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Abstract: We perform a Lie analysis of (2k + 2)th-order difference equations and obtain k + 1 non-
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1. Introduction

Rational ordinary difference equations have been studied in the literature by many
researchers [1–8]. Recently, the well-known symmetry methods for differential equations
have been extended to difference equations [9–11]. The concept is similar to the one devel-
oped for differential equations (see [12]), and it consists of solving the difference equations
using the group of transformations that leave the equation invariant. Hydon [10] developed
a systematic method that enables one to find the group of transformations for difference
equations. Though his algorithm is valid for any given difference equation, he mainly
applied it to second-order difference equations. This could be due to the fact that for
higher-order difference equations, the calculations are cumbersome. For more references
on recurrence equations via the symmetry approach, see [13–15].

In this paper, we investigate the solutions of difference equations of the form

xn+1 =
xn−(2k+1)

an + bnxn−kxn−(2k+1)
, (1)

for some arbitrary sequences an and bn using a symmetry-based method.
Special cases of the above equation exist in the recent literature. In [1], Cinar studied

the positive solutions of the special case where an = 1, bn = 1, and k = 0:

xn+1 =
xn−1

1 + xn−1xn
. (2)

In [2], the author studied the special case where an = −1, bn = 1, and k = 0:

xn+1 =
xn−1

−1 + xn−1xn
. (3)

In [5], the author studied the special case where an = 1, bn = a, and k = 0:

xn+1 =
xn−1

1 + axn−1xn
. (4)

Symmetry 2022, 14, 1290. https://doi.org/10.3390/sym14071290 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14071290
https://doi.org/10.3390/sym14071290
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-3046-0679
https://doi.org/10.3390/sym14071290
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14071290?type=check_update&version=2


Symmetry 2022, 14, 1290 2 of 14

In [4], the author studied the special case where an = −1, bn = a, and k = 0:

xn+1 =
xn−1

−1 + axn−1xn
. (5)

In [3], the author studied the special case where an = 1/a, bn = b/a, and k = 0:

xn+1 =
axn−1

1 + bxn−1xn
. (6)

In [15], the author obtained the solutions of Equation (6) with less restrictions on the
initial conditions.

In [6], the author studied the special case where an = a, bn = −1, and k = 0:

xn+1 =
xn−1

a− xn−1xn
. (7)

In [7], the case where an = ±1, bn = ±1, and k = 1 such that

xn+1 =
xn−3

±1± xn−1xn−3
, (8)

was studied by Elsayed, and exact solutions were obtained.
In [8], the author studied and obtained exact solutions of the special case where

an = −1, bn = 1, and k = 2:

xn+1 =
xn−5

−1 + xn−3xn−5
. (9)

In [16], the author studied the positive solutions and attractivenesss of the special case
where an = 1 and bn = 1:

xn+1 =
xn−(2k+1)

1 + xn−kxn−(2k+1)
. (10)

In [17], the author studied the solutions of the special case where an = −1 and
bn = 1/a:

xn+1 =
axn−(2k+1)

−a + xn−kxn−(2k+1)
. (11)

For more work on difference equations, please see [18].
For definiteness, we study the difference equation

un+2k+2 =
un

An + Bnun+k+1un
, (12)

instead of Equation (1). To derive the solutions for Equation (12) using a symmetry-based
method, we will first find the Lie group of point transformations of Equation (12). Then,
we will reduce the order via the invariants and construct the solutions. Furthermore, we
will explain how the solutions for Equation (1) can be obtained from the solutions for
Equation (12). Finally, we will show how one can obtain the results in the literature using
our results.

Preliminaries

In this section, we provide background to Lie symmetry analysis of difference equa-
tions. In this paper, we adopt the same notation as that in [10].
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Definition 1. Let G be a local group of transformations acting on a manifold M. A subset S ⊂ M
is called G-invariant, and G is called a symmetry group of S . If whenever x ∈ S , and g ∈ G is
such that g · x is defined, then g · x ∈ S [12].

