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Abstract: The calculus in the absence of limits is known as quantum calculus. With a difference
operator, it substitutes the classical derivative, which permits dealing with sets of functions that are
non-differentiations. The theory of integral inequality in quantum calculus is a field of mathematics
that has been gaining considerable attention recently. Despite the fact of its application in discrete
calculus, it can be applied in fractional calculus as well. In this paper, some new Anderson type q-
integral and h-integral inequalities are given using a Feng Qi integral inequality in quantum calculus.
These findings are highly beneficial for basic frontier theories, and the techniques offered by technol-
ogy are extremely useful for those who can stimulate research interest in exploring mathematical
applications. Due to the interesting properties in the field of mathematics, integral inequalities have a
tied correlation with symmetric convex and convex functions. There exist strong correlations and
expansive properties between the different fields of convexity and symmetric function, including
probability theory, convex functions, and the geometry of convex functions on convex sets. The
main advantage of these essential inequalities is that they can be converted into time-scale calculus.
This kind of inevitable inequality can be very helpful in various fields where coordination plays an
important role.

Keywords: Anderson inequality; Feng Qi inequality; quantum calculus; q-integral; h-integral

1. Introduction

In mathematics, q-calculus is a quantum calculus that calculates without limits. We
acquire q-analogue formulas of mathematics in q-calculus that can be captured as a ten-
dency of q toward one. In the same vein of Newton’s efforts on infinite series, Euler first
introduced q-calculus. Therefore, the date of q-calculus can be linked back to Euler. Then,
F. H. Jackson [1] defined the q-definite integral and introduced a systematic study of q-
calculus, which is known as the q-Jackson integral, in 1910. In recent years, due to the high
demand of mathematics in the field of quantum calculus, the interest in q-calculus has been
increasing. This q-calculus has many applications in different fields of mathematics and
other different areas, such as fractals, orthogonal polynomial combinatorics, mechanics,
number theory, dynamical systems, special functions, and mechanics for scientific problems
in many applied areas.

In numerous branches of mathematics such as differential equations, analysis, geome-
try, and many other fields, mathematical inequalities have been applied. One such example
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is Anderson type integral inequalities. Let us recall following lines from [2]. “Consider the
following quotient:

f (x)− f (x0)

x− x0

As x reaches to x0, the limit, gives the well known definition of the differentiation of
a function at x = x0, if it exists. However, if we take x = qx0 or x = x0 + h, where q is
a constant different from 1, and h is a constant different from 0 and do not need to take the
limit, we enter the fascinating world of Quantum Calculus and will get the definition of q
derivative and h derivative using x = qx0 and x = x0 + h respectively.”

In [3], Feng Qi studied one of the useful inequalities, which may be stated as follows:

Theorem 1. Let a positive real number n ≥ 1, Q ∈ C(n)[m0, m1] s.t. Q(i)(m0) ≥ 0 for i ∈
{0, 1, . . . n− 1} and Q(n)(m0) ≥ n!. Then, the following is true:[∫ m1

m0

Q(τ)dτ

]n+1
≤
∫ m1

m0

[Q(τ)]n+2dτ (1)

At the end of this article, Feng Qi proposed an open problem: “What if n is replaced
by any positive real number p? In what state is the inequality (1) still true?”

This inequality gained the attention of many mathematicians. Some researchers
showed keen interest in this open problem and gave it a try [4,5]. Some of the re-
searchers studied Fenq Qi type inequalities in quantum calculus involving q-integrals
and h-integrals [6], and some studied these inequalities in time-scale calculus [7,8], while
some researchers further generalized it using the ♦α operator. In this paper, we shall discuss
the q-integral and h-integral analogous of a Feng Qi type inequality in quantum calculus
by using an Anderson inequality. On the other hand, there is considerable research in the
field of q-analysis for achieving quality in quantum computing. Quantum calculus is a
series between mathematics and physics and contains a wide range of applications in many
fields, such as combinations, mathematical numerical theory, addition theory, and quantum
theory [9,10]. Quantum calculus also combines quantum information theory, philosophy,
information theory, computer science, and cryptography with several applications [11,12].
Since then, the relevant research has been steadily improving. Specifically, the left quantum
integral and the left quantum differential operator were discussed in 2013 [13] by Ntouyas
and Tariboon.

