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Abstract: Non-Gaussian dynamic processes are ubiquitous due to the presence of non-Gaussian
distributed variables. Therefore, fault detection of non-Gaussian dynamic processes plays a vital role
to maintain the safe operation of systems and symmetry of data distribution. In this paper, a dynamic
generalized likelihood ratio (DGLR)-based fault detection method is proposed for non-Gaussian
dynamic processes. Different from the conventional principal component analysis (PCA)-based,
dynamic PCA-based, and PCA-based GLR fault detection methods, the novelty of the proposed
method is that the GLR is extended to non-Gaussian dynamic processes, and the randomized algo-
rithm is integrated for threshold setting to attenuate the influence of non-Gaussian. The application
scope of these methods is also discussed. The proposed method is compared with four existing fault
detection methods on a numerical simulation and the continuous stirred-tank reactor (CSTR) process.
The achieved results show that the proposed method is able to significantly improve the detection
performance in terms of fault detection rate and prompt response to faults.

Keywords: data-driven fault detection; generalized likelihood ratio; non-Gaussian dynamic process;
continuous stirred-tank reactor

1. Introduction

Fault detection is becoming increasingly important to maintain high quality products,
operation safety of processes, and symmetry of data distribution. In recent years, consider-
able attention has been paid to research on solving fault detection problems. Model-based
and data-driven methods are two common types [1–6]. In the model-based approaches,
accurate physical or mathematical models are needed. On the other hand, in data-driven
methods, only the availability of historical process data is required. Data-driven fault
detection techniques have been widely used due to the simple application form and fewer
requirements on development. The commonly used data-driven methods include gen-
eralized likelihood ratio (GLR)-based [7,8], multivariate analysis (MVA)-based, such as
principal component analysis (PCA) [9–12], partial least square (PLS) [13–15], canonical
correlation analysis (CCA) [16–18].

PCA is one of the most MVA techniques used for FD, which considers a single dataset.
The successful application of such a method can be found in a wide range of applica-
tions, for example, dynamical, time varying, non-Gaussian and nonlinear processes [19].
Several variants of the standard PCA have been developed. These variants include dy-
namic PCA which is used to find dynamical linear relationships between the process
variables [20], moving window PCA which handles time varying features [21], kernel
density based-PCA which is used in non-Gaussian fault detection [22]. For GLR-based
fault detection methods, some variants have also been developed in the fields of time
varying [23], non-Gaussian [24], etc. However, the dynamic characteristic in process is
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rarely considered in the existing methods, and the better detection performance could be
achieved by considering the auto-correlation characteristic in dynamic processes.

Furthermore, the successful application of the GLR-based method requires that the
process data follows a Gaussian distribution. In practice, processes with non-Gaussian
features put forward more challenges for fault detection. To this end, some variants of the
existing fault detection methods have been developed. Commonly, there are two types of
methods to deal with the fault detection problem for non-Gaussian processes. The first ones
are either to use some methods, which are free of distribution, such as independent compo-
nent analysis (ICA) [19] and support vector machine-based methods [25,26], or to extract
high-order statistics and then use the standard method based on the obtained statistics [27].
For example, in [26], the ICA method is firstly used to get the independent components
and then the support vector data description method is applied to generate a suitable
threshold. The authors in [27] used various statistics to quantify process characteristics,
such as non-Gaussian, furthermore monitoring these statistics instead of process variables
themselves to perform fault detection. The second type of methods are first to estimate
a probability distribution of the monitored variables or statistics, and then determine an
appropriate threshold based on the resulting distribution. These methods can be referred to
as distribution estimation-based methods [28]. A great number of methods have been devel-
oped for the estimation of distribution, including Gaussian Mixture Models (GMM) [29,30],
kernel-based approaches [31,32] and sequential quantile estimation [33]. Motivated by the
success of the second ones, in this paper, we use the same strategy. Although these existing
methods are successful in this application domain, their performance in fault detection
is commonly constrained by the determination of kernel structure and method-specified
parameters, for example, the bandwidth parameter for a Gaussian kernel [31]. Therefore,
due to the ability to iterative updating threshold, a randomized algorithm-based threshold
learning method is used to enhance the dynamic GLR (DGLR)-based method to deal with
the fault detection task in non-Gaussian dynamic processes.

