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Abstract: For solving the large sparse generalized absolute value equations, recently a Newton-
based accelerated over-relaxation (NAOR) method was investigated. In this paper, we widen the
convergence regions for the parameters and establish a new convergence theorem of the NAOR
method when the system matrix is an H+-matrix. Numerical examples demonstrate that the NAOR
method has a better convergence performance when the parameters are taken according to the
proposed convergence theorem.
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1. Introduction

Consider the generalized absolute value equation (GAVE)

Ax− B|x| = b, (1)

where A, B ∈ Rn×n, b ∈ Rn and |x| denotes the component-wise absolute value of
the vector x. When B = I with I denoting the identity matrix, the GAVE becomes the
absolute value equation Ax− |x| = b. The GAVE was introduced by Rohn [1] and further
investigated in [2–4]. Many problems of scientific computing and engineering applications,
such as interval linear equations [5] and linear complementarity problems [6–8] can be
equivalently transformed into the GAVE.

There exist many efficient numerical methods for the GAVE; e.g., see [9–18], and
references therein. Recently, Zhou et al. proposed a Newton-based matrix splitting (NMS)
method by using the matrix technique [19]. Based on the different matrix splittings, the
NMS method provides a general framework of Newton-based matrix splitting methods. As
a special case of the NMS method, the Newton-based accelerated over-relaxation (NAOR)
method is given as follows.

Method 1 (The NAOR method [19]). Let A = M− N be a splitting of the matrix A with

M :=
1
α
(DA − βL), N :=

1
α
((1− α)DA + (α− β)L + αU), α, β ∈ R, (2)

where DA, −L, and −U are the diagonal, the strictly lower-triangular, and the strictly
upper-triangular matrices of A, respectively. Assume that x(0) ∈ Rn is an arbitrary initial
guess. For k = 0, 1, 2, . . . until the iteration sequence {x(k)}∞

k=0 is convergent, comput-
ing x(k+1) by

x(k+1) = x(k) − (M + Ω)−1(Ax(k) − B|x(k)| − b)

= (M + Ω)−1((N + Ω)x(k) + B|x(k)|+ b),

where M + Ω is invertible and Ω is a given matrix.
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For α = β 6= 0, α = β = 1 and α = 1, β = 0, the NAOR method reduces the Newton-
based successive over-relaxation (NSOR) method, the Newton-based Gauss–Seidel (NGS)
method and the Newton-based Jacobi (NJ) method, respectively.

From Theorem 4.5 in [19], one can observe that the associated convergence conditions
have not taken into account the choice of Ω and the upper bounds of α, β are smaller than 2.
However, our numerical tests reveal that better performance of the NAOR method can
be obtained for α, β larger than 2. This motivates us to look for some new convergence
conditions of the NAOR method, which have the following properties:

(i) Based on the choice of Ω, widen the convergence regions for the parameters α and β
such that their optimal values can be included inside;

(ii) With the above new convergence conditions, the NAOR method can obtain better
convergence performance.

The rest of this paper is organized as follows. In Section 2, we introduce some notations,
necessary definitions, and auxiliary results. In Section 3, an improved convergence theorem
for the NAOR method is proved. Two numerical experiments and some concluding remarks
are given in Sections 4 and 5, respectively.

2. Preliminaries

Some notations, definitions, and basic results are given as follows, which can be found
in [20,21].

For two real m × n matrices A = (aij) and B = (bij), we write A ≥ B (A > B) if
aij ≥ bij (aij > bij) for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. A matrix A = (aij) ∈ Rm×n is
said to be nonnegative (positive) if the entries satisfy aij ≥ 0 (aij > 0) for all 1 ≤ i ≤ m
and 1 ≤ j ≤ n. Let |A| = (|aij|) ∈ Rm×n be the absolute of the matrix A, and AT be its
transpose. These notations apply to vectors in Rn as well.

Let A be a square matrix and ρ(A) be its spectral radius. Its comparison matrix
〈A〉 = (〈aij〉) is defined by 〈aij〉 = |aij| if i = j and 〈aij〉 = −|aij| if i 6= j. The matrix A is
called a Z-matrix if all of its off-diagonal entries are non-positive, an M-matrix if it is a
Z-matrix with A−1 ≥ 0, and an H-matrix if its comparison matrix 〈A〉 is an M-matrix. An
H-matrix with positive diagonal entries is called an H+-matrix. If A is an M-matrix and B
is a Z-matrix, then B ≥ A implies that B is an M-matrix.