Anderson [14] discussed the following fascinating and interesting integral inequality
in 1958:

Proposition 1. If ψk are convex mappings on the closed interval [0, 1], and ψk(0) = 0 ∀k ∈
{1, . . . , n}, then∫ 1

0
ψ1(s)ψ2(s) . . . ψn(s)ds ≥ 2n

n + 1

(∫ 1

0
ψ1(s)ds

)
. . .
(∫ 1

0
ψn(s)ds

)
(2)

where ψ1(χ) . . . ψn(χ) are integrable functions on the closed interval [0, 1].

If we let Q = ψ1 = ψ2 = · · · = ψn in Equation (2), then we obtain following Feng Qi
type integral inequality:

∫ 1

0
Qn(χ)dχ ≥ 2n

n + 1

(∫ 1

0
Q(χ)dχ

)n

. (3)
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2. q-Integral Inequalities of the Anderson Type
2.1. Notations and Preliminaries

For q > 1 we recall the notations from [1,7], where m0 ∈ C:

[m0]q =
1− qm0

1− q
, (m0; q)n =

n−1

∏
k=0

(1−m0qk), n ≥ 1

[0]q! = 1, [n]q! = [1]q[2]q . . . [n]q, n ≥ 1

and

(χ−m0)
n
q =

{
1, if n = 0, χ ∈ C,
(χ−m0)(χ− qm0) . . . (χ− qn−1m0), if n 6= 0.

(4)

The “q-derivative Dq Q of a function” Q is defined as

(DqQ)(χ) =
Q(qχ)−Q(χ)

(q− 1)χ
, χ 6= 0, (5)

where (DqQ)(0) = Q′(0), provided Q′(0) exists.
The “q-Jackson integral from 0 to m0” is defined by [15]

∫ m0

0
Q(χ)dqχ = (q−1 − 1)m0

∞

∑
n=0

Q(m0q−n)q−n, (6)

given that the sum converges absolutely.
The “q-Jackson integral in a generic interval [m0, m1]” is defined as follows (see [15]):∫ m1

m0

Q(χ)dqχ =
∫ m0

0
Q(χ)dqχ−

∫ m1

0
Q(χ)dqχ. (7)

From [2], we also have that

Dq

[∫ χ

m0

Q(τ)dqτ

]
= Q(χ). (8)

If m1 > 0 and m0 = m1qn, where n ∈ N, we have

[m0, m1]q = {m1qk : 0 ≤ k ≤ n} and (m0, m1]q = [q−1m0, m1]q.

2.2. Main Results

Lemma 1. If we let p ∈ R s.t. p ≥ 1 and λ be a non-negative and monotone function on [0, 1]q,
then

[p]qλp−1(χ)Dqλ(χ) ≤ Dq[λ(χ)]
p ≤ [p]qλp−1(qχ)Dqλ(χ), χ ∈ (0, 1]q.

Proof. We have

Dq[λ
p](χ) =

λp(qχ)− λp(χ)

(q− 1)χ
=

[p]q
(q− 1)χ

∫ λ(qχ)

λ(χ)
τp−1dqτ. (9)

Since λ is a non-negative and monotonic function, therefore

λp−1(χ)[λ(qχ)− λ(χ)] ≤
∫ λ(qχ)

λ(χ)
τp−1dqτ ≤ λp−1(qχ)[λ(qχ)− λ(χ)].
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From Equation (9), we obtain

[p]qλp−1(χ)Dqλ(χ) ≤ Dq[λ]
p(χ) ≤ [p]qλp−1(qχ)Dqλ(χ).

Theorem 2. If we have the function Q on [0, 1]q, then it satisfies

Q(0) = 0, DqQ(χ) ≥ 2p

p + 1
[p]qχp−2 f or χ ∈ (0, 1]q and p ≥ 2, (yes, accordingtopower) (10)

Then, it is true that∫ 1

0
Qp(qχ)dqχ ≥ 2p

p + 1

(∫ 1

0
Q(χ)dqχ

)p

.