Motivated by the above analysis, a DGLR-based fault detection method combined
with the threshold learning method is proposed for non-Gaussian dynamic processes. The
contribution of this work is four-fold: (1) to develop a DGLR-based detection statistic for
non-Gaussian dynamic processes; (2) to improve DGLR-based fault detection performance
by iteratively learning the suitable threshold by a randomized algorithm; (3) to compare
the DGLR-based fault detection methods with the GLR-based, PCA-based, DPCA-based,
and PCA-based GLR ones [34]. Based on our best knowledge, there are few works to
compare these methods with the purpose to clarify the application scope of these method
and to guide the practitioners to select a suitable fault detection method; (4) to assess
the DGLR-based fault detection performance by comparing it with the GLR-based, PCA-
based, DPCA-based, and PCA-based GLR methods using a numerical simulation and the
continuous stirred-tank reactor (CSTR) process.

Notation 1. The notation used in this paper is standard. Rn denotes the n-dimensional Euclidean
space consisting of n× 1 vectors with real components,Rn×m is the set of all n×m real matrices,
and diag(. . . , . . . , . . .) is a square diagonal matrix. A(:, i) represents the i-th column of A. In is
an n× n identity matrix. x ∼ N (µx, Σx) denotes that x is a normally distributed random vector
with mean µx and covariance Σx. E(·) denotes the expectation operator. χ2(m) stands for the
chi-square distribution with m degrees of freedom. Let pr(χ2 > χ2

α(m)) = α be the probability that
χ2 > χ2

α(m) equals α (significance level).

2. Background and Problem Formulation
2.1. The Basics of GLR-Based Fault Detection Technique

Consider the following fault detection problem using a GLR-based technique. Given a
general model

y = y∗ + f ∈ Rm (1)
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where y∗ ∼ N (0, Σ) represents the statistical features of the process and m is the dimension
of the variable. Since f = 0 denotes the fault-free case, our task consists of detecting a fault
f 6= 0 with N number of available measurements of y1, . . . , yN .

The fault detection task can be solved by testing the following hypotheses based on
the available data y [7]

H0, null hypothesis: f = 0, fault-free,

H1, alternative hypothesis: f 6= 0, faulty.

The probability density functions (pdf) of y∗ and y are respectively given as

P0(y) =
1√

(2π)m det Σ
exp−0.5yTΣ−1y, (2)

P1(y) =
1√

(2π)m det Σ
exp−0.5(yT−E(y))Σ−1(y−E(y)), (3)

The log likelihood ratio is defined as

s(y) = 2 ln
P1(y)
P0(y)

= yTΣ−1y− (y− E(y))TΣ−1(y− E(y)) (4)

To increase the confidence of the decision-making procedure, generally more samples are
required. Using N samples of data y, Equation (4) is extended as

SN
1 =

N

∑
k=1

2 ln
P1(yk)

P0(yk)
(5)

=
N

∑
k=1

yT
k Σ−1y−

N

∑
k=1

(yk − E(y))TΣ−1(yk − E(y))

= 2NȳTΣ−1E(y)− NE(y)TΣ−1E(y), ȳ =
1
N

N

∑
k=1

yk

= N(ȳTΣ−1ȳ− (ȳ− E(y))TΣ−1(ȳ− E(y)))

Evidently, the maximum of SN
1 is

NȳTΣ−1ȳ (6)

when ȳ = E(y) is achieved. Since E(y) is generally unknown, it can be replaced by its
maximum likelihood estimate

E(y) =
1
N

N

∑
k=1

yk (7)

