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Abstract: This research is concerned with extracting the approximate solutions of a controlled mass-
damper-spring model via the harmonic balance method. The stability of these solutions was checked
with the aid of Floquet theory. A nonlinear saturation controller (NSC), a linear variable differential
transformer (LVDT) and a servo-controlled linear actuator (SCLA), were applied to suppress the
undesired oscillations of the harmonically-excited car. 2D and 3D graphical plots are included
based upon the equations resulting from the harmonic balance method. Moreover, a numerical
simulation was established using the fourth order Rung–Kutta technique in order to confirm the
overall controlled behavior of the studied model.

Keywords: harmonic balance method; floquet theory; mass-damper-spring model; LOG amplifier;
ANTILOG amplifier; nonlinear saturation controller

1. Introduction

Mass-damper-spring models are considered basic representations for many indus-
trial applications. They usually represent vehicle suspension mechanisms that are very
important to control in order to provide comfort and safety to passengers. They can also
represent the mechanisms of robotic arms to be controlled for specific tasks. They are
often modelled by second-order linear or nonlinear differential equations. With the use
of linear differential equations, the exact solution can be extracted via theorems based on
calculus. However, in cases of nonlinear differential equations the exact solution cannot
be reached, leading researchers to seek approximate solutions. There are several meth-
ods that give the asymptotic approximate solution, with some assumptions in order to
maintain the validity of the method. One important method among these is the harmonic
balance method. Hamdan and Burton [1] investigated the steady-state periodic response
and stability of a softening Duffing oscillator. They showed that the qualitative nature of
the harmonic balance solution could change if two harmonics were used instead of one
in the approximate solution. Hassan [2] determined firstly the approximate solution for
the steady-state periodic response of a nonlinear oscillator, and then the local stability of
the solution by checking the linearization around the predicted solution. Hamdan and
Shabaneh [3] compared approximate solutions achieved by the one-term harmonic balance
method, the two-term harmonic balance method, and the two-term time transformation
method for the large amplitude free vibration of a strongly nonlinear oscillator. Maccari [4]
balanced the harmonic terms in order to analyze the response of a periodically-excited mass
point moving along a parabola. Al-Qaisia and Hamdan [5] studied the local stability and
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response of a harmonically-excited slender cantilever beam that was partially immersed in
a fluid. Dunne [6] utilized a split frequency in the harmonic balance method in order to
analyze the sub-harmonic responses of a periodically-excited oscillator, and included many
solution harmonics to generate high-accuracy periodic solutions. Malatkar and Nayfeh [7]
studied a harmonically-excited combination of a linear sub-system coupled to a nonlinear
oscillator where cyclic-fold, Hopf, symmetry-breaking, and period-doubling bifurcations
were present. Zhang et al. [8] suppressed the resonant vibrations of a nonlinear dynamical
system by applying a transmissibility system with a nonlinear damping element. Car-
rella et al. [9] focused on the transmissibility force of a quasi-zero-stiffness isolator which
consisted of vertical and oblique springs whose stiffness exhibited linear, pre-stress linear, or
pre-stress nonlinear softening. Gatti et al. [10] modelled a single-degree-of-freedom shaker
which drove a nonlinear-hardening dynamical system and analyzed the overall dynamic
behavior of the combination. Nayfeh and Nayfeh [11] examined the dynamics and stability
(local and global) of a cutting tool on a lathe via the methods of multiple sales, harmonic
balance, and Floquet theory. Luo and O’Connor [12] utilized the harmonic balance method
in order to study the stable and unstable periodic motions in the Mathieu–Duffing equation.
Le and Ahn [13] isolated vibrations with a negative stiffness structure for driver seats in a
vehicle with low-frequency vibration conditions. Ji and Zhang [14–17] studied the primary,
super-harmonic, sub-harmonic, and additive resonances of a hardly-excited time-delayed
nonlinear oscillator, using the center manifold and multiple scales methods. They also
found that changing the initial conditions could create bi-stable periodic solutions, and the
primary resonance vibrations could be suppressed by about 88%. Kamel et al. [18,19] ex-
tracted multiple-scale approximate solutions of a nonlinear differential equation governing
the motion of a magnetically-suspended mass controlled by a saturation controller in case
of absent and present time delay. Hao and Cao [20] isolated the vibrations of a nonlinear
oscillator with quasi-zero-stiffness modelled by three springs (two horizontal and one ver-
tical). El-Sayed and Bauomy [21] focused on controlling the vibrational motion of a 2DOF
dynamical system excited by multi-parametric forces via a nonlinear absorber at severe sub-
harmonic and internal resonances. Motallebi et al. [22] used the harmonic balance method
in order to investigate the nonlinear phenomena (jump and bifurcation) of a cantilever beam
with geometric nonlinearity. Perez-Molina et al. [23] studied the actuation of a closed cylin-
der with a mobile piston, using a spring-damper combination which generated a control
force in order to compensate the effect of high pressure nitrogen. Zhou et al. [24] modelled a
periodically-excited quarter-car including a nonlinear damper-spring, where its dynamical
behavior was analyzed via the Newmark and incremental harmonic balance methods.
Kandil and Eissa [25,26] proposed an improved positive position feedback controller, with
a pair of saturation controllers coupled at each peak of the conventional controller. They
investigated the dynamical response in cases of zero-time delay, or significant time delay.
Silveira et al. [27] studied the effect of non-symmetrical damping on the suspension process
of transport vehicles and how this affected passenger comfort. Kandil et al. [28,29] tried to
couple a saturation controller to a rotating blade that operated in a super-sonic gas flow.
They examined the time delay effects on the control process and determined a measure for
the safe ranges of the applied time delays. Zhou et al. [30] utilized the incremental har-
monic balance method for analyzing a vehicle’s dynamic system behavior by quadratic and
cubic nonlinearities. Kandil et al. [31,32] discussed adapting the performance of positive
position feedback and nonlinear saturation controllers by acquiring the rotor speed in an
active magnetic bearings model. Uemori et al. [33] measured stiffness and fluctuations in a
cantilever beam by exploring the shifts in its Eigen frequency and coupling a secondary
resonator to the primary system, i.e., the beam. With 2D and 3D plots, Kandil et al. [34]
analyzed the dynamical behavior of a mass-damper-spring model under the control of a
servo-controlled linear actuator. They adopted the Krylov–Bogoliubov averaging method
in order to extract the amplitude-phase equations of the controlled model.