Definition 2. Let G be a connected group of transformations acting on a manifold M. A smooth
real-valued function ζ : M→ R is an invariant function for G if and only if

X(ζ) = 0 for all x ∈ M,

and every infinitesimal generator X of G [12].

Definition 3. A parameterized set of point transformations

Γε : x 7→ x̂(x; ε),

where x = xi, i = 1, . . . , p are continuous variables is a one-parameter local Lie group of transfor-
mations if the following conditions are satisfied [10]:

1. Γ0 is the identity map if x̂ = x when ε = 0;
2. ΓaΓb = Γa+b for every a and b sufficiently close to 0;
3. Each x̂i can be represented as a Taylor series (in a neighborhood of ε = 0 that is determined by

x), and therefore

x̂i(x : ε) = xi + εξi(x) + O(ε2), i = 1, . . . , p.

Consider the ordinary difference equation

un+2k+2 = ω(n, un, un+1, . . . , un+2k+1), n ∈ D (13)

for some smooth function ω and a regular domain D ⊂ Z. To find a symmetry group of
Equation (13), we consider the group of point transformations given by

Gε : (n, un) 7→ (n, un + εQ(n, un)), (14)

where ε is the parameter and Q is a continuous function which we shall refer to as a
characteristic. Let

X =Q(n, un)
∂

∂un
+ Q(n + 1, un+1)

∂

∂un+1
+ Q(n + 2, un+2)

∂

∂un+2
+ · · ·

· · ·+ Q(n + 2k + 1, un+2k+1)
∂

∂un+2k+1

be the corresponding infinitesimal of Gε. The substitution of the new variable (obtained
using Gε given in Equation (14)) in Equation (13) yields the linearized symmetry condition

S (2k+2)Q(n, un)− Xω = 0 (15)

whenever Equation (13) is true. The shift operator S acts on n as follows: S : n → n + 1.
Once the characteristic Q = Q(n, un) is known, the invariant Vn may be obtained by solving
the characteristic system [12]

dun

Q
=

dun+1

SQ
= · · · = dun+2k+1

Sn+2k+1Q

(
=

dVn

0

)
or by introducing the canonical coordinate [19]

sn =
∫ dun

Q(n, un)
.
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We use the standard conventions

l

∏
j=s

θj = 1 when s > l and
l

∑
j=s

θj = 0 when s > l.

2. Symmetries

Consider the (2k + 2)th-order difference Equation (12), which is

un+2k+2 =
un

An + Bnun+k+1un
.

To obtain the symmetries, we impose the infinitesimal criterion of invariance
(Equation (15)) to obtain

Q(n + 2k + 2, un+2k+2) +
Bnun

2

(Bnunun+k+1 + An)2 Q(n + k + 1, un+k+1)

− An

(Bnunun+k+1 + An)2 Q(n, un) = 0.
(16)

The latter is a functional equation for the characteristic Q, making Equation (16)
difficult to solve. To eliminate the first undesirable argument un+2k+2, we differentiate
implicitly with respect to un (keeping un+2k+2 fixed and regarding un+k+1 as a function of
un and un+2k+2). This leads to

1
(Bnunun+k+1 + An)2

∂

∂un+k+1
Q(n + k + 1, un+k+1)−

1
(Bnunun+k+1 + An)2

∂

∂un
Q(n, un) +

2
un(Bnunun+k+1 + An)2 Q(n, un) = 0

After simplification, we obtain

∂

∂un+k+1
Q(n + k + 1, un+k+1)−

∂

∂un
Q(n, un) +

2
un

Q(n, un) = 0.