Lemma 1 ([20]). Let A ∈ Rn×n be an H-matrix, then A is nonsingular and |A−1| ≤ 〈A〉−1.

Lemma 2 ([22]). Let A ∈ Rn×n be a Z-matrix. Then the following statements are equivalent:

(i) A is an M-matrix;
(ii) If the representation A = M− N satisfies that M−1 ≥ 0, N ≥ 0, then ρ(M−1N) < 1.

3. Improved Convergence Theorem

In this section, we will establish a new convergence theorem of the NAOR method.

Theorem 1. Let A, B ∈ Rn×n and A be an H+-matrix with A = DA − L − U satisfying
ρ := ρ(D−1

A (|L|+ |U|+ |B|) < 1, where DA, −L and −U are the diagonal, the strictly lower-
triangular and the strictly upper-triangular matrices of A, respectively. Assume that Ω is a positive
diagonal matrix, then for any initial vector,

(i) the NAOR method is convergent provided that α and β satisfy

0 < α ≤ 1, or α > 1 with Ω ≥ α− 1
α

DA (3)

and

0 ≤ β ≤ α with α 6= 0, or α < β <
(ρ + 1)α

2ρ
, (4)

respectively.
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(ii) The NSOR method is convergent for α satisfying (3);
(iii) Both the NGS method and the NJ method are convergent.

Proof. We only need to verify the validity of (i) since the others are special cases. Let

MΩ := 〈M + Ω〉, NΩ := |N + Ω|+ |B| and AΩ := MΩ − NΩ.

where M and N are given as in (2). From Corollary 4.1 in [19], one only needs to prove

ρ(|(M + Ω)−1| NΩ) < 1, (5)

which is a sufficient convergence condition for the NAOR method.
Firstly, we will prove that the Z-matrix AΩ is an M-matrix. By substituting (2), the

matrices MΩ and NΩ can be rewritten as

MΩ = Ω +
1
α

DA −
β

α
|L|, NΩ =

∣∣Ω +
1− α

α
DA
∣∣+ |α− β|

α
|L|+ |U|+ |B|. (6)

A simple computation gives that AΩ = M̃ − Ñ with

M̃ = Ω +
1
α

DA −
∣∣Ω +

1− α

α
DA
∣∣, Ñ =

β + |α− β|
α

|L|+ |U|+ |B|.

From (3), it follows that M̃ = DA. Obviously, M̃−1 > 0 and Ñ ≥ 0. By Lemma 2, AΩ

is an M-matrix if and only if ρ(M̃−1Ñ ) < 1. For this, we distinguish the following two
cases according to (4).

Case 1: The parameter β satisfies that 0 ≤ β ≤ α with α 6= 0.

For this case, it holds that Ñ = |L|+ |U|+ |B|. Combining (3) and the assumption
ρ < 1, we obtain

ρ(M̃−1Ñ ) = ρ(D−1
A Ñ ) = ρ < 1.

Case 2: The parameter β satisfies that α < β < (ρ+1)α
2ρ .

For this case, it follows that

Ñ =
2β− α

α
|L|+ |U|+ |B| ≤ 2β− α

α
(|L|+ |U|+ |B|).

Applying the monotonicity of the spectral radius of the nonnegative matrix and (3)
gives

ρ(M̃−1Ñ ) = ρ(D−1
A Ñ ) ≤ 2β− α

α
ρ(D−1

A (|L|+ |U|+ |B|)) = 2β− α

α
ρ,

which, together with the assumption β < α(ρ+1)
2ρ , implies that ρ(M̃−1Ñ ) < 1.

From Cases 1–2, we have proved that AΩ is an M-matrix for α and β satisfying (3)
and (4). Together with the fact that MΩ ≥ AΩ, it follows that MΩ is an M-matrix, i.e.,
M + Ω is an H+-matrix. This implies that

M−1
Ω ≥ 0 and |(M + Ω)−1| ≤ 〈M + Ω〉−1 = M−1

Ω , (7)

where the second inequality of (7) follows from Lemma 1. Note that M−1
Ω ≥ 0 and

NΩ ≥ 0. From Lemma 2, we immediately obtain that ρ(M−1
Ω NΩ) < 1. Moreover, the

second inequality of (7) gives

ρ(|(M + Ω)−1| NΩ) ≤ ρ(M−1
Ω NΩ),

from which the convergence condition (5) holds. This proof is completed.
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Remark 1. Comparing Theorem 1 with Theorem 4.5 in [19], we give the following remarks.

