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Abstract: Rational eigenvalue problems (REPs) have important applications in engineering applica-
tions and have attracted more and more attention in recent years. Based on the theory of low-rank
modification, we discuss the spectral properties and distribution of the symmetric rational eigenvalue
problems, and present two numerical iteration methods for the above REPs. Numerical experiments
demonstrate the effectiveness of our proposed methods.
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1. Introduction

We consider the following rational eigenvalue problem (REP)

R(λ)x = 0, (1)

where R(λ) ∈ Rn×n is a matrix rational function with respect to the scalar parameter λ ∈ R
and the details for the degree of R(λ) can be seen in [1]. As we know, λ is an eigenvalue of
the problem (1) if and only if it satisfies the characteristic equation det(R(λ)) = 0 where
det(·) denotes the determinant of its following matrix. The nonzero vector x ∈ Rn and
the two-tuple (λ, x) are called as the corresponding eigenvector of λ and an eigenpair
of the REP (1), respectively. The REP arises in a wide variety of applications including
vibration of fluid–solid structures [2], optimization of acoustic emissions of high-speed
trains [3], free vibration of plates with elastically attached masses [4], free vibrations of
a structure with a viscoelastic constitutive relation describing the behavior of a material [5,6],
electronic structure calculations of quantum dots [7,8], and so on.

More precisely, in this paper we consider that R(λ) is shown as follows:

R(λ) = P(λ) +
N

∑
i=1

si(λ)

qi(λ)
Bi, (2)

where P(λ) = λd Ad + · · ·+ λA1 + A0 is a matrix polynomial, si(λ) and qi(λ) are coprime
scalar polynomials of degrees mi and ni with mi < ni, respectively, and Ai, Bi ∈ Rn×n are
all constant matrices.

At present, there are mainly three types of numerical methods to compute the eigenval-
ues of the REP (1). The first type of numerical method is to solve the REP via a brute-force
approach. That is to say, multiply the both sides of (2) by all scalar polynomials qi(λ),
which results in a d + ∑N

i=1 ni order polynomial eigenvalue problem (PEP). Nevertheless,
these methods are not as efficient as required for the large-scale problems, especially when
the term ∑N

i=1 ni is not small enough. Moreover, the corresponding PEP would have more
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extra eigenvalues than the original REP (1). The second type of numerical method is to
linearize the REP into a PEP with some specific tricks. For example, Su and Bai [9] presented
a linearization-based method by converting the REP into a well-studied PEP and preserved
the structures and properties of the original REP. Dopico and González-Pizarro [10] pro-
posed a compact rational Krylov method for the large-scale REP. The third type of numerical
method is to treat the REP as the general nonlinear eigenvalue problems, and solve them
via a nonlinear eigensolver, see, e.g., [11–24]. Although the abovementioned methods can
solve the REP well, they ignore some structures and properties of the original rational
eigenvalue problems. To overcome this disadvantage, it is necessary to study spectral
properties and distribution of the REP first, and then try to put forward some effective
numerical methods according to these properties. As far as we know, there are engineering
applications that require the computation of only some of the eigenvalues lying within
an interval [5]. Therefore, in this paper we focus on some numerical methods to compute
eigenpairs of the REP in an interval.

The rest of the paper is organized as follows. Section 2 briefly introduces some
preliminary results. Section 3 discusses the spectral properties and the distribution of
the rational eigenvalues. In Section 4, we develop two numerical methods for solving
the symmetric REP based on the spectral properties. Some numerical examples are given
to show the effectiveness of the proposed methods in Section 5. Finally, we give some
concluding remarks in Section 6.

For convenience, we use the following notations: I denotes the identity matrix of
suitable size. ej denotes the jth column of the identity matrix I. The superscript T denotes
the transpose of a vector or a matrix, respectively. ‖·‖ denotes the Euclidean norm of
a vector or a matrix. ‖·‖F denotes the Frobenius norm of a matrix. 〈x, y〉 denotes the inner
product of vector x and vector y.

2. Preliminaries

In this section, to facilitate the theoretical analysis and further obtain the main results for
rational eigenvalue problems (1) and (2), the following useful assumptions are addressed.

Hypothesis 1 (H1). Coefficient matrices Ai are the symmetric positive definite matrices with
i = 1, . . . , d and A0 is symmetric.

Hypothesis 2 (H2). Matrices Bi are the low-rank symmetric positive semidefinite matrices with
i = 1, 2, . . . , N.