Proof. Include λ(χ) =
∫ χ

0
Q(u)dqu and

F(χ) =
∫ χ

0
Qp(qu)dqu− 2p

p + 1

(∫ χ

0
Q(u)dqu

)p
.

We have

DqF(χ) = Qp(qχ)− 2p

p + 1
Dq[λ

p](χ).

Since Q and F both are increasing on [0, 1]q, we obtain the following from Lemma 1:

DqF(χ) ≥ Qp(qχ)−
[p]q

p + 1
2pλp−1(χ)Q(χ) (11)

≥ Qp(qχ)−
[p]q

p + 1
2pλp−1(χ)Q(qχ) = Q(qχ)h(χ),

where h(χ) = Qp−1(qχ)− [p]q
p+1 2pλp−1(χ).

We also have

Dqh(χ) = DqQp−1(qχ)−
[p]q

p + 1
2pDqλp−1(χ).

By using Lemma 1 again, we obtained

Dqh(χ) ≥ (p− 1)Qp−2(χ)DqQ(qχ)−
[p]q(p− 1)

p + 1
2pλp−2(χ)Dqλ(qχ) (12)

≥ (p− 1)Q(χ)[Qp−3(χ)DqQ(qχ)−
[p]q

p + 1
2pλp−2(qχ)]. (13)

Since Q is increasing, we have∫ χ

0
Q(u)dqu ≤ Q(χ)(qχ− 0) = qχQ(χ).

Now, using the assumptions of this theorem and the inequalities in Equations (12) and (13),
we obtain

Dqh(χ) ≥ (p− 1)Qp−1(χ)[DqQ(qχ)−
[p]q

p + 1
2p(qχ)p−2] ≥ 0,
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In addition, from the fact that h(0) = Qp(0) = 0, we obtain h(χ) ≥ 0, χ ∈ [0, 1]q.
From F(0) = 0 and DqF(χ) = Q(χ)h(χ) ≥ 0, it is given that F(χ) ≥ 0 ∀ χ ∈ [0, 1]q,

particularly

F(1) =
∫ 1

0
Qp(qu)dqu− 2p

p + 1

(∫ 1

0
Q(u)dqu

)p

≥ 0.

Corollary 1. Let n ∈ N and the function Q on [0, 1]q satisfy

Q(0) = 0, DqQ(χ) ≥ n + 1
n + 2

2n+1χn, χ ∈ (0, 1]q.

Then, we have

∫ 1

0
Qn+1(qχ)dqχ ≥ 2n+1

n + 2

(∫ 1

0
Q(χ)dqχ

)n+1

.

Proof. The results follow directly by substituting p = n + 1 into Theorem 2.

Corollary 2. Let n ∈ N and the function Q on [0, 1]q satisfy

Di
qQ(0) ≥ 0, 0 ≤ i ≤ n− 1, Dn

q Q(χ) ≥ n + 1
n + 2

2n+1[n]q!, χ ∈ (0, 1]q.

Then, we have

∫ 1

0
(Q(qχ))n+2dqχ ≥ 2n+2

n + 3

(∫ 1

0
Q(χ)dqχ

)n+2

.

Proof. Since Dn
q Q(χ) ≥ n + 1

n + 2
2n+1[n]q!, therefore, by q-integrating (n− 1) times on [0, χ],

we obtain

DqQ(χ) ≥ n + 1
n + 2

2n+1χn.

We obtain our required result by using Corollary 1.

Theorem 3. Let p ∈ R s.t. p ≥ 1 and the function Q on [0, 1]q satisfy

Q(0) = 0, p ≤ DqQ(qχ), ∀χ ∈ (0, 1]q. (14)

Then, we have

∫ 1

0
Qp+2(qχ)dqχ ≥ 2p+2

p + 3

(∫ 1

0
Q(χ)dqχ

)p+2

. (15)

Proof. Include λ(χ) =
∫ x

0
Q(u)dqu and

F(χ) =
∫ χ

0
Qp+2(qu)dqu− 2p+2

p + 3

(∫ χ

0
Q(u)dqu

)p+2
χ ∈ [0, 1]q. (16)

We have

DqF(χ) = Qp+2(qχ)− 2p+2

p + 3
Dq[λ

p+2](χ) χ ∈ [0, 1]q. (17)
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Since Q and λ both are increasing on [0, 1]q, we obtain the following from Lemma 1
for χ ∈ (0, 1]q:

DqF(χ) ≥ Qp+2(qχ)− p + 2
p + 3

2p+2λp+1(χ)Q(χ) (18)

≥ Qp+2(qχ)− p + 2
p + 3

2p+2λp+2(χ)Q(qχ) = Q(qχ)h(χ),

Here, h(χ) = Qp+1(qχ)− p + 2
p + 3

2p+2λp+1(χ).