In practice Σ is also unknown, which needs to be identified from the data. It is straightfor-
ward that

lim
N→∞

Σ̂ = lim
N→∞

1
N − 1

N

∑
k=1

(yk − E(y))(yk − E(y))T = Σ

which gives an asymptotically unbiased estimate of the covariance matrix. Thus if N is
sufficiently large, the unknown parameter Σ could be approximated by its estimate

Σ̂ =
1

N − 1

N

∑
k=1

(yk − E(y))(yk − E(y))T (8)

2.2. Randomized Algorithm-Based Threshold Setting

The randomized method has been widely used to the analysis and design of a robust
control system [35,36]. Recently, this method has been used for threshold setting for the
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non-Gaussian process because it is independent of the probability distribution [28]. This
successful application can be attributed to the iterative update of the threshold by means of
the estimation of false alarm rate (FAR). The basic idea behind is that the required threshold
should guarantee a desired false alarm rate, which is predefined. Let Jth, pFAR and p̂FAR be
the threshold, allow FAR and the estimated FAR, respectively A lowest threshold which is
satisfied with the given false alarm rate is obtained by the following Algorithm 1 from [28].

Algorithm 1: Threshold-setting
Given allowed FAR ∈ (0, 1) and δ ∈ (0, 1), let ε > 0 be some constant satisfying

FAR− ε > 0

and ∆ > 0 be the iteration tolerance.
S1: Set Jth = J0(> 0);
S2: Choose integer N according to the one-sided Chernoff inequality with

ε ∈ (0, 1), δ ∈ (0, 1)

N ≥ 1
2ε2 log

1
δ

(9)

S3: Estimate FAR using the method given in [37];
S4: If p̂FAR ≤ pFAR − ε then return Jth and exit;
S5: Else Jth = Jth + ∆ go to Step 3.

As given in Theorem 1 in [28], for a sufficiently small ∆, the estimated threshold
satisfies Jth,min ≤ Jth ≤ Jth,min + ∆ with Jth,min the lowest threshold. Since ∆ is sufficiently
small, the estimated threshold approaches the lower threshold, i.e., Jth ≈ Jth,min.

3. The Proposed Method

In this section, a DGLR-based fault detection method is proposed for non-Gaussian
dynamic processes. Firstly, a DGLR-based test statistic is built for detection purposes.
Then, it is well known in probability theory that the complete information of a Gaussian
distribution can be described by the mean value and the covariance. Therefore, if the
measured variable y follows a Gaussian distribution, the threshold setting can be achieved
using the standard distribution table. However, in a non-Gaussian case, the distribution of
the test statistics inevitably deviates from the standard distribution, e.g., χ2 distribution.
In this case, the threshold, which is set based on Gaussian assumption, will decrease the
detection performance, e.g., lower detection rate or higher false alarms. An alternative
solution to this problem is to set an appropriate threshold. Therefore, in Section 3.1, the
DGLR method is integrate with the RA-based threshold-setting algorithm for the purpose
of fault detection of non-Gaussian processes.

3.1. DGLR with RA-Based Threshold Setting Algorithm

In the DGLR-based fault detection method, the solution of fault detection problem
consists of two procedures:

• Off-line training. Using the stacking data to identify the unknown parameters, i.e., the
mean value E(y) and the covariance matrix Σ;

• On-line implementation. Detecting faults with on-line data.

In the first procedure, with N recorded data available, the data can be augmented and
stacked in the following manner:

y =


yT

k yT
k−1 · · · yT

k−N
yT

k+1 yT
k · · · yT

k−N+1
...

...
...