To eliminate the second undesirable variable un+k+1, we differentiate with respect
to un, and we obtain the following second-order differential equation involving only the
argument un:

d2

dun2 Q(n, un)−
2

un

d
dun

Q(n, un) +
2

un2 Q(n, un) = 0. (17)

The general solution of Equaiton (17) is then given by

Q = f (n)un + g(n)un
2, (18)

where f and g are arbitrary functions of n. To eliminate the dependency between these
two functions, we substitute Equation (18) into Equation (16) and simplify the resulting
equation to obtain

Bng(n + k + 1)un+k+1
2un

2 + Bn f (n + k + 1)un+k+1un
2 + Bn f (n + 2k + 2)un+k+1un

2

− Ang(n)un
2 − An f (n)un + An f (n + 2k + 2)un + g(n + 2k + 2)un

2 = 0.

We separate by powers of shifts of un, and we readily reduce the resulting over-
determining system to obtain
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f (n) + f (n + k + 1) = 0, (19)

g(n) = 0.

The solutions for Equation (19) are
exp

[
±i
(
(2s+1)nπ

k+1

)]
, 0 ≤ s ≤ (k− 1)/2 if k odd

(−1)n, exp
[
±i
(
(2s+1)nπ

k+1

)]
, 0 ≤ s ≤ (k− 2)/2 if k even.

This means that we have k + 1 non-trivial characteristics

Qs =(βs)
nun,

Q̂s =
(

β̄s
)nun, 0 ≤ s ≤ k− 1

2
if k odd

and

Q−1 =(−1)nun,

Qs =(βs)
nun,

Q̂s =
(

β̄s
)nun, 0 ≤ s ≤ k− 2

2
if k even ,

where βs = exp
[
i
(
(2s+1)π

k+1

)]
. We will refer to Xi as the corresponding symmetry generator

of Qi.

3. Exact Solutions

Here, we introduce the canonical coordinate (i.e., the variable Sn such that XSn = 1).
We use the well-known choice [19]

Sn =
∫ dun

Q(n, un)
.

Using any one of the symmetry generators, such as Xs, we have that

Sn =
∫ dun

Qs(n, un)
=

1
(βs)n ln |un|.

Using Equation (19), we have proven that

Xs

[
(βs)

n+k+1Sn+k+1 + (βs)
nSn

]
= 0 (20)

Therefore, the following is an invariant function of Xs:

rn = (βs)
n+k+1Sn+k+1 + (βs)

nSn

Since the equation under study is a rational difference equation, it is favorable to use

|r̃n| = exp(−rn), (21)

In other words, r̃n = ±1/unun+k+1. It turns out (using the plus sign together with
Equation (12)) that

r̃n+k+1 = An r̃n + Bn. (22)

It is easy to verify that the solution for Equation (22) in closed form is given by
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r̃(k+1)n+j = r̃j

(
n−1

∏
k1=0

A(k+1)k1+j

)
+

n−1

∑
l=0

(
B(k+1)l+j

n−1

∏
k2=l+1

A(k+1)k2+j

)
, (23)

for j = 0, 1, . . . , k. By going up the hierarchy created by the change of variables, we obtain
the solution for Equation (12) in a unified manner as follows:

• For k being odd:

|un| = exp
{ k−1

2

∑
s=0

(
csβs

n + c̃s β̄n
s
)
+

k−1
2

∑
s=0

(
n−1

∑
ks=0

1
k + 1

βs
n β̄ks

s ln r̃ks

)

+

k−1
2

∑
s=0

(
n−1

∑
ks=0

1
k + 1

β̄s
n

βs
ks ln r̃ks

)}
(24)

|un| =Γn exp


k−1

2

∑
s=0

(
n−1

∑
ks=0

2
k + 1

Re[γs(n, ks)] ln r̃ks

)
• For k being even:

|un| = θn exp
{ k−2

2
∑

s=0

(
n−1
∑

ks=0

2
k+1 Re[γs(n, ks)] ln r̃ks

)
+(−1)n ∑n−1

j=0
1

k+1 (−1)j ln r̃(k+1) j
} (25)

where

Γn = exp

 k−1
2

∑
s=0

(
csβs

n + c̃s β̄n
s
),

θn = exp

c(−1)n +

k−2
2

∑
s=0

(
csβs

n + c̃s β̄n
s
),

γs(n, ks) = βs
n β̄ks

s .