(i) In the proofs of the above two theorems, the key is to prove that AΩ is an M-matrix. In
Theorem 4.5 in [19], AΩ is defined as AΩ = MΩ − N̂Ω, where MΩ is given by (6) and

N̂Ω = Ω +
|1− α|

α
DA +

|α− β|
α
|L|+ |U|+ |B|. (8)

Obviously, AΩ is independent of Ω. From (8) and (6), it holds that N̂Ω ≥ NΩ. Different
from [19], we set AΩ = MΩ − NΩ, which depends on Ω. It is easy to show that MΩ − NΩ
is an M-matrix if MΩ − N̂Ω is an M-matrix, but not vice versa. This implies Theorem 1 may
weaken the convergence conditions of the NAOR method.

(ii) In Theorem 4.5 of [19], the convergence conditions on the parameters can be rewritten as

0 < β ≤ α <
2

1 + ρ
or α < β < min

{
(ρ + 1)α

2ρ
,

2− (1− ρ)α

2ρ

}
. (9)

Comparing (9) with (3), (4), we see easily that Theorem 1 gives a wider convergence region for
α and β than Theorem 4.5 in [19]. Thus, the NAOR method may have better performance by
choosing the appropriate values of α and β according to (3) and (4). This means that Theorem 1
improves Theorem 4.5 in [19].

4. Numerical Results

In this section, we use the first two examples in [19] to examine the effectiveness of
Theorem 1 for the NSOR method from three aspects: the number of iteration steps (denoted
by ‘IT’), the elapsed CPU time in seconds (denoted by ‘CPU’), and the norm of the relative
residual vectors (denoted by ‘RES’). Here, ‘RES’ is defined as

RES = ‖Ax(k) − B|x(k)| − b‖2/‖b‖2,

where x(k) is the k-th approximate solution to the GAVE. All numerical experiments were
performed in a MATLAB environment with double machine precision. In our tests, all
initial vectors were chosen as

x(0) = (1, 0, 1, 0, . . . , 1, 0, . . . )T ∈ Rn

and all iterations were terminated once RES < 10−6.

Next, we tested two special linear complementarity problems (LCP), i.e., Examples 1
and 2 in [19], which was also given in [23,24]. As an important application of the GAVE,
the LCP(q,M) is to find the vector z, such that

Mz + q ≥ 0, z ≥ 0 and zT(Mz + q) = 0,

withM ∈ Rn×n, q ∈ Rn. Set

A =M+ I, B =M− I and x =
1
2
(M− I)z + q, (10)

the LCP(q,M) is equivalently transformed into the GAVE.
For simplicity, we use notations Tridiag(·) and tridiag(·) to denote the associated

block-tridiagonal and tridiagonal matrices, respectively.

Example 1 (Zhou et al. [19], Example 1). Let m be a positive integer and n = m2. Consider the
LCP(q,M) withM = M̂+ µI and q = −Mz∗ ∈ Rn, where

M̂ = Tridiag(−I, S,−I) ∈ Rn×n, S = tridiag(−1, 4,−1) ∈ Rm×m
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and z∗ = (1.2, 1.2, . . . , 1.2, . . . )T ∈ Rn is the unique solution of the LCP(q,M).

Example 2 (Zhou et al. [19], Example 2). Let m be a positive integer and n = m2. Consider the
LCP(q,M) withM = M̂+ µI and q = −Mz∗ ∈ Rn, where

M̂ = Tridiag(−1.5I, S,−0.5I) ∈ Rn×n, S = tridiag(−1.5, 4,−0.5) ∈ Rm×m

and z∗ = (1.2, 1.2, . . . , 1.2, . . . )T ∈ Rn is the unique solution of the LCP(q,M).

For Examples 1 and 2 with µ = −1, since both the system matrices are M-matrices,
the associated LCPs have the unique solutions by [7]. Moreover, their equivalent GAVEs (1)
have also the unique solutions by (10).