...
yT

k+p yT
k+p−1 · · · yT

k+p−N

 (10)
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where yT
k denotes the recorded data at time k, and p + 1 represents the number of sam-

ples. The mean value E(y) and the covariance matrix Σ can be estimated according to
Equations (7) and (8), respectively. For on-line implementation, first, we collect on-line
measurement data yk+i = [yk+i, yk+i+1, . . . , yk+i+p]

T , i = 1, . . . , n, and then calculate

ȳn =
1
n

n

∑
i=1

yk+i, ∆ȳ = ȳn − E(y) (11)

For fault detection purposes, a test statistic in a maximum likelihood ratio-like form can be
used as

JDGLR = n(∆ȳTΣ̂−1∆ȳ) (12)

By summarizing the previous analysis, an extension of DGLR using RA-based thresh-
old setting is proposed to detect underlying faults subject to non-Gaussian processes.
The step-by-step procedure of the DGLR with RA-based threshold setting algorithm is
illustrated in Algorithm 2.

Algorithm 2: DGLR-based fault detection method with RA-based threshold setting.
Off-line training
S1: Computation of

E(y) =
1
N

N

∑
i=1

yi, Σ̂ =
1

N − 1

N

∑
i=1

(yi − E(y))(yi − E(y))T

S2: Determine the corresponding thresholds Jth,ng using Algorithm 1 with a given
significance level α, in which the statistic, JDGLR is estimated according to
Equation (12);

On-line implementation
S3: Collect real-time measurement yk+i, i = 1, . . . , n and calculate

ȳn =
1
n

n

∑
i=1

yk+i, ∆ȳ = ȳn − E(y)

S4: Build test statistic
JDGLR = n(∆ȳTΣ̂−1∆ȳ)

S5: Check the decision logic:{
JDGLR > Jth,ng ⇒ faulty
JDGLR ≤ Jth,ng ⇒ fault-free.

Remark 1. The extension of PCA-based, DPCA-based, and PCA-based GLR fault detection meth-
ods with RA technique can be achieved according to the procedures in Algorithm 2. Hence, they are
not presented in this paper.

3.2. Comparison among GLR-Based, DGLR-Based, PCA-Based, DPCA-Based, and PCA-Based
GLR Fault Detection Methods

Considering the applications of PCA-based, DPCA-based, and PCA-based GLR fault
detection methods, in this subsection, we briefly discuss the relationship among the three
fault detection methods with the GLR-based one to distinguish their scope.

In practice, the direct application of the DGLR-based method may be unavailable
due to numerical reasons, e.g., the invertibility of the estimated covariance matrix. This
fact leads to the application of PCA-based methods, in which the SVD (singular value
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decomposition) of the estimated covariance matrix is the core. The principle of DPCA is
similar to that of PCA, the following introduces the basic PCA technique [5]:

Σ̂ = PΛPT =
[
Ppc Pres

][Λpc 0
0 Λres

][
PT

pc
PT

res

]
where Ppc = [p1, . . . , pγ] ∈ Rm×γ and Pres =

[
pγ+1, . . . , pm

]
∈ Rm×(m−γ) consist of the

loading vectors, known as the principal components and residual components, respectively;
γ represents the number of principal components, Λpc = diag(λ1, . . . , λγ) and Λres =
diag

(
λγ+1, . . . , λm

)
contain the corresponding eigenvalues, satisfying γ1 ≥ . . . ≥ λγ >>

λγ+1 ≥ . . . λm.
For fault detection, the Hotelling’s test statistic can be calculated with a single, on-line

measurement

JPCA = (y− E(y))TPpcΛ−1
pc PT

pc(y− E(y)) (13)

From the calculation formula of two test statistics, it is clear that the data normalization
plays a central role. It not only provides us with an estimation of the covariance matrix in
off-line training, but also delivers the required residual signal for fault detection.