We also have

Dqh(χ) = DqQp+1(qχ)− p + 2
p + 3

2p+2Dqλp+1(χ).

By using Lemma 1 again, we obtain

Dqh(χ) ≥ (p + 1)Qp(χ)DqQ(qχ)− (p + 1)(p + 2)
p + 3

2p+2λp(χ)Q(χ) (19)

≥ (p + 1)Q(χ)[Qp−1(χ)DqQ(qχ)− p + 2
p + 3

2p+3λp(qχ)]. (20)

Since the function Q is increasing, for χ ∈ [0, 1]q, we have∫ qχ

0
Q(u)dqu ≤ Q(qχ)(1− 0) = Q(qχ).

Therefore, we have

Dqh(χ) ≥ (p + 1)Qp(χ)[DqQ(qχ)− p + 2
p + 3

2p+3] ≥ 0,

We deduce from the conditions given in Equation (14) that h is increasing on [0, 1]q.
Finally, since h(0) = Qp+1(0) = 0, it follows that F increases and F(1) ≥ F(0) = 0,

which completes the proof.

Theorem 4. Let Q be an increasing function such that Q(0) = 0. Then, for all p ≥ 0, we have

∫ 1

0
[Q(qχ)]2p+1dqχ ≥ 22p+1

2p + 2

[∫ 1

0
Q(χ)dqχ

]2p+1

, (21)

provided that Dq f ≥ 2p+1
2p+2 22p+1.

Proof. For τ ∈ [0, 1]q, we put forth

F(τ) =
∫ τ

0
[Q(qχ)]2p+1dqχ− 22p+1

2p + 2

[∫ t

0
Q(χ)dqχ

]2p+1
and λ(τ) =

∫ τ

0
Q(qχ)dqχ.
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Then, for τ ∈ [0, 1]q, we have

DqF(τ) = [Q(qτ)]2p+1 − 22p+1

2p + 2
Dq[λ(τ)]

2p+1

≥ [Q(τ)]2p+1 − 2p + 1
2p + 2

22p+1λ2p(τ)Q(qt)

≥ [Q(qτ)]2p+1 − 2p + 1
2p + 2

22p+1λ2p(τ)Q(qτ) (22)

= Q(qτ)

(
[Q(qτ)]2p − 2p + 1

2p + 2
22p+1λ2p(τ)

)
(23)

= Q(qτ)G(τ),

where G(τ) = [Q(qτ)]2p − 2p + 1
2p + 2

22p+1λ2p(τ).

Furthermore, we have

DqG(τ) ≥ 2pQ2p−1(qt)DqQ(τ)− 2p(2p + 1)
2p + 2

22p+1λ2p−1(τ)Q(qt)

≥ 2pQ(qt)
(

Q2p(qt)DqQ(τ)− 2p + 1
2p + 2

22p+1λ2p−1(τ)

)
. (24)

Since the function Q is increasing, we have the following for χ ∈ [0, 1]q:∫ qχ

0
Q(qu)dqu ≤ Q(qχ)(1− 0) = Q(qχ).

Therefore, we have

DqG(τ) ≥ 2pQ2p(qt)[DqQ(τ)− 2p + 1
2p + 2

22p+1] ≥ 0,

Hence, G is increasing on [0, 1]q. Moreover, we have

G(0) = [Q(0)]2p − 2p + 1
2p + 2

22p+1λ2p(0) = 0,

for all t ∈ (0, 1]q, G(τ) > G(0) = 0, implying that DqF(τ) > 0, ∀ τ ∈ (0, 1]q. Thus, F is
increasing on [0, 1]q. In particular, F(1) > F(0) = 0, which proves our claim.