Hypothesis 3 (H3). Rational functions ri(λ) =
si(λ)

qi(λ)
are monotonically increasing functions

with respect to parameter λ on the intervals separated by the zeros of polynomials qi(λ) where
i = 1, 2, . . . , N.

Remark 1. The following example provides an intuitive illustration for assumption H3.

Example 1. Assume that ri(λ) =
a1

λ1 − λ
+

a2

λ2 − λ
+ · · ·+ ak

λk − λ
, where λ1 < λ2 < · · · <

λk and a1, a2, . . . , ak > 0. We can easily get that r′i(λ) =
a1

(λ1 − λ)2 +
a2

(λ2 − λ)2 + · · · +
ak

(λk − λ)2 > 0 where i = 1, 2, . . . , k. Therefore, we have that ri(λ) are monotonically increasing

functions with respect to parameter λ on the intervals (−∞, λ1), (λi, λi+1), (λk,+∞) where
i = 1, 2, . . . , k− 1.
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For the REP (1) and (2), in this paper we only discuss the eigenvalue distribution
on the positive semi-real axis, namely J ⊆ R+. Assume that all zeros of qi(x) with
i = 1, 2, . . . , N on the real positive semiaxis are arranged in the following order:

inf J , σ0 < σ1 ≤ . . . ≤ σL < σL+1 <
∆
= sup J.

Set Jl = (σl−1, σl) where l = 1, . . . , L + 1. Then we have J =
L+1⋃
l=1

Jl = R+\{σi}L
i=1 and

Jl ∩ Jk = φ if l 6= k.
As long as the matrices Ai and Bj are symmetrical for all i = 0, 1, . . . , d and

j = 1, 2, . . . , N, we can define the Rayleigh functional p(x) for the REP. That is to say,
if p(x) satisfies the following equation

〈R(p(x))x, x〉 = 0, (3)

p(x) is the Rayleigh functional of R(λ). Notice that in the linear case R(λ) = λI − A,
it is exactly the Rayleigh quotient. Let f (λ, x) = 〈R(λ)x, x〉, then p(x) is a root of f (λ, x) = 0.
Because Ai is positive definite with i = 1, . . . , d, Bi is positive semidefinite and ri(λ) is
monotonically increasing function, it is easy to verify that f (λ, x) is a monotone increasing
function on the intervals separated by the zeros of polynomials qi(λ). Therefore,

(λ− p(x)) f (λ, x) > 0, (4)

where λ 6= p(x).
For each fixed λ ∈ J, we consider the following standard eigenvalue problem (SEP):

R(λ)x = µx. (5)

We can easily see that if λ is an eigenvalue of the REP (1) and (2), µ = 0 is an eigenvalue
of the above SEP (5). Conversely, it is also true. Therefore, the eigenvalue of the REP (1)
and (2) can be characterized by the zero eigenvalue of the SEP (5). For the standard
eigenvalue problem, we have the minmax principle

µj = sup
V∈Hj

min
x∈V\{0}

〈R(λ)x, x〉
〈x, x〉 ,

where Hj represents the set of Hilbert subspaces with dimension j ofRn. Similarly, we have
the minmax principle of the REP

λj = min
V∈Hj ,V∩D6=φ

sup
x∈V∩D

p(x), (6)

where D denotes the domain of the Rayleigh functional p(x) which satisfies (3). For a more
detailed discussion, see, e.g., [17,18].

3. Spectral Properties and Distribution of the REPs

According to the assumption (H2), we know that the matrices Bi are low-rank. Hence,
the REP (2) can be regarded as a low-rank perturbation of the following PEP [25]

P̃(λ)x = 0, (7)

where

P̃(λ) = P(λ) +
N

∑
i=1

si(κ)

qi(κ)
Bi,

with κ ∈ Jl and l = 1, 2, . . . , L + 1.
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For any l ∈ {1, 2, . . . , L + 1} and any value κ in the interval Jl , the REP (1) and (2) has
the corresponding PEP (7). Assume that the PEP (7) has an eigenvalue µ in the interval
Jl . Then we will prove that the eigenvalue λ of the REP (1) and (2) is between κ and µ.
Before giving this theorem, we first show some lemmas.

