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Abstract: The high-order harmonic generation (HHG) in ZnO is investigated by numerically solving
semiconductor Bloch equations (SBEs), which can be explained well by a four-step model. In this
model, preacceleration is the first step, in which the electron is accelerated in the valence band until it
reaches the point of the minimum band gap. To prove the existence of the preacceleration process,
SBE-based k -resolved harmonic spectra and the transient conduction-band population are presented.
The results show that the contribution of crystal-momentum channels away from the minimum band
gap via preacceleration is non-negligible. Furthermore, the X-shaped distribution in the k-resolved
spectra can be described well by the preacceleration process. Based on the above analysis, we can
conclude that the preacceleration process plays an important role in HHG.

Keywords: high-order harmonic generation; preacceleration process; crystal-momentum-resolved
spectrum; recollision model in solid

1. Introduction

With the development of laser technology, the interaction between lasers and atoms or
molecules has become a hot topic in strong-field physics, which includes lots of nonlinear
phenomena, and high-order harmonic generation (HHG) has attracted extensive great
attention [1–5]. In 1987, Shore and Knight theoretically predicted the existence of high-
order harmonics [6]. In the same year, Mcpherson et al. [7] experimentally observed HHG
in noble gases for the first time. The harmonic spectrum has the following characteristics:
low-perturbation regime at low orders, plateau for intermediate orders, and cutoff at
high orders [8]. However, the appearance of higher harmonics in the plateau region and
the cutoff region cannot be explained by the perturbative theory. In 1993, Corkum et al.
proposed a “semiclassical three-step model” [4]: (1) in an intense laser field, one side of the
Coulomb potential is pushed down, and the electron tunnels through the barrier; (2) the
ionized electron is accelerated away from the atoms or molecules by laser fields; (3) under
some conditions, the electron returns to the core to recombine with the parent ion and emits
a high-energy photon. This model gives a clear physical picture of HHG. In the past few
decades, a large number of studies have clarified the physical mechanism of gas-phase
HHG [1,9].

High-order harmonics can be generated in solids [10–12], plasma [13], and
liquids [14–16] driven by intense ultrafast lasers. For example, Bian et al. [17] investi-
gated liquid-phase HHG theoretically by using a disordered linear chain. In 2011, Ghimire
et al. [18] observed non-perturbative HHG in solids clearly for the first time, and HHG in
solids has also attracted considerable attention [18–21]. For example, Lu et al. [22] inves-
tigated HHG in strongly correlated systems under strong laser irradiation by employing
the exact diagonalization method. HHG in solids not only provides a new way to obtain
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high-intensity XUV light but also opens the door of attosecond physics in condensed mat-
ter [23–26]. However, until now, HHG in solids has exhibited many unique and unexplored
characteristics [27–29], and the underlying physics of HHG in solids has not been fully
understood. At present, it is widely accepted that HHG in solids comes from two major
contributions: intraband current and interband polarization [30–32]; the complex coupling
between the two mechanisms not only affects the charge injection from the valence band to
the conduction band but also affects the motion of excited-state electron wave packets in
momentum space [33–40].

In 2019, Lu et al. [41] proposed a four-step model to investigate HHG in solids driven
by circularly and elliptically polarized laser fields. In the four-step model, these electrons
are firstly accelerated in the valence band, known as the preacceleration process. Second,
tunneling excitation occurs when the electrons reach the point of the minimum band gap.
Third, after ionization, the hole in the valence band and the electron in the conduction
band are accelerated in opposite directions that obey the acceleration theorem. During
the acceleration process, the instantaneous energy difference between the electron and
the hole is expressed as M E(K(t)) = Ec(K(t))− Ev(K(t)), where Ec and Ev represent the
energy bands of the conduction band and valence band. Fourth, when the electron and
hole are driven back towards their initial position and eventually recollide with each other,
they emit momentary band-gap energy as a photon. The main difference between the
three-step recollision model in real space and the four-step model is that the preacceleration
process is included in the four-step model. Later, there have also been many studies on the
harmonic spectrum considering the crystal-momentum resolution of the preacceleration
process [42–46]. The preacceleration process clearly claims that the valence-band electrons
in the entire first Brillouin zone must be taken into account in solid HHG simulations.