The properties of Γn, θn and γ(n, k) are as follows:

Γ(2k+2)n+j = Γj = |uj|, 0 ≤ j ≤ k

Γ(2k+2)n+k+1+j =
1
Γj

=
1
|uj|

, 0 ≤ j ≤ k

θ(2k+2)n+j = θj = |uj|, 0 ≤ j ≤ k

θ(2k+2)n+k+1+j =
1
θj

=
1
|uj|

, 0 ≤ j ≤ k

γs((2k + 2)n, j) = γs(0, j),

γs(n + k + 1, j) = γs(n, j + k + 1) = −γs(n, j),

γs(j, j) = 1.

In regard to these properties, one can further simplify the solution through
Equations (24) and (25). We have that
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|u(2k+2)n| =Γ(2k+2)n exp


k−1

2

∑
s=0

(
(2k+2)n−1

∑
ks=0

2
k + 1

Re[γs((2k + 2)n, ks)] ln r̃ks

)
=u0 exp


k−1

2

∑
s=0

(
(2k+2)n−1

∑
ks=0

2
k + 1

Re[γs(0, ks)] ln r̃ks

)
=u0 exp

{
2

k + 1

(2k+2)n−1

∑
k0=0

Re
[

exp
(
− k0

k + 1
iπ
)
+ exp

(
− 3k0

k + 1
iπ
)

+ · · ·+ exp
(
− kk0

k + 1
iπ
)]

ln r̃k0

}
(26)

=u0 exp

{
2

k + 1

2n−1

∑
k0=0

Re
[

exp(−k0iπ) + exp(−3k0iπ) + . . .

+ exp(−kk0iπ)

]
ln r̃k0

}

=u0 exp

{
2n−1

∑
k0=0

(−1)k0 ln r̃k0(k+1)

}

=

∣∣∣∣∣u0

n−1

∏
k0=0

r̃2k0(k+1)

r̃(2k0+1)(k+1)

∣∣∣∣∣.
Note: It can be shown, using the expression of r̃n given in Equation (21), that one can

write Equation (26) without using the symbol of the absolute value.
On this note, and in the same way, we have proven that

u(2k+2)n+j =uj

n−1

∏
k0=0

r̃2k0(k+1)+j

r̃(2k0+1)(k+1)+j
, 0 ≤ j ≤ k, (27)

u(2k+2)n+k+1+j =uk+1+j

n−1

∏
k0=0

r̃(2k0+1)(k+1)+j

r̃(2k0+2)(k+1)+j
, 0 ≤ j ≤ k. (28)

We therefore obtain, by combining Equations (23), (27) and (28) and by replacing r̃i
with 1/(uiui+k+1), the solution for Equation (12) in closed form as

u(2k+2)n+j =

uj ∏n−1
k0=0

(
2k0−1

∏
k1=0

A(k+1)k1+j

)
+ujuj+k+1

2k0−1
∑

l=0

(
B(k+1)l+j

2k0−1
∏

k2=l+1
A(k+1)k2+j

)
(

2k0
∏

k1=0
A(k+1)k1+j

)
+ujuj+k+1

2k0
∑

l=0

(
B(k+1)l+j

2k0
∏

k2=l+1
A(k+1)k2+j

) ,
(29)

u(2k+2)n+k+1+j =

uk+1+j ∏n−1
k0=0

(
2k0
∏

k1=0
A(k+1)k1+j

)
+ujuj+k+1

2k0
∑

l=0

(
B(k+1)l+j

2k0
∏

k2=l+1
A(k+1)k2+j

)
(

2k0+1
∏

k1=0
A(k+1)k1+j

)
+ujuj+k+1

2k0+1
∑

l=0

(
B(k+1)l+j

2k0+1
∏

k2=l+1
A(k+1)k2+j

) ,
(30)