Lemma 1. Assume that s(λ) and q(λ) represent any pair of scalar polynomials si(λ) and qi(λ)
with i = 1, 2, . . . , N, respectively. For any λ1, λ2 ∈ Jl with l = 1, 2, . . . , L + 1, we have

s(λ1)q(λ2)− q(λ1)s(λ2) = (λ1 − λ2)g(λ1, λ2),

where g(λ1, λ2) > 0 with ai and bj standing for the coefficients of s(λ) and q(λ), respectively.

Proof. Without losing generality, we let s(λ) =
m
∑

i=0
aiλ

i and q(λ) =
n
∑

j=0
bjλ

j. Hence,

s(λ1)q(λ2)− q(λ1)s(λ2) =

(
m

∑
i=0

aiλ
i
1

)(
n

∑
j=0

bjλ
j
2

)
−
(

m

∑
i=0

aiλ
i
2

)(
n

∑
j=0

bjλ
j
1

)
=

m

∑
i=0

n

∑
j=0

aibj

(
λi

1λ
j
2 − λ

j
1λi

2

)
.

Let

g(λ1, λ2) = ∑
i 6=j

sgn(i− j)aibj(λ1λ2)
min(i,j)

|i−j|−1

∑
k=0

λk
1λ
|i−j|−k−1
2 ,

and we have s(λ1)q(λ2)− q(λ1)s(λ2) = (λ1 − λ2)g(λ1, λ2).

Let r(λ) =
s(λ)
q(λ)

. Then

r(λ1)− r(λ2) =
s(λ1)

q(λ1)
− s(λ2)

q(λ2)
=

s(λ1)q(λ2)− q(λ1)s(λ2)

q(λ1)q(λ2)
=

λ1 − λ2

q(λ1)q(λ2)
g(λ1, λ2).

Because λ1, λ2 ∈ Jl , then q(λ1)q(λ2) > 0. Based on the assumption H3 we have
g(λ1, λ2) > 0. Thus, the conclusion holds true.

For the PEP (7), the Rayleigh functional Rκ(x) should satisfy 〈P̃(Rκ(x))x, x〉 = 0, namely,

〈P(Rκ(x))x, x〉 = −
N

∑
i=1

si(κ)

qi(κ)
〈Bix, x〉. (8)

Lemma 2. Assume that κ ∈ Jl and there exists a vector x ∈ H1, such that Rκ(x) ∈ Jl with
l = 1, 2, . . . , L + 1 whereH1 = { x ∈ H|〈x, x〉 = 1}. Then x ∈ Dl and

min(κ, Rκ(x)) ≤ pl(x) ≤ max(κ, Rκ(x)),

where Dl is the domain of the Rayleigh functional pl(x) which satisfies (3) in Jl .

Proof. With the fact that

f (Rκ(x), x) = 〈P(Rκ(x))x, x〉+
N

∑
i=1

si(Rκ(x))
qi(Rκ(x))

〈Bix, x〉

and the relation (8), we have

f (Rκ(x), x) = −
N
∑

i=1

si(κ)
qi(κ)
〈Bix, x〉+

N
∑

i=1

si(Rκ(x))
qi(Rκ(x))

〈Bix, x〉

=
N
∑

i=1

(Rκ(x)−κ)gi(κ,Rκ(x))
qi(κ)qi(Rκ(x)) 〈Bix, x〉.
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It follows from Lemma 1 and the assumption (H2) that f (Rκ(x), x) ≤ 0 if κ ≥ Rκ(x)
and f (Rκ(x), x) ≥ 0 if κ ≤ Rκ(x). Similarly, it can be proved that f (κ, x) ≥ 0 if κ ≥ Rκ(x)
and f (κ, x) ≤ 0 if κ ≤ Rκ(x). Finally, because f (λ, x) is continuous, we have x ∈ Dl and
min(κ, Rκ(x)) ≤ pl(x) ≤ max(κ, Rκ(x)), which completes the proof.

Theorem 1. Assume that (H1)–(H3) hold, and let κ ∈ Jl with l = 1, 2, . . . , L + 1. Assume
that µj ∈ Jl and Jl contains the j-th eigenvalue of the PEP (7) . Then the REP (1) and (2)
has a corresponding eigenvalue λj ∈ Jl and min(κ, µj) ≤ λj ≤ max(κ, µj).

Proof. We first show that there exists a subspace V ∈ Hj, such that

V ∩Dl 6= ∅ and sup
x∈V∩Dl

pl(x) ≤ max(κ, µj).