If the principal component γ < m, then the matrix Ppc ∈ Rm×γ is rank deficient, i.e.,
rank(Ppc) = γ < m. From the fault detection viewpoint, the matrix Ppc is not ‘all pass’ for
faults, that is, there exists f 6= 0 such that PT

pcf = 0. This situation is caused by the artificial
design of rank deficient matrix Ppc. If the principal component γ equals m, then the JPCA
statistic reduces to Hotelling’s T2 statistic, that is, when γ = m

JPCA = (y− E(y))TPΛ−1PT(y− E(y))

= (y− E(y))TΣ̂−1(y− E(y)) (14)

As introduced in [5], the test statistic JDGLR in the form (12) is also called Hotelling’s T2

test statistic. It is evident that the test statistic in form (14) is equivalent with the one in (12)
under the single on-line measurement case.

It is worthwhile noting that, recently, a PCA-based GLR fault detection method was
proposed in [34], in which the PCA technique is only used for establishing the mathematical
process model and the GLR test is used to evaluate the residual signal. Table 1 presents a
comparison between them to clarify their relationship.

Table 1. Comparison between (D)GLR-based, (D)PCA-based and PCA-based GLR fault detection
methods.

Method Application Conditions Number of Test Statistics Parameters

GLR(DGLR)-based Σ̂−1 is available JGLR and JDGLR m, n, E(y) and Σ̂

PCA(DPCA)-based Σ̂−1 is unavailable JPCA and JDPCA m, γ, Ppc, Pres E(y) and Σ̂

PCA-based GLR Both cases, in which PCA
model is available JPG m, γ, Pres, E(y) and Σ̂

Actually, the numerical problem of Σ̂−1 is rare due to the presence of process noise
and measurement error. Hence, in this paper, we assume that Σ̂−1 is available.

Remark 2. The other use of PCA is for dimensionality reduction purpose. However, for fault
detection, dimension reduction is not always crucial [32].
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4. Simulated Examples
4.1. Fault Detection in Synthetic Data

In this example, a non-Gaussian dynamic process is first simulated by using Matlab.
Then, the performance of the GLR-based, DGLR-based, PCA-based, DPCA-based, and
PCA-based GLR fault detection methods is assessed through its application to detect faults
in synthetic data.

4.1.1. Data Generation

Except for the fact that the noise sources are non-Gaussian, the model for data genera-
tion is the same as the one used in [38], which is given as:

yk = T
(

q−1
)

uk + K
(

q−1
)

dk + nk + fy,k, (15)

where

T
(

q−1
)
=



0.05q−3

1−0.95q−1 0 0.7q−3

1−0.3q−1 0
0.02966q−3

1−1.627q−1+0.706q−2
0.0627q−6

1−0.937q−1 0 0

0 0.235q−5

1−0.765q−1
0.5q−2

1−q−1+0.25q−2 0
0.5q−5−0.4875q−6

1−1.395q−1+0.455q−2 0 0 0.2q−6

1−0.8q−1


K
(

q−1
)
=
[

1−0.1875q−1

1−0.9875q−1
1−0.1875q−1

1−0.9875q−1
1−0.1875q−1

1−0.9875q−1
1−0.1875q−1

1−0.9875q−1

]T

yk and uk are the output and control input vectors, nk denotes the independent non-Gausian
white noise, fy,k is the fault introduced in k-th sensor. The four controllers are given as

ui
k = Gi

(
q−1
)

yi
k, i = 1, 2, 3, 4 (16)

where

G1

(
q−1
)
=
−3.2235 + 3.07q−1

1− q−1 , G2

(
q−1
)
=
−0.6641 + 0.625q−1

1− q−1 ,

G3

(
q−1
)
=
−0.6991 + 0.518q−1

1− q−1 , G4

(
q−1
)
=
−0.444 + 3.70q−1

1− q−1 .

The above model is used to simulate 1000 fault-free data samples. These data are used
to estimate the required parameters for the three fault detection methods. The number of
principal components is determined as four by using of the cumulative percent variance
method. p is set to be five, which is determined as given in [20]. To validate the detection
performance, three faults listed in Table 2 are introduced in this process.