where 0 ≤ j ≤ k and provided that

−ujuj+k+1

m

∑
l=0

(
B(k+1)l+j

m

∏
k2=l+1

A(k+1)k2+j

)
6=

m

∏
k1=0

A(k+1)k1+j, (31)
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where m < 2n. Recall that we enacted the shift operator 2k + 1 times in Equation (1) to
obtain Equation (12), and therefore we can write the solutions for Equation (1) as follows

x(2k+2)n−(2k+1)+j =

xj−2k−1

n−1

∏
k0=0

(
2k0−1

∏
k1=0

a(k+1)k1+j

)
+ xj−2k−1xj−k

2k0−1
∑

l=0

(
b(k+1)l+j

2k0−1
∏

k2=l+1
a(k+1)k2+j

)
(

2k0
∏

k1=0
a(k+1)k1+j

)
+ xj−2k−1xj−k

2k0
∑

l=0

(
b(k+1)l+j

2k0
∏

k2=l+1
a(k+1)k2+j

) , (32)

x(2k+2)n−k+j =

xj−k

n−1

∏
k0=0

(
2k0
∏

k1=0
a(k+1)k1+j

)
+ xj−2k−1xj−k

2k0
∑

l=0

(
b(k+1)l+j

2k0
∏

k2=l+1
a(k+1)k2+j

)
(

2k0+1
∏

k1=0
a(k+1)k1+j

)
+ xj−2k−1xj−k

2k0+1
∑

l=0

(
b(k+1)l+j

2k0+1
∏

k2=l+1
a(k+1)k2+j

) , (33)

provided that

−xj−2k−1xj−k

m

∑
l=0

(
b(k+1)l+j

m

∏
k2=l+1

a(k+1)k2+j

)
6=

m

∏
k1=0

a(k+1)k1+j, m < 2n. (34)

3.1. Case with (K + 1)-Periodic Sequences (An) and (Bn)

Let (an) = (a0, a1, . . . , ak, a0, a1, . . . ), (bn) = (b0, b1, . . . , bk, b0, b1, . . . ) and
Φj = xj−2k−1xj−kbj. The solutions given in Equations (32), (33) and (34) simplify to

x(2k+2)n+j−(2k+1) =xj−2k−1

n−1

∏
k0=0

(
aj
)2k0 + Φj

2k0−1
∑

l=0

(
aj
)l

(
aj
)2k0+1

+ Φj
2k0
∑

l=0
(aj)l

, (35)

x(2k+2)n−k+j =xj−k

n−1

∏
k0=0

(
aj
)2k0+1

+ Φj
2k0
∑

l=0

(
aj
)l

(
aj
)2k0+2

+ Φj
2k0+1

∑
l=0

(
aj
)l

, (36)

with

Φj

2k0

∑
l=0

(aj)
l 6= −

(
aj
)2k0+1, k0 < n, Φj

2k0+1

∑
l=0

(aj)
l 6= −

(
aj
)2k0+2, k0 < n, j ≤ k. (37)

Case with Aj 6= 1

The solutions given in (35), (36) and (37) become

x(2k+2)n+j−(2k+1) =xj−2k−1

n−1

∏
k0=0

(
aj
)2k0 + Φj

(
1−(aj)

2k0

1−aj

)
(
aj
)2k0+1

+ Φj

(
1−(aj)

2k0+1

1−aj

) (38)

x(2k+2)n−k+j =xj−k

n−1

∏
k0=0

(
aj
)2k0+1

+ Φj

(
1−(aj)

2k0+1

1−aj

)
(
aj
)2k0+2

+ Φj

(
1−(aj)

2k0+2

1−aj

) , (39)
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with

Φj

(
1− (aj)