The main motivation of this work is to explore the contribution of the preacceleration
process to HHG in solids. This paper is organized as follows: In Section 2, we introduce the
two-band semiconductor Bloch equations (SBEs) used in this paper. Our numerical simula-
tion results are presented and discussed in Section 3. Our main results are summarized in
Section 4. Atomic units are used throughout this paper unless otherwise indicated.

2. Theoretical Methods

HHG in solids is modeled by two-band SBEs, which includes coupled interband and
intraband dynamics [19,30,47–49]:

ṅm(K, t) = i ∑
m 6=m′

Ωmm′πmm′ exp[iSmm′(K, t)] + c.c. (1)

π̇mm′(K, t) = −πmm′(K, t)
T2

+ iΩ∗mm′(nm − n′m) exp[iSmm′(K, t)]

+i ∑
m′′/∈m,m′

(Ωm′m′′πm′m′′ exp[iSm′m′′ ]−Ω∗m′m′′π
∗
m′m′′ exp[−iSm′m′′ ])

(2)

where πmm′ is the density matrix element, representing the quantum coherence between the
two bands; nm is population of the valance band (m = v) and the conduction band (m = c);
Ωmm′(K, t) = F(t) · d(K + A(t)) is the Rabi frequency; d(k) represents the transition dipole
moment between the two bands [50]; Smm′(K, t) =

∫ t
−∞ εmm′(K + A(t′))dt′ is the classical

action; and εmm′ = Em − Em′ is the k-dependent transition energy between the valence
band and the conduction band.

T2 is a dephasing-time term describing the coherence between the electron and
hole [51–53]. According to Bloch’s acceleration theorem [54], the crystal momentum of
an electron within a given band changes according to K(t) = k−A(t) [19], where A(t) is
the vector potential of the electric field and k is the initial momentum. The polarization
associated with πmm′(k, t) is defined as [19]:

pmm′(K, t) = dmm′(K + A(t))πmm′(K, t) exp[iSmm′(K, t)] + c.c. (3)
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where pmm′(K, t) represents the polarizability of the two bands. Intraband current jra(t)
and interband current jer(t) can be written as follows [19]:

jra(t) = ∑
m=c,v

∫
BZ

vm[K + A(t)]nm(K, t)d3K (4)

jer(t) =
d
dt ∑

m 6=m′

∫
BZ

pmm′(K, t)d3K (5)

where vm[k] = ∇kEm[k] is the gradient of the dispersion relation, called the group velocity
of the electron (hole) in the conduction band (valence band). The interband and intraband
high-order harmonic spectra are calculated by the modulus square of the Fourier transform
(FT) of the time derivatives of jra(t) and jer(t) [51]:

IHHGjra = ω2|FT{jra(t)}|
2 (6)

IHHGjer = ω2| FT{jer(t)} |
2 (7)

The total high-order harmonic spectrum is written as:

IHHGtotal = ω2|FT{jra(t) + jer(t)}|
2 (8)

In our one-dimensional (1D) SBE simulation, the linearly polarized laser field with
Gaussian envelope is given by:

F(t) = F0 exp[−2 ln(2)(
t
τ
)2] cos(ω0t + φ) (9)

where F0 is the peak of the electric field inside the crystal; ω0 is the circular frequency of the
fundamental laser; and φ is the carrier–envelope phase. For a ZnO crystal, the electric field
is linearly polarized along the Γ−M direction of the Brillouin zone. The selection of laser
intensity makes the excitation of the high conduction band negligible, so the two-band
model is reasonable and can be adopted.

