorded. The better biases are marked in bold in the Table 6. As shown
in the Table 6, the WNN model improved by the swarm intelligence algorithm has a high
prediction performance, which proves that the swarm intelligence algorithm can explore
high-quality structural parameters for the WNN. The IFOA-WNN model’s accuracy is
higher than IWOA-WNN, validating the effectiveness of the IFOA.

Table 6. The predicted value and real traffic flow of the IFOA-WNN, IWOA-WNN, and WNN.

Sample Actual Data

IFOA-WNN IWOA-WNN WNN

Predicted
Value Bias (%) Predicted

Value Bias (%) Predicted
Value Bias (%)

3 14.83 14.11 4.87% 12.21 17.66% 11.42 22.97%
51 2.61 2.78 6.41% 2.86 9.52% 3.50 34.22%
66 5.79 5.69 1.71% 5.45 5.99% 6.84 18.16%
75 8.01 7.72 3.66% 6.39 20.24% 6.80 15.14%
120 53.47 53.01 0.87% 53.58 0.21% 52.84 1.18%
149 78.97 78.92 0.05% 77.14 2.31% 78.55 0.53%
188 103.86 102.74 1.08% 102.29 1.52% 106.33 2.37%
192 92.27 91.53 0.80% 89.93 2.53% 91.83 0.96%
215 59.99 60.26 0.45% 61.59 2.67% 60.99 1.67%
268 22.78 22.31 2.06% 22.58 0.86% 21.49 5.65%
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Figure 9 shows the comparison of the traffic flow prediction results using the WNN
model, the IWOA-WNN model, and the IFOA-WNN model. In Figure 9a, the prediction
results of the three models all follow the real traffic flow closely, indicating that the three
models have great nonlinear extraction ability. Moreover, as shown in Figure 9b, the change
of the error of IFOA-WNN is mostly smaller than the WNN model, indicating that the
prediction effect of IFOA-WNN is more accurate and stable, which verifies the effectiveness
of IFOA in improving the quality of the solution.
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Figure 9. The prediction performance comparison of the WNN, IWOA-WNN, and IFOA-WNN
models in one day. (a) The predicted value and the real traffic flow in one day. (b) The error between
the predicted value and the real value in one day.

Similarly, to verify the WNN model’s predictive stability, three hours of evening peak
traffic flow data is used as the input of the IWOA-WNN model and the IFOA-WNN model.
The three prediction models can predict the trend of traffic flow change, but the IFOA-
WNN model has great following effect and accurate prediction performance in Figure 10a.
As shown in Figure 10b, the IFOA-WNN model can better suppress the error of the low-
frequency part, indicating that it has better frequency characteristics. On the other hand, it
also shows that the IFOA-WNN model can describe the nonlinear characteristic of traffic
flow and obtain the frequency domain characteristics to improve accuracy and stability.
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6. Conclusions

In this study, the mathematical model of the traffic flow in the road segments is first
established, and the traffic flow data of the cross section is used to calculate the traffic flow
data of the road segments. Then, the WNN is applied to finish the traffic flow prediction
task. Since the WNN is sensitive to the initial weight and wavelet factor, so the IFOA based
on parallel search strategy and group cooperation strategy is designed to optimize the
structural parameters of WNN. Compared with the BPNN, RNN, WNN and IWOA-WNN
models, the experiments’ results show that our proposed IFOA is superior to other swarm
intelligence algorithms, and in the IFOA-WNN hybrid model, the IFOA can find high-
quality structural parameters for the WNN, thereby improving the prediction accuracy of
the model and convergence speed.

This paper only considers the temporal characteristic of traffic flow and does not
consider the spatial characteristic. In future work, the spatio-temporal feature can be
introduced into the input matrix to get more prior knowledge, which has great benefits in
improving the prediction performance.
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formal analysis, C.Y.; investigation, F.S.; data curation, C.Y.; writing—original draft preparation, C.Y.;
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and agreed to the published version of the manuscript.
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