According to Theorem 1, the NSOR method will converge to the unique solution x∗

for Ω and α satisfying the conditions (3). In the numerical tests, we set Ω = DA, which
naturally satisfies (3). From this case, the NSOR method converges for α > 0.

To further obtain the suitable range of α, the NSOR method is applied for the different
scale problems with the changed α. The test results are demonstrated in Figure 1. From
Figure 1, one can obverse that the iteration steps depend on the values of α but are nearly
independent of the sizes of the test problems. In particular, the iteration steps tend to
stabilize when α > 10 for Example 1 and α > 50 for Example 2. On the other hand, we
observe that the NSOR method can attain its minimum iteration steps with α near to 5 for
Example 1 and 50 for Example 2, respectively. This means that the convergence regions for
α by Theorem 4.5 in [19] are too small to contain its optimal values. Therefore, we will take
α ∈ (0, 5) for Example 1 and (0, 50) for Example 2 in the numerical test, respectively.

Figure 1. The iteration steps of the NSOR method with Ω = DA and the different α: (a–c) for
Example 1 and (d–f) for Example 2 with n = m2.

The numerical results of the NSOR method with different sizes are given in Table 1,
where α̃exp and αexp are obtained experimentally from the different convergence regions
for α by minimizing the associated iteration steps. Based on the above analysis, α̃exp is
chosen in the interval α ∈ (0, 5) for Example 1 and α ∈ (0, 50) for Example 2, respectively.
For comparison, we also list the results in [19], where Ω = M̂ and αexp are taken from the
interval (0, 2).



Symmetry 2022, 14, 1249 6 of 7

Table 1. Numerical results of the NSOR method for Examples 1 and 2 with µ = −1.

n 3600 4900 6400 8100 10,000

Example 1

Ω = M̂

αexp 1.33 1.33 1.32 1.31 1.3
IT 54 53 53 53 53
CPU 0.1550 0.1654 0.2136 0.2569 0.3517
RES 8.60× 10−7 9.65× 10−7 9.27× 10−7 8.92× 10−7 8.57× 10−7

Ω = DA

α̃exp 4.02 4.82 4.60 4.46 4.34
IT 29 28 28 28 28
CPU 0.0124 0.0167 0.0218 0.0284 0.0367
RES 9.99× 10−7 9.99× 10−7 9.99× 10−7 9.96× 10−7 9.99× 10−7

Example 2

Ω = M̂

αexp 1.1 1.08 1.08 1.08 1.08
IT 97 98 96 95 95
CPU 0.2030 0.3616 0.5189 0.5863 0.7690
RES 9.67× 10−7 9.14× 10−7 9.88× 10−7 8.81× 10−7 9.01× 10−7

Ω = DA

α̃exp 43.42 39.96 38.23 39.60 41.50
IT 74 73 72 71 70
CPU 0.0314 0.0445 0.0589 0.0779 0.0968
RES 1.00× 10−6 1.00× 10−6 1.00× 10−6 1.00× 10−6 1.00× 10−6

From Figure 1 and Table 1, we have the following observations and remarks:

(1) In terms of both the CPU times and the iteration steps, the NSOR method with Ω = DA
and α̃exp is always superior to the one with Ω = M̂ and αexp. This means that the
proposed convergence theorem improves Theorem 4.5 in [19] by taking the suitable
values of α in a wider convergence region. In particular, the former has much less CPU
time than the latter since the matrix Ω is taken as DA instead of tridiagonal matrix M̂
in [19].

(2) The iteration steps are nearly independent of the scale of the test problems. Hence, a
strategy of choosing α̃exp or αexp involves testing the small-scale problems and using
them to the larger-scale problems.

5. Concluding Remarks

In this paper, we investigated the new convergence conditions of the NAOR method
for solving the GAVE. By considering the relationship between Ω and the parameter α, we
widened the convergence regions for the two parameters. Numerical results show that the
NAOR method can obtain faster convergence when the appropriate parameters are chosen
according to Theorem 1 instead of Theorem 4.5 in [19].

In numerical tests, the NSOR method can attain the convergence rate nearly indepen-
dent of the scale of problems. However, it is difficult to prove independence in theory.
Moreover, determining optimal parameters is still a challenging problem. We will further
study these interesting topics in the future.
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