3. Results and Discussion

From Figure 1a we can see the crystal structure of wurtzite ZnO, which has the
hexagonal symmetry. The first Brillouin zone of wurtzite ZnO crystals and the associated
high-symmetric points Γ, K, and M are shown in Figure 1b. The wurtzite ZnO is a typical
direct band-gap semiconductor, and the lattice constants are a = 3.2493, b = 3.2493, and
c = 5.2054. The structure parameters for calculating the bands of a model ZnO crystal are
taken from Ref. [48].

The high-order harmonic spectra of ZnO driven by linearly polarized laser fields with field
strength F0 = 0.004 (corresponding to the vacuum field intensity of I = 5.5× 1011 W/cm2)
are shown in Figure 2. We chose τ = 6 optical cycles, φ = 0, and a total pulse duration
of 25 optical cycles, where ω0 = 0.014, T2 = T0

4 , and λ = 3250 nm. The spectra of the two
currents present a platform from the 9th harmonic order to the 29th (both orders are marked
with black short-dashed–dotted lines). As shown in Figure 2, the harmonic spectra in the
plateau regime are dominated by interband polarization with the laser parameters we used.

To understand the physical mechanism of HHG in solids, it is useful to describe the
motion of electron–hole pairs by the three-step recollision model in real space [18,19,24]:
(1) Near the peak of the electric field, a small portion of electrons near the minimum
band gap in the valence band vertically tunnel to the lowest conduction band, leaving a
hole in the valence band (tunneling excitation process). (2) Then, the electron–hole pair
accelerates in the bands under the action of an electric field (intraband acceleration process).
(3) The electron recombines with the hole and emits a harmonic photon with energy given
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by the energy difference between the conduction and the valence bands (electron–hole
recombination process).

( - )

( - )

(a) (b)

Figure 1. (a) Top view of wurtzite structure in ZnO crystal, with O and Zn atoms being represented
by red and gray spheres, respectively. (b) The first Brillouin zone in the reciprocal lattice, where Γ, K,
and M are the high symmetry points.
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Figure 2. Harmonic spectra of ZnO with F0 = 0.004 and λ = 3250 nm. The black solid line and the red
solid line indicate intraband and interband harmonics, respectively. The black short-dashed–dotted
lines indicate the position of the minimum band gap and the cutoff of the harmonic spectrum.

As predicted by the three-step recollision model, Figure 3a shows the recollision
energies of the electron and hole as functions of tunneling and recollision time in ZnO
crystals. The trajectories with earlier ionization time and later recollision time are called
long trajectories. On the contrary, the short trajectories have a later ionization time and
earlier recollision time [55]. Figure 3b shows the long and short trajectories of the 17th
harmonic in real space with different ionization time in ZnO crystals. The green lines
represent the electron displacement (solid line) and hole displacement (dashed line) with
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the ionization time of −0.474 optical cycles, corresponding to the long trajectory indicated
by the green arrow in Figure 3a, and the corresponding recollision time of 0.408 optical
cycles represented by the green arrow in Figure 3b. In Figure 3b, the blue lines represent the
electron displacement (solid line) and hole displacement (dashed line) with the ionization
time of −0.35 optical cycles, corresponding to the short trajectory indicated by the blue
arrow in Figure 3a, and the corresponding recollision time of −0.023 optical cycles repre-
sented by the blue arrow in Figure 3b. From Figure 3, the long and the short trajectories
can be intuitively distinguished.
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Figure 3. (a) The energy of the recollision in a ZnO crystal varies with tunneling ionization (black
solid line) and recollision time (red solid line). (b) The short trajectories of the electron (blue solid
line) and the hole (blue dotted line) for the 17th harmonic and the long trajectories of the electron
(green solid line) and the hole (green dotted line). The parameters are the same as those in Figure 2.