This current research deals with a controlled mass-damper-spring model, equations
of which were solved via the harmonic balance method. The resulting solutions were
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tested for stability with the aid of Floquet theory. Then, 2D and 3D graphical plots were
included based upon the equations resulted from the harmonic balance method. Moreover,
a numerical simulation was carried out using the fourth order Rung–Kutta technique to
confirm the overall controlled behavior of the studied model.

2. System Modelling and Harmonic Balance Method

A proto-type car of mass m was connected to a stationary surface by a dashpot (of
viscosity d), a nonlinear spring (of stiffness S1&S2), and a control unit as shown in Figure 1.
The car’s motion was excited by a harmonic force fe cos(Ωt). Applying Newton’s second
law of motion (ma = ΣF) can give us the dynamical equation of the car’s displacement u
as follows

m
..
u = −d

.
u− S1u− S2u3 + fe cos(Ωt) + Fc ⇒ m

..
u + d

.
u + S1u + S2u3 = fe cos(Ωt) + Fc (1)

where Fc is a control force generated by the control unit shown in the figure above. The
implementation of this control unit is shown in Figure 2, with the car’s position sensed by
an LVDT (linear variable differential transformer). Its output voltage Vc is proportional
to the car’s displacement u. Then, a signal conditioner is utilized for adjusting a suitable
signal to be provided to the NSC controller whose model equation is known to be:

..
v + µc

.
v + ω2

c v = kcuv (2)