In fact, suppose that there exist W ∈ Hj and w ∈W\{0}, such that

µj = min
V∈Hj ,V∩Dl 6=φ

max
x∈V∩Dl

Rκ(x) = max
x∈W\{0}

Rκ(x) = Rκ(w).

Because κ ∈ Jl and µj ∈ Jl , we have w ∈ Dl from Lemma 2. Then W ∩Dl 6= ∅. For any
x ∈W\{0}, we have Rκ(x) ≤ µj. Therefore, 〈P(Rκ(x))x, x〉 ≤ 〈P(µj)x, x〉. That is,

〈P(µj)x, x〉+
N

∑
i=1

si(κ)

qi(κ)
〈Bix, x〉 ≥ 0.

Set δ = max(κ, µj). Then it is easy to obtain that 〈P(δ)x, x〉+
N
∑

i=1

si(δ)

qi(δ)
〈Bix, x〉 ≥ 0.

That is, f (δ, x) ≥ 0. It follows from (4) that pl(x) ≤ δ for any x ∈ Dl ∩W. Hence,
sup

x∈W∩Dl

pl(x) ≤ δ = max(κ, µj).

In the following, we show that for any V ∈ Hj, if V ∩D 6= ∅, we have

sup
x∈V∩Dl

pl(x) ≥ min(κ, µj).

We prove this result by reduction to absurdity. Suppose that there exists V ∈ Hj such
that V ∩D 6= ∅, but sup

x∈V∩Dl

pl(x) < min(κ, µj). Let xV ∈ V such that Rκ(xV) = max
x∈V

Rκ(x).

Then we have Rκ(xV) /∈ Jl . Actually, if Rκ(xV) ∈ Jl , it is easy to get xV ∈ Dl and
pl(xV) ≥ min(κ, Rκ(xV)).

That is,
sup

x∈V∩Dl

pl(x) ≥ pl(xV) ≥ min(κ, Rκ(xV)) ≥ min(κ, µj)

contradicting the fact that sup
x∈V∩Dl

pl(x) < min(κ, µj). Hence, Rκ(xV) /∈ Jl .

Set δ = min(κ, µj) ≤ min(κ, Rκ(xV)). Then we have δ ≤ µj ≤ Rκ(xV). Moreover,

because f (δ, xV) = 〈P(δ)xV , xV〉+
N
∑

i=1

si(δ)

qi(δ)
〈BixV , xV〉, it is easy to obtain

f (δ, xV) ≤ 〈P(Rκ(xV))xV , xV〉 −
K

∑
i=1

si(κ)

qi(κ)
〈BixV , xV〉 = 0.

For any x ∈ V ∩ Dl , we let w(t) = tx + (1− t)xV and ϕ(t) = f (δ, w(t)). Then
ϕ(0) = f (δ, xV) ≤ 0. Because pl(x) < δ, it follows from (4) that ϕ(1) = f (δ, x) >
f (pl(x), x) = 0. There exists t̃ ∈ [0, 1) such that f (δ, w(t̃)) = 0. Thus, w(t̃) ∈ V ∩ Dl and
pl(w(t̃)) = δ = min(κ, µj) which conflicts with the assumption.
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To summarise, we have

λj = inf
V∈Hj ,V∩Dl 6=φ

sup
x∈V∩Dl

pl(v) ∈ Jl , and min
(
κ, µj

)
≤ λj ≤ max

(
κ, µj

)
,

which completes the proof.

Actually, eigenvalue µj of the REP (1) and (2) is the function with respect to κ, which
implies that µj = µj(κ). The following theorem will elaborate the continuity of the function
µj(κ).

Theorem 2. Assume that H1–H3 hold, then µj(κ) is a continuous decreasing function with respect
to κ.

Proof. Let P̃(λ, κ)
∆
= P̃(λ). For any ε > 0, there exists δ > 0 such that

∥∥P̃(λ, κ1)− P̃(λ, κ2)
∥∥ ≤ N

∑
i=1

∣∣∣∣ si(κ1)

qi(κ1)
− si(κ2)

qi(κ2)

∣∣∣∣‖Bi‖ = |κ1 − κ2|
N

∑
i=1

∣∣∣∣ g(κ1, κ2)

qi(κ1)qi(κ2)

∣∣∣∣‖Bi‖ < ε

when |κ1 − κ2| < δ with δ = δ(ε) > 0 small enough. Because the eigenvalue is a continuous
function with respect to the elements of its matrix [26], we have that µj(κ) is a continuous
function with respect to κ.