The above recollision model for solids is different from that for atoms. Firstly, in atoms,
only electrons move under the drive of the laser field. However, in solids, both electrons
and holes move under the drive of the laser field, and at a certain time, the electron and
hole recombine with each other and emit photons, i.e., HHG. Secondly, the ionized electron
of an atom can be viewed as a free electron accelerated by a laser field. In solids, the ionized
electron is in the periodic potential field of the crystal, and the trajectories of electrons and
holes depend on the band structure of the solid. Finally, the kinetic energy of the electrons
of an atom is related to the ionization potential of the atom and the laser intensity, while
the maximum harmonic energy in solids is limited to the band-gap energy.

Figure 4a presents the time–frequency distribution of the total harmonic spectra of the
Γ channel. Figure 4b presents the time–frequency distribution of the total harmonic spectra
of the whole channel in the Brillouin zone. From Figure 4a,b, we find that there is a big
difference between the two time–frequency distributions. This shows that except for the Γ
channel, the contribution of other channels cannot be ignored. Next, we need to study the
mechanism for the contribution of other channels to the harmonic spectrum.

In solids, when the driving field is added, the electrons at the Γ point are tunneled
vertically to the conduction band. With the increase in the intensity of the driving field,
more and more electrons are excited to the conduction band. We study the dynamics of
multiple crystal-momentum channels formed by the electrons excited to the conduction
band in the linearly polarized laser fields by comparing the absence and the existence of
the preacceleration process in Figures 5 and 6.
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Figure 4. The time–frequency analysis of the total harmonic spectra of a ZnO crystal with logarithmic
color scale. The laser parameters are the same as those in Figure 2.
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Figure 5. (a) Schematic diagram of k-space dynamics without preacceleration process. Curves with
arrows show the electron tunneling from the valence band to the conduction band, acceleration within
the conduction band, and interband recombination, respectively. (b) Schematic diagram of k-space
dynamics with preacceleration process. Curves with arrows represent the preacceleration process in
the valence band, tunneling from the valence band to the conduction band, intraband acceleration
process, and interband recombination, respectively. The colored circles represent electrons belonging
to different momentum channels. Black and red curves in (a,b) represent the valence band and
conduction band of ZnO crystals, respectively. The gray curves represent the energy difference
between the conduction band and the valence band.

According to the Landau–Zener tunneling theory [56], tunneling has an exponential
dependence on the band gap. Tunneling ionization mainly occurs at the minimum band
gap (Γ point, k0 = 0); therefore, it gives the largest contribution to HHG, and the tunneling
ionization at other k channels can be reasonably ignored. This is not to say that the
contribution of other k channels is small, but that tunneling ionization mainly occurs at the
minimum band gap. The contributions of other k channels are also very important due to
the so-called preacceleration process. An electron initially located at k 6= 0 in the valence
band is firstly accelerated in the valence band before tunneling ionization, and tunneling
ionization occurs when the electron reaches the Γ point.
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Figure 5a shows the k-space dynamics without preacceleration process. In the presence
of the laser field, the instantaneous crystal momentum of the electron is K(t) = k0 + A(t).
Here, k0 is the initial crystal momentum of the electron, and A(t) is the vector potential
of the laser. An electron preferentially enters the conduction band at the Γ point (k0 = 0)
and subsequently moves in the conduction band governed by the acceleration theorem.
Interband harmonics might be emitted at any time during the acceleration process in the
conduction band, and the photon energy is given by the band gap at the instantaneous
crystal momentum, K(t). Therefore, we should obtain a V-shaped distribution in the
k-resolved spectra as shown by the gray curve in Figure 5a.

Figure 6. k-resolved profile of HHG from ZnO driven by linearly polarized laser pulse. k-resolved
intraband (a1–d1) and total harmonic spectra (a2–d2) as functions of crystal momentum k. (e–h) Time-
dependent conduction-band population in the moving K-space frame. The white solid lines represent
A(t), and the white dotted lines indicate ±Amax(t). Panels (a1–h) are given on the same logarithmic
scale, and (a1–d1), (a2–d2), and (e–h) correspond to the field strengths of the driving laser field of
0.002, 0.003, 0.004, and 0.005.