where v is the output control signal, µc is the NSC’s damping factor, ωc is its natural
frequency, and kc is its gain of feedback. The control signal v is computed based on
Equation (2) as shown in Figure 2, then be amplified by k (the control gain) to produce the
control force Fc = kv2. The power amplifier’s role is to supply the SCLA (servo-controlled
linear actuator) with a drive current proportional to Fc. This SCLA can modify the car’s
position in order to mitigate unwanted oscillations. A brief description of both multiplier
(MUL) and squarer (SQR) units is given in Figure 3. As seen in Figure 3a, the MUL unit can
be implemented by inserting both u and v signals into LOG amplifiers whose outputs are
log u and log v, respectively. Through summing point, its output is log u + log v = log uv.
Then, the result is inserted into an ANTILOG amplifier whose output is log−1[log uv] = uv.
In Figure 3b, the SQR unit can be designed by inserting the v signal into a LOG amplifier to
produce log v. The result can be amplified by a gain of 2 to become 2 log v = log v2. Then,
the LOG can be eliminated via an ANTILOG amplifier which generates log−1[log v2] = v2.
The LOG and ANTILOG amplifiers circuits can be designed using operational amplifiers,
resistors and diodes with the help of any industrial electronics textbook.
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Collecting and simplifying Equations (1) and (2) gives

..
u + µ

.
u + ω2u + αu3 = f cos(Ωt) + kv2 (3a)

..
v + µc

.
v + ω2

c v = kcuv (3b)

where µ = d/m, ω2 = S1/m, α = S2/m, f = fe/m, k∗ = k/m, while we have eliminated
the asterisk in k∗ for simplicity. The method of harmonic balance can be adopted for
solving the above system of nonlinear differential equations. Thus, we substitute harmonic
steady-state solutions in a Fourier series form [35,36]:

u = u0 =
∞

∑
n=1

[An cos(nΩt) + Bn sin(nΩt)] ∼= A1 cos(Ωt) + B1 sin(Ωt) (4a)

v = v0 =
∞

∑
n=1

[
Pn cos

(
nΩt

2

)
+ Qn sin

(
nΩt

2

)]
∼= P1 cos

(
Ωt
2

)
+ Q1 sin

(
Ωt
2

)
(4b)

into Equation (3) and obtain[(
ω2 −Ω2

)
A1 +

3α
4
(

A3
1 + A1B2

1
)
+ µΩB1

]
cos(Ωt) +

[(
ω2 −Ω2

)
B1 +

3α
4
(

B3
1 + A2

1B1
)
− µΩA1

]
sin(Ωt)

= k
2
(

P2
1 + Q2

1
)
+
[

f + k
2
(

P2
1 −Q2

1
)]

cos(Ωt) + kP1Q1 sin(Ωt) + HOH
(5a)

[(
ω2

c − Ω2

4

)
P1 +

µcΩ
2 Q1

]
cos
(

Ωt
2

)
+
[(

ω2
c − Ω2

4

)
Q1 − µcΩ

2 P1

]
sin
(

Ωt
2

)
=
[

kc
2 (A1P1 + B1Q1)

]
cos
(

Ωt
2

)
+
[

kc
2 (B1P1 − A1Q1)

]
sin
(

Ωt
2

)
+ HOH

(5b)

where the HOH stands for the higher-order harmonics that are not necessary in this analysis.
We require the first-order harmonic, in order to obtain the first-order approximate solution
which is sufficient for analyzing the system dynamics. In future work, we can deal with



Symmetry 2022, 14, 1247 5 of 18

higher-order harmonics to get higher-order approximate solutions. Express A1, B1, P1, and
Q1 in the polar form as follows:

A1 + iB1 = aeiθ = a(cos θ + i sin θ) (6a)

P1 + iQ1 = beiφ = b(cos φ + i sin φ) (6b)

where {a, b} and {θ, φ} are the amplitudes and phases of the mass and the controller,
respectively. Substituting Equation (6) into Equation (5), then equalizing the coefficients of
cos(Ωt), sin(Ωt), cos

(
Ωt
2

)
, sin

(
Ωt
2

)
on both sides of Equation (5) can lead to the following:

(
ω2 −Ω2

)
a cos θ +

3α

4
a3 cos θ + µΩa sin θ − k

2
b2 cos(2φ)− f = 0 (7a)

(
ω2 −Ω2

)
a sin θ +

3α

4
a3 sin θ − µΩa cos θ − k

2
b2 sin(2φ) = 0 (7b)(

ω2
c −

Ω2

4

)
b cos φ +

µcΩ
2

b sin φ− kc

2
ab cos(θ − φ) = 0 (7c)

(
ω2

c −
Ω2

4

)
b sin φ− µcΩ

2
b cos φ− kc

2
ab sin(θ − φ) = 0 (7d)

Manipulating Equation (7) algebraically and simplifying:

µΩa− k
2

b2 sin(θ − 2φ)− f sin θ = 0 (8a)

(
ω2 −Ω2

)
a +

3α

4
a3 − k

2
b2 cos(θ − 2φ)− f cos θ = 0 (8b)

µcΩ
2

b +
kc

2
ab sin(θ − 2φ) = 0 (8c)(

ω2
c −

Ω2

4

)
b− kc

2
ab cos(θ − 2φ) = 0 (8d)

In case the controller is active such that b 6= 0, Equation (8c,d) can be solved to give us
the steady-state amplitude a of the mass in terms of the frequency Ω

a =
1
kc

√√√√µ2
c Ω2 + 4

(
ω2

c −
Ω2

4

)2

= ψ (9)

where ψ is a function of Ω. Eliminating sin(θ − 2φ) from Equation (8a,c) and the same for
cos(θ − 2φ) from Equation (8b,d) leads to the following:

µΩa2 +
kµcΩ
2kc

b2 = f a sin θ (10a)

(
ω2 −Ω2

)
a2 +

3α

4
a4 − k

kc

(
ω2

c −
Ω2

4

)
b2 = f a cos θ (10b)

To get rid of θ, Equation (10) can be solved simultaneously which gives us a quartic
equation in b:

δ1b4 + δ2b2 + δ3 = 0 (11)
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where
δ1 = k2

4 ψ2

δ2 = k
kc

[
µcµΩ2ψ2 − 2

(
ω2

c − Ω2

4

)((
ω2 −Ω2

)
ψ2 + 3α

4 ψ4
)]

δ3 = µ2Ω2ψ4 +
[(

ω2 −Ω2
)

ψ2 + 3α
4 ψ4

]2
− f 2ψ2

Equation (11) can be solved as a quadratic equation in b2 using the discriminant, and
then the square root should be applied with a positive sign for gaining the real positive
controller amplitude b as

b =

√√√√−δ2 ±
√

δ2
2 − 4δ1δ3

2δ1
(12)

Once the steady-state amplitudes (a and b) are calculated, their local stability are
usually investigated by superposing small perturbations on both u and v steady-state
solutions as

u = u0 + u1 (13a)

v = v0 + v1 (13b)

Substituting Equation (13) into Equation (3), with the fact that u0 and v0 satisfy
Equation (3), and linearizing the resulting equation in u1 and v1, we can get

..
u1 + µ

.
u1 + ω2u1 + 3αu2

0u1 = 2kv0v1 (14a)

..
v1 + µc

.
v1 + ω2

c v1 = kc[u0v1 + v0u1] (14b)

which is a system of equations with variable coefficients whose stability corresponds to
the stability of the steady-state solutions u0 = a cos(Ωt− θ) and v0 = b cos

(
Ωt
2 − φ

)
.

Depending on Floquet theory [7,37], Equation (14) has solutions in the form

u1(t) = eγtρ1(t) (15a)

v1(t) = eγtρ2(t) (15b)

where γ is the Floquet characteristic exponent, ρ1 and ρ2 are periodic functions whose periods
are T1 = 2π/Ω and T2 = 4π/Ω, respectively. Inserting Equation (15) into Equation (14) yields

..
ρ1 + (2γ + µ)

.
ρ1 +

(
γ2 + µγ + ω2 + 3αu2

0

)
ρ1 = 2kv0ρ2 (16a)

..
ρ2 + (2γ + µc)

.
ρ2 +

(
γ2 + µcγ + ω2

c

)
ρ2 = kc[u0ρ2 + v0ρ1] (16b)

Equation (16) can be solved by expanding ρi(t) into a Fourier series form like the way
done in Equation (4). Thus, we suppose

ρ1 =
∞

∑
n=1

[Gn cos(nΩt) + Hn sin(nΩt)] ∼= G1 cos(Ωt) + H1 sin(Ωt) (17a)

ρ2 =
∞

∑
n=1

[
Mn cos

(
nΩt

2

)
+ Nn sin

(
nΩt

2

)]
∼= M1 cos

(
Ωt
2

)
+ N1 sin

(
Ωt
2

)
(17b)

Substituting Equation (17) into Equation (16), and then comparing the coefficients of
cos(Ωt), sin(Ωt), cos