After identifying the required parameters, one significant problem remaining in
the training phase is to set the threshold. For threshold-setting, the sample number
N = 2.65× 104 is set using Equation (9) for ε = 0.01, δ = 0.01. The remaining steps
are followed by Algorithm 2. Given a significance level of 0.01, Table 3 lists the thresholds
used in this work.

Table 2. Faults introduced in process.

Fault IDs Description Value of δ

1 y1,i = y1,0 + δ 0.2
2 y1,i = y1,0 + δt 0.005
3 y1,i = y1,0 + δ N (0, 0.04)
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Table 3. Thresholds of all test statistics.

Method Test Statistics RA-Based Threshold Gaussian-Based Threshold

GLR JGLR Jth,GLR = 13.3011 20.0901
DGLR JDGLR Jth,DGLR = 22.6015 32.0001
PCA JPCA Jth,PCA = 9.0010 13.2775

DPCA JDPCA Jth,DPCA = 4.0105 4.1991
PCA-based GLR JPG Jth,PG = 10.4016 13.2775

In order to demonstrate the advantage of the proposed RA-based threshold setting,
the JDGLR test statistic is used as an example. The result of this statistic is shown in Figure 1,
where the red line represents the Gaussian assumption-based threshold and the green line
represents the RA-based threshold. Figure 1 shows that the JDGLR test statistic is always
below the threshold value, which means a zero false alarm rate. Unfortunately, zero FAR
will lead to a lower fault detection rate (FDR). From Figure 1, we can see that the RA-based
threshold makes the JDGLR statistic approach to a FAR of 0.01, which satisfies the given
significance level. Due to the limited space, we only use this statistic as an example. Next,
only the RA-based threshold is used for comparison purpose.
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Figure 1. Detection results of DGLR in fault-free case.

4.1.2. Comparing the Five Methods Using Faulty Data

The testing data set, which is simulated using the same model given in Equation (15),
consists of 1000 data samples, which are completely independent from the training data.
In this case, the possibility of only a single fault is considered. To assess the abilities of
the various fault detection methods, Fault 2 was introduced at the sample of 400. To
compare the performances of the GLR-based, DGLR-based, PCA-based, DPCA-based, and
PCA-based GLR methods, the receiver operating characteristic (ROC) curves of the five
methods are shown in Figure 2, which shows the FDR for different values of the fault alarm
rate (FAR). The ROC curves provide a measure to compare the detection accuracy of all
test statistics in three methods as well as their sensitivities to variations in the detection
thresholds. Figure 2 shows that there is a trade-off between a high FDR and a low FAR.
It can be seen that the PCA-based GLR test provides a higher FDR than the conventional
PCA-based method. This fact is consistent with the conclusion in [34]. The JGLR statistic
of GLR-based method has a similar detection performance as the PCA-based GLR test.
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Evidently, the DGLR-based method has the highest FDR than the other four test statistics.
This clearly shows the advantages of the DGLR-based method over the other methods.
Furthermore, the FDR performance of the DGLR-based method can be further improved
by choosing the number of p. It should also be kept in mind that a large value of p can lead
to a high detection delay. Therefore, there is also a trade-off between FDR and detection
delay when determining an appropriate p.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FAR

0.4

0.5

0.6

0.7

0.8

0.9

1

F
D

R

GLR-based test
DGLR-based test
PCA
DPCA
PCA-based GLR

Figure 2. ROC curves of the five fault detection methods.

4.2. Fault Detection in CSTR Process
4.2.1. Data Generation

To validate the proposed method, a CSTR process is used with several typical faulty
scenarios. CSTR is widely used in chemical processes and the Matlab simulation model
used in this study is similar to that used in [39]. The schematic of this CSTR is shown in
Figure 3, where the reactor temperature T is controlled by manipulating the coolant flow
rate Qc. As can be seen, it consists of three inputs (Ci, Ti, and Tci) and four outputs (C, T,
TC, and Qc). The corresponding model is given as follows:

dC
dt

=
Q
V
(Ci − C)− akC + ν1 (17)

dT
dt

=
Q
V
(Ti − T)− a

(∆Hr)kC
ρCp

− b
UA

ρCpV
(T − Tc) + ν2 (18)

dTc

dt
=

Qc

Vc
(Tci − Tc) + b

UA
ρcCpcVc

(T − Tc) + ν3 (19)

where vi represents process noise, k is an Arrhenius-type rate constant, k = k0 exp
(
−E
RT

)
.