What characteristics would the k-resolved spectra have if the preacceleration process
existed? Figure 5b shows the k-space dynamics with preacceleration process. Let us
consider the case of electrons initially located at different k channels, e.g., k0 = −0.4,−0.2,
and 0 for the 1st, 2nd, and 3rd electrons in the valence band of Figure 5b; we assume that
the peak of vector potential Amax equals 0.4.

The motion of the 1st electron can be described by the following steps: Firstly, the
1st electron experiences the intraband preacceleration before tunneling ionization. The
maximum momentum obtained by the 1st electron is Kmax = k0 + Amax = 0. Secondly,
the 1st electron is excited from the valence band to the conduction band by tunneling at
the minimum band gap (k0 = 0). Finally, the recombination process also occurs at k = 0.
Therefore, due to the fact that the 1st electron cannot gain additional momentum, the
photon energy of the harmonic contributed by the k0 = 0.4 channel equals the band-gap
energy at the Γ point (k = Kmax = 0).
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The motion of the 2nd electron can be described by the following steps: Firstly, the
2nd electron experiences the same intraband preacceleration as the 1st electron. Secondly,
tunneling ionization occurs when the 2nd electron reaches the Γ point (k = 0). Thirdly,
due to the fact that (Kmax) equals 0.2 for this case, the 2nd electron undergoes additional
intraband acceleration in the conduction band, and the interband harmonic is emitted
during the intraband acceleration process in the conduction band. Finally, the maximum
photon energy of the harmonic contributed by the 2nd electron equals the band-gap energy
at k = Kmax = 0.2.

For the same reason, the maximum photon energy of the harmonic contributed by
the 3rd electron equals the band-gap energy at k = Kmax = 0.4. The electron dynamics for
momentum channels with k > 0 are similar to those for the above momentum channels
with k < 0.

Based on the above analysis, the maximum photon energy of the harmonics con-
tributed by different k channels can be obtained by translating the gray curve in Figure 5a
to the left or right by Amax. Therefore, an X-shaped distribution in the k-resolved spectra
should be obtained as shown by the gray curve in Figure 5b.

To prove the existence of the preacceleration process, the SBE-based k-resolved har-
monic spectra are presented. In order to see the contribution of different k channels
intuitively, we obtain the k-resolved intrabands (Figure 6a1–d1) and total harmonic spectra
(Figure 6a2–d2) at different laser intensities as well as the time-dependent population in
the conduction band as functions of momentum K(t) (Figure 6e–h) in Figure 6.

Figure 6a1–d1 present the intraband harmonic spectra as functions of crystal momen-
tum k under different laser intensities. It is found that when F0 = 0.002, the cutoff of the
intraband harmonic reaches the 5th order, and when F0 = 0.005, the cutoff of the intraband
harmonic reaches the 10th order. Therefore, Figure 6a1–d1 indicate that the order of the
intraband harmonics is also extended with F0.

Figure 6a2–d2 present the total harmonic spectra as functions of crystal momentum
k under different laser intensities. When F0 = 0.002, it is observed in Figure 6e that the
peak of vector potential Amax equals about 0.15. In Figure 6a2, the electron dynamics
for the momentum channel with the k0 = −0.15 channel are similar to those of the 1st
electron shown in Figure 5b. The maximum photon energy of the harmonics contributed
by different k channels can be obtained by translating the gray curve in Figure 5a to the left
or right by Amax = 0.15, i.e., the white dashed line in Figure 6a2. The range of the crystal
momentum of the corresponding k-resolved HHG spectra is approximately [−0.15, 0.15].