(
Ωt
2

)
, sin

(
Ωt
2

)
on both sides can give us the following matrix equation:


D11 D12 D13 D14
D21 D22 D23 D24
D31 D32 D33 D34
D41 D42 D43 D44




G1
H1
M1
N1

 =


0
0
0
0

 (18)
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where

D11 = γ2 + ω2 −Ω2 + γµ + 3α
4 a2[cos(2θ) + 2] D12 = 2γΩ + µΩ + 3α

4 a2 sin(2θ)

D13 = −kb cos φ D14 = kb sin φ

D21 = −D12 +
3α
2 a2 sin(2θ) D22 = D11 − 3α

2 a2 cos(2θ)

D23 = −D14 D24 = D13

D31 = − kc
2 b cos φ D32 = − kc

2 b sin φ

D33 = γ2 + ω2
c − Ω2

4 + γµc − kc
2 a cos θ D34 = γΩ + µcΩ

2 −
kc
2 a sin θ

D41 = −D32 D42 = D31

D43 = −D34 − kca sin θ D44 = D33 + kca cos θ

To obtain a characteristic equation governing γ, we can set the coefficient matrix
determinant of Equation (18) equal to zero. If all γ lie in the left half of Argand diagram,
then the periodic solutions u0 and v0 will be asymptotically stable. Otherwise, they will
be unstable.

3. Results and Discussion

Graphical plots (2D and 3D) are included here based upon the equations resulting from
the harmonic balance method. The 2D plots contain either heavy-colored branches which
refer to stable solutions, or light-colored branches which refer to unstable ones. This is the
result of Floquet theory analysis. The 3D plots contain surfaces giving a generalized aspect
of the 2D plots. The surface top is denoted by a dark red color, while its bottom is denoted
by a dark blue color. The physical constants of the mass-damper-spring model were
selected as: m = 10 kg, d = 0.2 Nm−1s, S1 = 100 Nm−1, S2 = 8 Nm−3, fe = 0.6 N, and
Ω ∈ [3, 3.4] rad/s. For the control unit, the adopted constants were: k = kc = 1 m−1s−2,
µc = 0.001 s−1, and ωc ∈ [1.525, 1.625] rad/s, unless otherwise stated. Figure 4a shows the
car’s vibration amplitude a in response to the excitation frequency Ω at multiple excitation
forces f with the controller deactivated. It can be seen that the right-bending on the curve
increases with f which makes the nonlinearity effect appear due to the spring’s hardening
phenomenon. Also, the jump phenomenon can be observed, for example, at f = 0.08. In
this case, the car’s amplitude a increased and followed the black branch when increasing
Ω to Ω ∼= 3.3 where it was at its highest state. Then, it jumped down to a lower state and
continued following the black branch. On the same branch when sweeping Ω down, the
amplitude a increased and followed the branch until Ω ∼= 3.21 where it jumped to a higher
state and continued following the branch when sweeping Ω down. The two positions,
where the amplitude a jumped from HIGH to LOW and from LOW to HIGH, are referred to
as saddle-node bifurcation points. These points can exist if a real Floquet exponent γ passes
from the left half to the right half of the Argand diagram. The light-colored path located
between these two bifurcation points refers to an unstable solutions branch. Moving from
Figure 4a to Figure 4b, one can see the car’s amplitude a as a function of both Ω and f
portrayed in the shape of a 3D surface, to give the reader a wider view of the curves plotted
in Figure 4a.