The parameters in the above model are listed in Table 4. Five typical faults are used to
validate the proposed fault detection method, which have been descripted and listed in
Table 5. b0, a0, Tc,0, C0, and Qc,0 in table are nominal values. Fault 1 and Fault 2 represent
catalyst decay and heat transfer fouling, and Faults 3–5 are the sensor faults on each of the
three measured variables.
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Figure 3. The schematic diagram of CSTR.

In existing literature, there are several ways to check the non-Gaussianity. Among
them, the probability plot of the variables is the most commonly used. We plot the quantiles
of the A phase of converter current as an example. Figure 4 shows the distribution of the
variable, where ‘+’ denotes the sample and the dotted line shows the locus of zero-mean
samples which are normally distributed. It can be seen that the samples do not match the
zero-mean normal distribution, that is, the samples from the example system obey the
non-Gaussian distribution.
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Figure 4. Probability distribution of the variable.

Table 4. Constant parameters in CSTR model.

Parameter Description 100.0 Unit

Q Inlet flow rate 150.0 L/min
V Tank volume 10.0 L
Vc Jacket volume 0.7 L

∆Hr Heat of reaction −2.0× 105 cal/mol

UA Heat transfer
coefficient 7.0× 105 cal/min/K

k0
Pre-exponential factor

to k 7.2× 1010 min−1

ER Activation energy 1.0× 104 K
ρ, ρc Fluid density 1000 g/L

Cp, Cpc Fluid heat capacity 1.0 cal/g/K
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Table 5. Brief description of typical CSTR faults.

Fault IDs Description of Faults Value of δ

1 b = b0exp(−δt) 0.001
2 a = a0 + δ 1.4
3 Tc = Tc,0 + δ 0.7
4 C = C0 + δ 0.005
5 Qc = Qc,0 + δ 5

4.2.2. Comparing the Five Methods Using Faulty Data

The CSTR data consist of two blocks: the training and test data blocks. The normal
operating data will be referred to as the training data. Then, parameters E(y) and Σ̂ used
in the proposed method are estimated from the training data. After obtaining the necessary
parameters, one remaining issue in the training phase is to determine an appropriate
threshold. For threshold-setting, the sample number N = 2.65× 104 is chosen by means of
Equation (9) for ε = 0.01, δ = 0.01. Hence, the thresholds used in this work are determined
as Jth,GLR = 16.20, Jth,DGLR = 56.60, Jth,PCA = 15.40, Jth,DPCA = 50.20 and JPG = 66.01 with
a significance level of 0.01. The number of principal components and time lag p are set to
be six and five, respectively. The total samples of each operation run in the test data block
are 500 and the various faults are introduced only at sample 200. This means that for each
of the faults, the process is fault-free for the first 200 samples before the system becomes
abnormal at the introduction of the fault.

To demonstrate the effectiveness of the proposed method, the monitoring performance
will be discussed. The detection sensitivity of a fault detection method is commonly quanti-
fied by calculating the FDR, which will be used for discussing the detection sensitivity of the
proposed methods. The response of the fault detection method is commonly represented by
the detection delay (DD), which is the time period it takes to detect a fault after occurrence
of the fault. As the desired FAR is given for threshold-setting, the two indicators, FDR
and DD, are used to assess the detection performance of fault detection methods. From
the result discussion of Figure 2, the detection performance of the proposed method is
compared with the GLR-based, PCA-based, DPCA-based, and PCA-GLR-based methods by
using all faults described above. The superiority of the test statistic JDGLR over the other
test statistics considered in this paper is shown in Table 6 with respect to FDR. Due to the
non-Gaussian characteristic, the test statistic JDGLR with RA achieves the better performance
with the higher FDR value than all faults compared. Detection delays of all test statistics are
presented in Table 7. The unit of DD is the same as the sample interval. As shown in Table 7,
the JDGLR with RA test statistics is able to detect most of these faults earlier than the other
ones. This point alos demonstrates the advantage of the test statistics JDGLR.