2k0+1
)
6= −(1− aj)

(
aj
)2k0+1, (40)

Φj

(
1− (aj)

2k0+2
)
6= −(1− aj)

(
aj
)2k0+2, k0 < n, j ≤ k. (41)

3.2. Case with One-Periodic Sequences (An) and (Bn)

Let (an) = (a0, a0, . . . ), (bn) = (b0, b0, . . . ) and Φj = xj−2k−1xj−kb0. The solutions
given in Equations (35), (36) and (37) simplify to

x(2k+2)n+j−(2k+1) =xj−2k−1

n−1

∏
k0=0

(a0)
2k0 + Φj

2k0−1
∑

l=0
(a0)

l

(a0)
2k0+1 + Φj

2k0
∑

l=0
(a0)l

(42)

x(2k+2)n−k+j =xj−k

n−1

∏
k0=0

(a0)
2k0+1 + Φj

2k0
∑

l=0
(a0)

l

(a0)
2k0+2 + Φj

2k0+1
∑

l=0
(a0)l

, (43)

with

Φj

2k0

∑
l=0

(a0)
l 6= −(a0)

2k0+1, Φj

2k0+1

∑
l=0

(a0)
l 6= −(a0)

2k0+2, k0 < n, j ≤ k. (44)

3.2.1. Case with A0 6= 1

The solutions given in Equations (42), (43) and (44) become

x(2k+2)n+j−(2k+1) =xj−2k−1

n−1

∏
k0=0

(a0)
2k0 + Φj

(
1−(a0)

2k0

1−a0

)
(a0)

2k0+1 + Φj

(
1−(a0)

2k0+1

1−a0

) (45)

x(2k+2)n−k+j =xj−k

n−1

∏
k0=0

(a0)
2k0+1 + Φj

(
1−(a0)

2k0+1

1−a0

)
(a0)

2k0+2 + Φj

(
1−(a0)

2k0+2

1−a0

) , (46)

with

Φj

(
1− (a0)

2k0+1
)
6= −(1− a0)(a0)

2k0+1, Φj

(
1− (a0)

2k0+2
)
6= −(1− a0)(a0)

2k0+2, (47)

k0 < n, j ≤ k.

3.2.2. Case with A0 = 1

The solutions given in Equations (42), (43) and (44) become

x(2k+2)n+j−(2k+1) =xj−2k−1

n−1

∏
k0=0

1 + (2k0)Φj

1 + (2k0 + 1)Φj
(48)

x(2k+2)n−k+j =xj−k

n−1

∏
k0=0

1 + (2k0 + 1)Φj

1 + (2k0 + 2)Φj
, (49)

with

(2k0 + 1)Φj 6= −1, (2k0 + 2)Φj 6= −1, k0 < n, j ≤ k. (50)
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4. Results

In this section, we verify the results in [1–8,16,17] by utilizing different combinations
of values of an and bn in Equation (1):

• If we set k = 0, b0 = 1 in Equations (42)–(44), we obtain the result in [1] (see
Theorem 2.1) for Equation (2). However, the restriction (x−1 and x0 are positive
real numbers) in [1] is a special case of our restrictions ((2k0 + 1)x−1x0 6= −1 and
(2k0 + 1)x0x1 6= −1, k0 < n);

• If we set k = 0, b0 = 1 in Equations (45)–(47), we obtain the result in [2] for Equation (3)
(see Theorem 2.1). The restriction (x−1x0 6= 1) in [2] coincides with our restriction;

• If we set k = 0, b0 = a in Equations (48)–(50), we obtain the result in [5] for
Equation (4) (see Theorem 2.1). However, the restriction (x−1 and x0 are nonneg-
ative real numbers) in [5] is a special case of our restrictions ((2k0 + 1)ax−1x0 6= −1
and (2k0 + 2)ax−1x0 6= −1, k0 < n);