Figure 5 shows how the car’s vibration amplitude a responded to the excitation
frequency Ω at different damping factors µ while the controller was deactivated. The figure
tells us that µ could suppress the maximum amplitude as shown, in addition to eliminating
the existence of saddle-node points and so the jump phenomena. Furthermore in Figure 6,
the amplitude a responds to the excitation frequency Ω at multiple cubic stiffness factors
α with controller OFF. The amplitude was exposed to a right-bending case (hardening
phenomenon) at α = +0.8, a left-bending case (softening phenomenon) at α = −0.8, and a
linear case at α = 0 when cubic stiffness was absent.
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In Figure 7, the car’s vibration amplitude a is plotted as a function of the excitation
force amplitude f at multiple excitation frequencies Ω before activating the controller. As
Ω swept up, there was a curve transformation from linear to nonlinear as shown. The jump
phenomena can be seen more markedly at greater values of Ω where the amplitudes grew
faster for a slight increase in f . It can also be noted in Figure 8, where the amplitude is
plotted as a function of the excitation force amplitude f at multiple damping factors µ. This
damping factor µ was able to tighten the range of the jump phenomena by damping the
response of the system and converting its behavior from under-damped to over-damped.
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From Figure 9 onwards, the effects on the studied model of the control unit (when NSC
was set to ON) will be investigated. Figure 9 clarifies how the car’s vibration amplitude a
and the controller’s amplitude b responded to the excitation frequency Ω at various control
gains k when NSC was activated. The control and feedback gain equality k = kc was
maintained. It can be noticed from Figure 9a that the amplitude a took a new V-shaped
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path and departed from the previous path. The gain k could control the intersection band
between the V-curve and the old curve, where the larger the value of k, the wider the V-
curve becomes. This can contribute to the controllability of jobs in order to avoid reaching
higher amplitude values and experience lower values instead. As can also be seen, the
apex of the V-curve was at the point Ω = ω = 2ωc ∼= 3.16 (from Equation (9)) at which the
system was designed to operate. Figure 9b shows the corresponding controller’s amplitude
b as a function of Ω. The variability of k is clearly visible, extending the controller’s
frequency band in order to flatten the V-curve as discussed in Figure 9a. Figure 9c,d extends
the visualization with 3D plots of those plotted in Figure 9a,b, to give the reader an overall
view of the discussed relationship.
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Figure 9. (a,c) The car’s vibration amplitude a, and (b,d) the controller’s amplitude b responded to
the excitation frequency Ω at control gains k = {0.25, 0.50, 1.00, 1.50} when NSC was ON.

Figure 10 presents the car’s vibration amplitude a and the controller’s amplitude b
as functions of the excitation frequency Ω at variant controller damping factors µc with
NSC activated. It can be seen from the figure that increasing the parameter µc raised the
V-curve’s apex which gives us a clue about maintaining at lower value of µc to keep the
amplitude a at its minimum state.
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Figure 10. (a,c) The car’s vibration amplitude a, and (b,d) the controller’s amplitude b responded to the
excitation frequency Ω at controller damping factors µc = {0.001, 0.01, 0.02, 0.04} when NSC was ON.

Based on Equation (9), the car’s amplitude a is independent of the excitation force
amplitude f . This is the main advantage of this NSC controller where the amplitude a
saturates at a specific level even if f changes on the other side. This is clear in Figure 11
which shows the car amplitude’s V-curve unchanged by changing f , but that the controller’s
amplitude was somehow dependent on f .

Previously, we discussed whether the car could stay at the apex of V-curve in order
to achieve smaller vibration amplitudes. This was fulfilled when Ω = 2ωc as derived in
Equation (9). To prove the validity of this idea, Figure 12 introduces the responses of the
car’s vibration amplitude a and the controller’s amplitude b to the excitation frequency Ω
at multiple controller natural frequencies ωc. The reader can view the figure to observe
three different cases, Ω = 2ωc = 3.05, Ω = 2ωc = 3.16, and Ω = 2ωc = 3.25, showing
the minimum amplitude a amongst all values of Ω. This is the key to keeping the car’s
amplitude a at its lowest level, only on one condition which is Ω = 2ωc. This can be
considered an adaptation to the change of Ω for the robust controller applied in this work.



Symmetry 2022, 14, 1247 12 of 18

Symmetry 2022, 14, x FOR PEER REVIEW 12 of 19 
 

 

  
(c) (d) 

Figure 10. (a,c) The car’s vibration amplitude 𝑎, and (b,d) the controller’s amplitude 𝑏 responded 
to the excitation frequency Ω at controller damping factors 𝜇 ={0.001, 0.01, 0.02, 0.04} when 
NSC was ON. 

Based on Equation (9), the car’s amplitude 𝑎 is independent of the excitation force 
amplitude 𝑓. This is the main advantage of this NSC controller where the amplitude 𝑎 
saturates at a specific level even if 𝑓 changes on the other side. This is clear in Figure 11 
which shows the car amplitude’s V-curve unchanged by changing 𝑓, but that the control-
ler’s amplitude was somehow dependent on 𝑓. 