Table 6. Detection results with respect to FDR.

Fault IDs JGLR JDGLR JPCA JDPCA JPG

1 79.74% 85.38% 16.39% 61.16% 86.49%
2 99.35% 96.75% 99.35% 96.76% 99.35%
3 54.34% 95.77% 8.03% 15.85% 85.53%
4 9.03% 48.37% 11.57% 50.48% 20.57%
5 6.75% 36.36% 5.46% 14.88% 21.54%

For demonstrating the advantages of DGLR with the RA approach, the detection
results of both methods for Faults 3 and 5 are shown in Figures 5 and 6, respectively. The
solid line represents the test statistic, the red line is the threshold based on a Gaussian
assumption, and the blue line means the threshold based on the RA approach. In both
figures, from top to bottom, there are JGLR test statistics of the GLR-based method, JDGLR
of the DGLR-based method, JPCA of the PCA-based method, JDPCA of the DPCA-based
method, and JPG of the PCA-based GLR method, respectively. FDRs of the GLR-based,
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DGLR-based, PCA-based, DPCA-based, and PCA-based GLR methods are 6.7%, 36.3%,
5.4%, 14.87%, and 21.54%, respectively. DDs of the GLR-based, DGLR-based, PCA-based,
DPCA-based, and PCA-based GLR methods are 1, 2, 1, 2, and 2 min, respectively. All
figures clearly show that all test statistics are able to detect the faults. In addition, the test
statistics with the RA approach result in a higher FDR and smaller detection delay than the
standard test statistics without RA. It should be noted that the performances of JDGLR test
statistic with respect to FDR and DD are better than its companions in both faulty cases.
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Figure 5. Detection results of Fault 3.
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Figure 6. Detection results of Fault 5.
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Table 7. Detection results with respect to DD.

Fault IDs JGLR JDGLR JPCA JDPCA JPG

1 42 34 16 47 47
2 2 2 2 2 2
3 2 3 27 47 47
4 18 4 18 4 4
5 1 2 1 2 2

5. Conclusions

In this work, a DGLR-based method has been proposed for non-Gaussian dynamic pro-
cesses, which combines the standard GLR method and the RA approach to iteratively learn
the suitable threshold, which releases the assumption of Gaussian distributed variables.
Furthermore, the DGLR-based approach has been compared with GLR-based, PCA-based,
DPCA-based, and PCA-based GLR fault detection approaches to clarify the application
scope of these methods. The major difference between them lies in the inverse of the
estimated covariance matrix. In addition, the detection performance of the DGLR-based
method has been compared with the aforementioned methods using a numerical simulation
of a non-Gaussian process and the CSTR process. The comparison results show that the
DGLR-based approach is better than the other methods. For instance, the average FDRs of
the GLR-based, DGLR-based, PCA-based, DPCA-based, and PCA-based GLR approaches
are 49.84%, 72.52%, 28.16%, 47.82%, 62.69% in CSTR process. The average DDs of the
GLR-based, DGLR-based, PCA-based, DPCA-based, and PCA-based GLR methods are 13,
9, 12.8, 20.4, and 20.4 min in CSTR process. The JDGLR test statistics of the DGLR-based
method shows the best detection performance compared with all other test statistics consid-
ered in this paper. Because the detection performance could be affected by kinds of factors,
the robustness of the proposed method will be validated by using real data collected in
industrial processes in the future.
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