• If we set k = 0 and b0 = a in Equations (45)–(47), we obtain the result in [4] for
Equation (5) (see Theorem 2.1), and the restriction (ax−1x0 6= 1) in [4] coincides with
our restriction;

• If we set k = 0, a0 = (1/a), and b0 = (b/a) in Equations (42)–(44) we obtain the result
in [3] for Equation (6) (see Theorem 2.1). However, the restriction (a, b, x−1, and x0 are

nonnegative real numbers) in [3] is a special case of our restrictions (bx−1x0
2k0
∑

l=0
al 6= −1

and bx−1x0
2k0+1

∑
l=0

al 6= −1, k0 < n);

• If we set k = 0, a0 = a, and b0 = −1 in Equations (42)–(44), we obtain the result (for
the case a 6= 1) in [6] for Equation (7) (see Theorem 2), and the restriction (x−1x0 6=
aj(1 − a)/(1 − aj)) in [6] coincides with our restrictions (x−1x0

(
1− a2k0+1

)
6=

(1− a)a2k0+1, x−1x0

(
1− a2k0+2

)
6= (1− a)a2k0+2, and k0 < n). Additionally, the

solution for the case a = 1 (see Theorem 5 in [6]) corresponds to our solution with the
same restrictions on the initial conditions;

• If we set k = 1, a0 = 1, and b0 = 1 (resp b0 = −1) in Equations (48)–(50), we obtain the
result in [7] for Equation (8) (see Theorem 1 (resp. Theorem 4)). However, the restric-
tion (x−1 and x0 are nonzero positive real numbers (resp. jx0x−2 6= 1, jx−1x−3 6= 1
for j = 1, 2, 3, . . . )) in [7] is a special case of our restrictions ((2k0 + 1)x−1x−3 6=
−1, (2k0 + 2)x0x−2 6= −1 (resp. [2k0 + 1]x−1x−3 6= 1, and [2k0 + 2]x0x−2 6= 1)). On
the other hand, if a0 = −1 and b0 = ±1, the results are the same as in [7] (see
Theorems 6 and 9) with the same restrictions on the initial conditions (x0x−2 6= 1 and
x−1x−3 6= 1);

• If we set k = 2, a0 = −1, and b0 = 1 in Equations (45)–(47), we obtain the result in [8]
for Equation (9) (see Theorem 1), and the restrictions (x0x−3 6= 1, x−1x−4 6= 1, and
x−5x−2 6= 1) in [8] coincide with our restriction;

• If we set an = 1 and bn = 1 in Equations (32)–(34), we obtain the result in [16]
for Equation (10) (see Theorem 1). The author in [16] restricted himself to positive
solutions. However, our result is valid for negative solutions as well, provided that
Equation (34) is satisfied.

• If we set a0 = −1 and b0 = 1/a in Equations (45)–(47), we obtain the result in [17] for
Equation (11) (see Theorem 1). However, the restriction (x0x−(k+1) 6= a; x−1x−(k+2) 6=
a; x2−2x−(k+3) 6= a, . . . , x−kx−(2k+1) 6= a) in [17] is a special case of our restriction
( xj−2k−1xj−k 6= a, j ≤ k).

5. Numerical Examples

Below are some graphs that show the behavior of the solutions.
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Example 1. For the case with An = 1, Bn = B and k = 0, where un+2 = un
1+Bunun+1

, setting
An = 1, Bn = B, and k = 0 in Equations (29) and (30) yields

u2n = u0

n−1

∏
k0=0

1 + 2k0Bu0u1

1 + (2k0 + 1)Bu0u1

and

u2n+1 = u1

n−1

∏
k0=0

1 + (2k0 + 1)Bu0u1

1 + (2k0 + 2)Bu0u1
.