When F0 = 0.003, 0.004, and 0.005, it is observed in Figure 6f–h that the peaks of
vector potential Amax equal about 0.21, 0.29, and 0.36. In Figure 6b2–d2, the maximum
photon energy of the harmonics contributed by different k channels equals the band-gap
energy at k = Kmax = 0.21, 0.29, and 0.36. The analysis of electrons in other k channels
in Figure 6b2–d2 is similar to that of Figure 5b. The white dashed lines in Figure 6b2–d2 can
be obtained by translating the gray curve in Figure 5a to the left or right by Amax = 0.21, 0.29,
and 0.36, respectively. The ranges of the crystal momentum of the corresponding k-resolved
harmonics are determined to be [−0.21, 0.21], [−0.29, 0.29], and [−0.36, 0.36], respectively.
From Figure 6b2–d2, we also find that the X-shaped distributions in the k-resolved spectra
are in good agreement with the white dashed lines predicted by the preacceleration process.
In Figure 6a2–d2, it is found that with the increase in F0, the width of the distribution of
k-resolved spectra gradually increases, and the cutoff energy of the total harmonic spectra
also increases.

Figure 6e–h present the time-dependent population of electrons in the conduction
band as functions of moving momentum K(t), with the white solid lines representing
Amax. The electrons are excited to the conduction band and move in the conduction
band with the laser field. In Figure 6e, when F0 = 0.002, the range of the instantaneous
population of the electrons in the conduction band is consistent with that of the vector
potential, i.e., ±Kmax = ±Amax = ±0.15. Since the farthest position of the acceleration of
the electrons in the conduction band is determined by instantaneous crystal momentum
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Kmax = k0 + Amax, the instantaneous population of the electrons represents the dynamics
of the electron at the Γ point, similar to the 3rd electron in Figure 5b. The area with
white dotted lines indicates the range of electronic acceleration in the conduction band
under the laser parameter, i.e., [−0.15, 0.15], which is consistent with the range of crystal
momentum in Figure 6a2 and also proves the preacceleration process. For the same reason,
in Figure 6f–h, when the peak values of the vector potential are equal to 0.21, 0.29, and 0.36,
the areas with white dotted lines represent the ranges of the acceleration of the electron
in the conduction band, respectively, i.e., [−0.21, 0.21], [−0.29, 0.29], and [−0.36, 0.36],
which correspond to the ranges of the crystal momentum in Figure 6b2–d2, respectively.
In Figure 6e, at F0 = 0.002, the peak of vector potential Amax equals about 0.15. According
to the acceleration theorem, the farthest positions that the electron at the Γ point can
reach are Kmax(t) = ±Amax(t) = ±0.15. When the laser intensity increases, as shown by the
white dotted line in Figure 6e–h, the corresponding farthest positions of the electron are
Kmax(t) = ±0.21, Kmax(t) = ±0.29, and Kmax(t) = ±0.36, respectively. This is confirmed
by the transient population of the conduction band obtained by SBE simulations. It is
clear in Figure 6e–h that with the increase in laser intensities, the probability of electrons
tunneling to the conduction band increases, so the instantaneous population of electrons
in the conduction band also increases. Based on the above analysis, we conclude that the
preacceleration process plays an important role in HHG, and our results also verify the
four-step model for HHG in solids.

4. Conclusions

In summary, we theoretically investigate HHG in ZnO crystals by linearly polarized
laser pulses. We explain the X-shape distribution of HHG by a preacceleration process. In
the four-step model, these electrons are firstly accelerated in the valence band, known as
the preacceleration process. Second, tunneling excitation occurs when the electrons reach
the point of the minimum band gap. Third, after ionization, the hole in the valence band
and the electron in the conduction band are accelerated in opposite directions that obey the
acceleration theorem. During the acceleration process, the instantaneous energy difference
between the electron and the hole is expressed as M E(K(t)) = Ec(K(t))− Ev(K(t)), where
Ec and Ev represent the energy bands of the conduction band and the valence band.
Fourth, when the electron and hole are driven back towards their initial position and
eventually recollide with each other, they emit momentary band-gap energy as a photon.
The preacceleration process for HHG in solids is visualized by the crystal-momentum-
resolved harmonic spectra and the transient conduction-band population, which confirm
the four-step model for HHG in solids. Thus, except for the Γ channel, other channels in
the first Brillouin zone also play important roles in the preacceleration process.
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