It follows from (8) that Rκ(x) is the root of the following polynomial equation

λd + ad−1λd−1 + · · ·+ a1λ + a0 = 0,

where ai = 〈Aix, x〉 > 0 with i = 1, 2, . . . , d− 1 and a0 = 〈A0x, x〉+
N
∑

i=1

si(κ)

qi(κ)
〈Bix, x〉. With

fixed x, ai remains unchanged where i = 1, 2, . . . , d− 1. Moreover, from the assumption
(H3), we know that a0 is an increasing function of κ. Then we can easily prove that Rκ(x) is
a decreasing function of κ. Finally, through the minmax principle (6), we can conclude that
µj(κ) is a continuous decreasing function of κ, which completes the proof.

Theorems 1 and 2 show that if the REP (1) and (2) have an eigenvalue λj ∈ Jl , there
must be such a value κ and one eigenvalue µj of the PEP (7) in the interval Jl . Conversely,
if the REP (1) and (2) have no eigenvalues in the interval Jl , the PEP (7) will not have
any eigenvalues in this interval even if the values κ in the interval Jl are taken all over.
Therefore, there exists a one-to-many relationship between λj and µj.

On the other hand, suppose that there exists κ0 ∈ Jl , then the PEP (7) has two unequal
eigenvalues µj(κ0) 6= µ̃j(κ0) ∈ Jl . If λj and λ̃j are fixed points of µj(κ0) and µ̃j(κ0),
respectively, we have λj 6= λ̃j. In fact, because the eigenvalue is a continuous function with
respect to the elements of its matrix, the multiplicity of the original eigenvalue will not
change with the change of κ. That is, µj(κ) 6= µ̃j(κ) holds. Note that if κ = λj, we have
λj 6= λ̃j. Therefore, there is one-to-one correlation between λj and µj.

To summarise, we can obtain the following theorems.

Theorem 3. There is a one-to-one relationship between the eigenvalue λj of the REP (1) and (2)
and the eigenvalue µj of the PEP (7) in Jl with l = 1, 2, . . . , L + 1.

Theorem 4. Assume that σl−1 < κ1 < κ2 < σl . Let N(κ) = max{n : µn(κ) ≤ κ}, then there
are exactly N(κ2)− N(κ1) eigenvalues in the semi-interval (κ1, κ2].

4. Numerical Methods for Solving the REPs

In this section, based on the above spectral distribution of the REP we discuss the nu-
merical methods for solving the REP (1) and (2). Given a κ ∈ Jl , we can find an eigenvalue
µ of the PEP (7). Here, how to select the next new value κ is the key to propose the novel
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numerical algorithms. Because µ(κ) is a continuous decreasing function of κ and λ is a fixed
point of µ(κ), we can choose the newest κ by a certain fixed-point algorithm. For simplicity,
we first consider to choose κ via dichotomy as follows:

κ :=
κ + µ

2
. (9)

Therefore, we derive the following numerical method (Algorithm 1) for solving
the REP (1) and (2).

Algorithm 1: Dichotomy iteration method for the REP (1) and (2)

Input: rational matrix function R(λ), the target point σ ∈ Jl and the tolerance τ.
Output: the approximate eigenvalue λ ∈ Jl closest to σ.
1. Set κ = σ ∈ Jl ;
2. Construct the polynomial eigenvalue problem (7);
3. Solve the PEP (7) to get eigenpair (µ, x) where µ is closest to σ. If no such µ is

present, then stop; otherwise;

4. Compute rn = ‖R(µ)x‖
/(

d
∑

i=0
|µ|i‖Ai‖F +

N
∑

i=1

∣∣∣∣ si(µ)

qi(µ)

∣∣∣∣‖Bi‖F

)
. If rn < τ, then

stop, and output λ = µ; otherwise;
5. Update κ by using (9) and go to step 2.

Remark 2. In actual computation, for the small-scale PEP (7) the classical approach is to turn
it into a generalized eigenvalue problem (GEP) via linearization, or solve it directly by the in-built
function of Matlab. For the large-scale ones, we can adopt the partially orthogonal projection
method [27] to solve it.

Remark 3. Assume that x is an eigenvector of µ for the PEP (7). If λ = µ, x is also the eigenvector
corresponding to λ of the REP (1) and (2). Therefore, we can use the Rayleigh functional to accelerate
κ as follows:

κ := pl(x). (10)

Thus another numerical method (Algorithm 2) for solving the REP (1) and (2) can be
summarized as follows.