A sufficient condition for this solution to converge is given by 1 + 2k0Bu0u1 < 1 + (2k0 + 1)
Bu0u1 and 1 + (2k0 + 1)Bu0u1 < 1 + (2k0 + 2)Bu0u1 for 0 ≤ k0 ≤ n− 1. This implies that
Bu0u1 > 0. It is then clear that if Bu0u1 > 0, then the solution converges. On the other hand, a
sufficient condition for this solution to diverge is given by 1 + 2k0Bu0u1 > 1 + (2k0 + 1)Bu0u1
or 1 + (2k0 + 1)Bu0u1 > 1 + (2k0 + 2)Bu0u1 for 0 ≤ k0 ≤ n− 1. This implies that Bu0u1 < 0.
It is then clear that if Bu0u1 < 0, then the solution diverges.

Figure 1 shows the graph of un+2 = un
1+unun+1

with u0 = 2 and u1 = 5. The solution
converges as expected, since Bu0u1 > 0.

Figure 1. The graph of un+2 = un
1+unun+1

.

Figure 2 shows the graph of un+2 = un
1−0.28unun+1

with u0 = 0.08 and u1 = 0.67. The solution
diverges as expected, since Bu0u1 < 0.

Example 2. In the case with An = A 6= 1, Bn = B, and k = 1 such that un+4 = un
A+Bunun+2

,
setting An = A, Bn = B, and k = 1 in Equations (29) and (30) yields
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u4n =
u0

A + Bu0u2

n−1

∏
k0=1

A2k0 + Bu0u2
2k0−1

∑
l=0

Al

A2k0+1 + Bu0u2
2k0
∑

l=0
Al

, (51)

u4n+1 =
u1

A + Bu1u3

n−1

∏
k0=1

A2k0 + Bu1u3
2k0−1

∑
l=0

Al

A2k0+1 + Bu1u3
2k0
∑

l=0
Al

, (52)

u4n+2 =u2

n−1

∏
k0=0

A2k0+1 + Bu0u2
2k0
∑

l=0
Al

A2k0+2 + Bu0u2
2k0+1

∑
l=0

Al

, (53)

u4n+3 =u3

n−1

∏
k0=0

A2k0+1 + Bu1u3
2k0
∑

l=0
Al

A2k0+2 + Bu1u3
2k0+1

∑
l=0

Al

. (54)

Similarly, a sufficient condition for this solution to converge is for the numerators in
Equations (51)–(54) to be less than their corresponding denominators. This implies that Bu0u2 >
1 − A and Bu1u3 > 1 − A, where A > 0. It is then clear that if Bu0u2 > 1 − A and
Bu1u3 > 1 − A, then the solution converges. On the other hand, a sufficient condition for
this solution to diverge is for at least one of the numerators in Equations (51)–(54) to be greater
than its corresponding denominator. This implies that Bu0u2 < 1− A or Bu1u3 < 1− A, where
A > 0. It is then clear that if Bu0u2 < 1− A or Bu1u3 < 1− A, then the solution diverges.

Figure 2. The graph of un+2 = un
1−0.28unun+1

.

Figure 3 shows the graph of un+4 = un
2−2unun+2

with u0 = 0.63, u1 = 0.33, u2 = 0.72, and
u3 = 0. The solution converges as expected, since Bu0u2 > 1− A and Bu1u3 > 1− A.
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Figure 3. The graph of un+4 = un
2−2unun+2

.

Figure 4 shows the graph of un+4 = un
0.78+0.18unun+2

with u0 = 0.36, u1 = 0.63,
u2 = 0.01, and u3 = 0. The solution diverges as expected, since Bu0u2 < 1− A.

Figure 4. The graph of un+4 = un
0.78+0.18unun+2

.

6. Conclusions

We obtained all the Lie point symmetries of the difference equation (Equation (12)). We
used a symmetry-based method to derive its solutions. The solutions were given in
‘single’ form and then separated into (2k + 2) categories. We explained how the solutions
of Equation (1) can be obtained using those of Equation (12) to show that the results in the
recent literature can be obtained as special cases of our generalized solutions.
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