  

(a) (b) 

Symmetry 2022, 14, x FOR PEER REVIEW 13 of 19 
 

 

  
(c) (d) 

Figure 11. (a,c) The car’s vibration amplitude 𝑎, and (b,d) the controller’s amplitude 𝑏 responded 
to the excitation frequency Ω at excitation forces 𝑓 ={0.02, 0.04, 0.06, 0.08} when NSC was ON. 

Previously, we discussed whether the car could stay at the apex of V-curve in order 
to achieve smaller vibration amplitudes. This was fulfilled when Ω = 2𝜔  as derived in 
Equation (9). To prove the validity of this idea, Figure 12 introduces the responses of the 
car’s vibration amplitude 𝑎 and the controller’s amplitude 𝑏 to the excitation frequency 
Ω at multiple controller natural frequencies 𝜔 . The reader can view the figure to observe 
three different cases, Ω = 2𝜔 = 3.05, Ω = 2𝜔 = 3.16, and Ω = 2𝜔 = 3.25, showing the 
minimum amplitude 𝑎 amongst all values of Ω. This is the key to keeping the car’s am-
plitude 𝑎 at its lowest level, only on one condition which is Ω = 2𝜔 . This can be consid-
ered an adaptation to the change of Ω for the robust controller applied in this work. 

  

(a) (b) 

Figure 11. (a,c) The car’s vibration amplitude a, and (b,d) the controller’s amplitude b responded to
the excitation frequency Ω at excitation forces f = {0.02, 0.04, 0.06, 0.08} when NSC was ON.

Symmetry 2022, 14, x FOR PEER REVIEW 13 of 19 
 

 

  
(c) (d) 

Figure 11. (a,c) The car’s vibration amplitude 𝑎, and (b,d) the controller’s amplitude 𝑏 responded 
to the excitation frequency Ω at excitation forces 𝑓 ={0.02, 0.04, 0.06, 0.08} when NSC was ON. 

Previously, we discussed whether the car could stay at the apex of V-curve in order 
to achieve smaller vibration amplitudes. This was fulfilled when Ω = 2𝜔  as derived in 
Equation (9). To prove the validity of this idea, Figure 12 introduces the responses of the 
car’s vibration amplitude 𝑎 and the controller’s amplitude 𝑏 to the excitation frequency 
Ω at multiple controller natural frequencies 𝜔 . The reader can view the figure to observe 
three different cases, Ω = 2𝜔 = 3.05, Ω = 2𝜔 = 3.16, and Ω = 2𝜔 = 3.25, showing the 
minimum amplitude 𝑎 amongst all values of Ω. This is the key to keeping the car’s am-
plitude 𝑎 at its lowest level, only on one condition which is Ω = 2𝜔 . This can be consid-
ered an adaptation to the change of Ω for the robust controller applied in this work. 
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Figure 12. (a,c) The car’s vibration amplitude a, and (b,d) the controller’s amplitude b responded to
the excitation frequency Ω at controller natural frequencies ωc = {1.5250, 1.5811, 1.6250} when NSC
was ON.

Figure 13 confirms the saturation phenomenon of the car’s vibration of any changing
in the excitation f , showing the car’s vibration amplitude a and the controller’s amplitude b
dependent on the excitation force amplitude f at various excitation frequencies Ω with NSC
turned ON. It is clear that the amplitude a saturated at almost zero level when Ω = 2ωc.
In case of mistuning such that Ω 6= 2ωc, the amplitude a increases slightly with f until a
specific value of Ω, at which the amplitude a saturates independently of f . Meanwhile, the
controller amplitude b varies with f in order to absorb all the energy from the car, keeping
it saturated at a specific level as shown.