3. h-Integral Inequalities of the Anderson Type
3.1. Notations and Preliminaries

Let us recall some definitions from [15].
Let h 6= 0. A “quantum derivative of a function” Q, denoted by DhQ, is given by

DhQ(χ) =
Q(χ + h)−Q(χ)

h
. (25)

One can easily verify that

Dh(Q(χ)λ(χ)) = Q(χ)Dhλ(χ) + λ(χ + h)DhQ(χ) (26)

Dh

(
Q(χ)

λ(χ)

)
=

λ(χ)DhQ(χ)− f (χ)Dhλ(χ)

λ(χ)λ(χ + h)
(27)

If Q′(0) exists, then DhQ(0) = Q′(0). As h→ 0, we find an ordinary derivative.
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If m1 −m0 ∈ hZ, the definite h-integral is defined by [4]

∫ m1

m0

Q(χ)dhx =


h
(
Q(m0) + Q(m0 + h) + · · ·+ Q(m1 − h)

)
, if m0 < m1,

0, if m0 = m1

−h
(
Q(m1) + Q(m1 + h) + · · ·+ Q(m0 − h)

)
, if m0 > m1.

(28)

The following theorem, whose proof can be found in [4] , justifies Equation (28):

Theorem 5. If F is an h-antiderivative of Q and m1 −m0 ∈ hZ, then∫ m1

m0

Q(χ)dhχ = F(m1)− F(m0). (29)

By applying Theorem 5 to Dh(Q(χ)λ(χ)) and using Equation (26), one can find the
following:∫ m1

m0

Q(χ)dh(χ) = Q(m1)λ(m1)−Q(m0)λ(m0)−
∫ 1

0
λ(χ + h)dhQ(χ). (30)

For any function Q, one can easily verify

Dh

[∫ x

a
Q(τ)dhτ

]
= Q(χ). (31)

3.2. Main Results

Before we proceed further, we need a lemma:

Lemma 2. If we let n ∈ R s.t. n ≥ 1 and the function λ be non-negative increasing on [0, 1], then

nλn(χ)Dhλ(χ) ≤ Dh[λ(χ)]
n ≤ nλn(χ)Dhλ(χ), (32)

Proof. We have

Dh[λ
n](χ) =

λn(χ + h)− λn(χ)

h
=

n
h

∫ λ(χ+h)

λ(χ)
τn−1dhτ. (33)

Since λ is a non-negative increasing function, we have

λn(χ)[λ(χ + h)− λ(χ)] ≤
∫ λ(χ+h)

λ(χ)
τn−1dhτ ≤ λn(χ + h)[λ(χ + h)− λ(χ)]. (34)

Therefore, through Equations (33) and (34), we obtain our required result.

Theorem 6. Let function Q be non-negative and increasing on [0, 1] and satisfy

Qξ−2(χ)DhQ(χ) ≥ ξ

ξ + 1
2ξ(χ + 2h)ξ−2Qξ−1(χ + 2h) f or χ ≥ 2 and (1− 0) ∈ hz.

Then, we have

∫ 1

0
[Q(χ)]ξdhx ≥ 2ξ

ξ + 1

[(∫ 1

0
Q(qχ)dhx

)]ξ

. (35)

Proof. For χ ∈ [0, 1] , let

F(χ) =
∫ χ

0
[Q(u)]ξ dhu− 2ξ

ξ + 1

[(∫ χ

0
Q(u)dhu

)]ξ

.
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and λ(χ) =
∫ χ

0 Q(u)dhu. By virtue of Lemma 2, it follows that

DhF(χ) = Fξ(χ)− 2ξ

ξ + 1
Dh[λ

ξ ](χ).

≥ Qξ(χ)− 2ξ

ξ + 1
λξ−1(χ + h)Q(χ)

= Q(χ)

[
Qξ−1(χ)− 2ξ

ξ + 1
λξ−1(χ + h)

]
, (36)

where

F1(χ) = Qξ(χ)− 2ξ

ξ + 1
λξ−1(χ + h)Q(χ).