Algorithm 2: Rayleigh functional iteration method for the REP (1) and (2)

Input: rational matrix function R(λ), the target point σ ∈ Jl and the tolerance τ.
Output: the approximate eigenvalue λ ∈ Jl closest to σ.
1. Set κ = σ ∈ Jl ;
2. Construct the polynomial eigenvalue problem (7);
3. Solve the PEP (7) to get eigenpair (µ, x) where µ is closest to σ. If no such µ is

present, then stop; otherwise;

4. Compute rn = ‖R(µ)x‖
/(

d
∑

i=0
|µ|i‖Ai‖F +

N
∑

i=1

∣∣∣∣ si(µ)

qi(µ)

∣∣∣∣‖Bi‖F

)
. If rn < tol, then

stop, and output λ = µ; otherwise;
5. Update κ by using (10) and go to step 2.

5. Numerical Results

In this section, we report some numerical examples to show the effectiveness of the pro-
posed Algorithms 1 and 2. All computations are performed under Matlab (version R2019a).
In our examples, λ∗ is an exact eigenvalue of the REP (1) and (2), and λ is an approxi-
mate eigenvalue computed by Algorithm 1 or Algorithm 2. CPU denotes the CPU time
(in seconds) for computing an approximate solution, and Iter denotes the number of
iteration steps. The stopping tolerance for the residual norm is chosen to be τ = 10−12.
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Example 2 ([9]). We consider the following REP:

R(λ)x =

(
λB− A− E− σ

λ− σ
E
)

x = 0, (11)

where A and B are the positive definite tridiagonal matrices defined as

A =
1
h


2 −1

−1
. . . . . .
. . . 2 −1

−1 1

, B =
h
6


4 1

1
. . . . . .
. . . 4 1

1 2


with h =

1
n

and E = eneT
n .

We can easily check that the above eigenvalue problem meets the assumptions H1–H3
in Section 2. Let n = 1000 and σ = 1. Here we are interested in computing all eigenvalues
of the REP (11) in the interval J = (0, 100), and we can divide it into two small intervals
such as J1 = (0, 1) and J2 = (1, 100).

It is easy to verify that λ∗ = 0.45731832, 4.48202582, 24.21875011 and 63.69036457 are
the eigenvalues of the REP (11) in the interval (0, 100) because the corresponding smallest
singular values of R(λ∗) are less than 10−9.

Through Theorem 4, we have that the numbers of eigenvalues of the REP (11) in J1
and J2 are 1, and 3, respectively. The above result is completely consistent with the actual
distribution of eigenvalues for the REP (11).

In the following, we choose different κ in J1 and J2 such as κ = 0.5, 13, 38, 75 and apply
Algorithms 1 and 2 to compute all eigenvalues of the (11) in J1 and J2.

The numerical results for Algorithms 1 and 2 are reported in Table 1, which shows
that the proposed methods are very useful and efficient to solve rational eigenvalue prob-
lems in one interval. Moreover, Algorithm 2 requires less CPU and iteration steps than
Algorithm 1. Moreover, the numerical results remain the same when n and σ take the other
different values.

Table 1. Numerical results of Example 2.

κ = 0.5 Iter λ rn CPU

Algorithm 1 7 0.457318355879899 6.60× 10−13 0.57
Algorithm 2 3 0.457318325580995 1.10× 10−15 0.29

κ = 13

Algorithm 1 21 4.482026373417336 8.36× 10−13 1.69
Algorithm 2 3 4.482025808828371 1.19× 10−13 0.29

κ = 38

Algorithm 1 23 24.218751627286714 6.27× 10−13 1.89
Algorithm 2 2 24.218750015378188 8.46× 10−13 0.18

κ = 75

Algorithm 1 23 63.690365902995510 5.45× 10−13 1.85
Algorithm 2 2 63.690364569627210 1.34× 10−15 0.18

6. Conclusions

In this paper, the spectral distribution of one class of rational eigenvalue problems has
been studied in detail, and two simple iterative methods for solving this kind of rational
eigenvalue problems have been proposed based on the spectral distribution. Numerical ex-
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amples show the efficiency of the new approaches. The spectral properties and distribution
of the general rational eigenvalue problems are remaining for our future work.
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