Figures 14–16 continue the analysis based on another mathematical basis. They
portray the numerical simulations of the studied model without and with control. These
simulations were built by the fourth order Rung–Kutta numerical technique in order to
predict the steady-state time response of this model. Furthermore, the effect of changing
Ω was included in this analysis to give a direct relation of the amplitudes with both time
and frequency, as will be shown. Figure 14 presents a 3D plot of the steady-state time-
frequency response for the car’s vibration peaks up(t) and the controller’s vibration peaks
vp(t) in both cases of NSC being OFF or ON. The adopted time range is the last 100 peaks
of the simulation time, while the adopted range of frequency is the same as discussed
previously, i.e., Ω ∈ [3, 3.4]. Before activating the NSC in Figure 14a, the jump phenomena
can be seen on the surface when sweeping Ω up or down. After activating the NSC in
Figure 14b,c, the jump phenomena were eliminated and reached minimum vibration level
at Ω ∼= 3.16 = 2ωc. Figure 15 clarifies the jump phenomena discussed in Figure 14a (before
applying NSC) via the 2D time response of the car’s vibration peaks up(t). When sweeping
Ω up, the car’s vibratory state jumped from HIGH at Ω = 3.230 to LOW at Ω = 3.235, as
in Figure 15a. When sweeping Ω down, the jump can be observed from the LOW level at
Ω = 3.215 to HIGH at Ω = 3.210 in Figure 15b. Furthermore, Figure 16 clarifies the 2D
time response for the car’s vibration peaks up(t) and the controller’s vibration peaks vp(t)
to compare the responses before and after applying the NSC. The difference is clear, as the
reader can notice that the car’s controlled vibrations were suppressed by about 96% from
its uncontrolled vibrations.
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Figure 14. Steady-state 3D simulations of the time-frequency response for the car’s vibration peaks
up(t) and the controller’s vibration peaks vp(t) when: (a) NSC was OFF, (b,c) NSC was ON.
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Figure 16. Simulations of the time response for: (a) the car’s vibration peaks up(t), and (b) the controller’s
vibration peaks vp(t) with NSC turned OFF (red) or ON (blue) at f = 0.06 and Ω = ω = 3.1623.

4. Conclusions

This work dealt with a controlled mass-damper-spring model whose equations were
solved via the harmonic balance method. The resulting solutions were tested for stability with
the aid of Floquet theory. Then, 2D and 3D graphical plots were included based upon the
equations resulted from the harmonic balance method. Moreover, a numerical simulation was
carried out using fourth order Rung–Kutta technique in order to confirm the overall controlled
behavior of the studied model. The whole work can be summarized in the following points:

A. When the controller was OFF:

1. The right-bending of the car’s vibration amplitude curve increased with the
excitation force amplitude, which made the nonlinearity effect appear due to the
spring’s hardening phenomenon.

2. The jump phenomena displayed high to low states, and vice versa.
3. The damping parameter could suppress the maximum amplitude, in addition to elim-

inating the existence of saddle-node points and therefore also the jump phenomena.
4. The amplitude curve was exposed to a right-bending case (hardening phe-

nomenon), a left-bending case (softening phenomenon), or a linear case depend-
ing on the sign of the cubic nonlinearity parameter.
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5. The excitation force amplitude and the damping factor could play an important
role in tightening the range of the jump phenomena on the amplitude curve.

B. When the controller was ON:

1. The car’s amplitude took a new V-shaped path, departing from the previous
path of higher values.

2. The control and feedback gains could control the intersection band between the
V-curve and the previous curve, where the bigger the gains were, the wider the
V-curve became.

3. The apex of the V-curve was at the point Ω = ω = 2ωc at which the system was
designed to run.

4. Keeping the controller’s damping parameter at lower values took the car’s
amplitude to its minimum level.

5. The car’s amplitude was saturated at a specific level, keeping the V-curve un-
changed even if the excitation force changed.

6. The key to keeping the car’s amplitude at almost zero was to guarantee that
Ω = 2ωc even if the excitation frequency changed.

7. In case of mistuning such that Ω 6= 2ωc, the car’s amplitude could increase
slightly with f until a specific value of Ω at which the amplitude could saturate
independently of f .

8. The car’s vibrations were suppressed by about 96% according to the numerical
simulations of the studied model.
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Nomenclature

Symbol Definition
u(t) Displacement of the car as a function of time
m Mass of the car
d Viscosity parameter of the dashpot
S1&S2 Linear and cubic stiffness parameters of the spring
fe Amplitude of the external excitation force
Ω Angular frequency of the external excitation
v(t) The control signal as a function of time
µc Damping parameter of the controller
ωc Angular natural frequency of the controller
k&kc Gains of the control signal and the feedback signal
a&b Approximate amplitudes of u(t) and v(t)
θ&φ Approximate phases of u(t) and v(t)
γ Floquet characteristic exponent
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