With Lemma 2, we have

DhF1 = Dh

(
Qξ−1(χ)− 2ξ

ξ + 1
λξ−1(χ + h)Q(χ)

)
(37)

≥ (ξ − 1)Qξ−2(χ)DhQ(χ)− ξ(ξ − 1)
ξ + 1

2ξ λξ−2(χ + 2h)Dhλ(χ + h) (38)

= (n− 1)Qξ−2(χ)DhQ(χ)− n(ξ − 1)
ξ + 1

2ξλξ−2(χ + 2h)Q(χ + h)

Since the function λ is increasing and non-negative, therefore

λ(χ + 2h) =
∫ χ+2h

0
Q(u)dhu ≤ (χ + 2h− 0)Q(χ + 2h) (39)

Hence, we have

DhF1(χ) ≥ (ξ − 1)Qξ−2(χ)DhQ(χ)− ξ(ξ − 1)
ξ + 1

2ξ λξ−2(χ + 2h)Q(χ + 2h).

= (ξ − 1)Qξ−2(χ)DhQ(χ)− ξ(ξ − 1)
ξ + 1

2ξ λξ−2(χ + 2h− 0)Qξ−2(χ + 2h) (40)

= (ξ − 1)
(

Qξ−2(χ)DhQ(χ)− ξ

ξ + 1
2ξ(χ + 2h)ξ−2Qξ−2(χ + 2h)

)
≥ 0. (41)

which assures that F1 is increasing. Hence, F1(χ) ≥ F1(0) ≥ 0 and DhF(χ) ≥ 0, so F is
increasing since F(χ) ≥ F(0) = 0.

Theorem 7. Let n ≥ 1. If the function Q is non-negative and increasing on [0, 1] and satisfies

Qn−1(χ)DhQ(χ) ≥ 2n(χ + 2h)n−1Qn(χ + 2h) (42)

then ∫ 1

0
Qn+1(χ)dh(χ) ≥

2n

n + 1

(∫ 1

0
Q(χ)dh(χ)

)n+1

(43)

Proof. For χ ∈ [0, 1], let

F(χ) =
∫ χ

0
Qn+1(u)dh(τ)−

2n

n + 1

(∫ χ

0
Q(u)dh(u)

)n+1

and

λ(χ) =
∫ χ

0
Q(u)dh(u).
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Utilizing Lemma 2 gives

DhF(χ) = Qn+1(χ)− 2n

n + 1
Dh(λ

n+1(χ))

≥ Qn+1(χ)− 2n

n + 1
(n + 1)λn(χ + h)Q(χ)

= Qn+1(χ)− 2nλn(χ + h)Q(χ)

= Q(χ)[Qn(χ)− 2nλn(χ + h)]

where

F1(χ) = Qn(χ)− 2nλn(χ + h).

From Lemma 2, it follows that

DhF1(χ) = Dh(Qn(χ))− 2nDh(λ
n(χ + h))

≥ nQn−1(χ)DhQ(χ)− 2n.nλn−1(χ + 2h)Q(χ + h).

Since Q is increasing and non-negative, then

λ(χ + 2h) =
∫ χ+2h

0
Q(u)dh(u) ≤ (χ + 2h)Q(χ + 2h) (44)

Hence, we have

DhF1(χ) ≥ nQn−1(χ)DhQ(χ)− n.2n(χ + 2h)n−1Qn−1(χ + 2h)Q(χ + h)

≥ nQn−1(χ)DhQ(χ)− n.2n(χ + 2h)n−1Qn(χ + 2h)

DhF1(χ) = n
(

Qn−1(χ)DnQ(χ)− 2n(χ + 2h)n−1Qn(χ + 2h)
)
≥ 0 (45)

We conclude that F1 is an increasing function. Hence, F1(χ) ≥ F1(0) = 0 and
DhF(χ) ≥ 0. Therefore, F increases since F(χ) ≥ F(0) = 0.

4. Conclusions

• In the current study, we analyzed a Feng Qi type q-integral inequality and h-integral
inequality and then discussed an Anderson type integral inequality in quantum
calculus;

• We considered how to translate some Anderson type integral inequalities into quan-
tum calculus (i.e., q-integral and h integral inequalities);

• By transforming these Anderson type integral inequalities into the equivalent q-
integral inequalities and h-integral inequalities, we established a solution method
for the corresponding fractional integral inequalities. Our work further develops the
solution of time-scale calculus.
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