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Abstract: This article presents a criterion for the uniqueness of the solution of a problem nonlocal
in time for a differential-operator equation with a symmetric operator part on space variables. The
symmetry of the operator part of the operator-differential equation guarantees the existence of
good basic properties of its system of root elements. The spectral properties of the symmetric
operator part make it possible not only to prove the necessity of the criterion formulated by us,
but also to substantiate their sufficiency. In contrast to previously known works, in this work the
semiboundedness of the symmetric part of the differential-operator equation can be violated. In this
article, the differential-operator equation is represented as the difference of two commuting operators.
The uniqueness of the solution is guaranteed when the spectra of the commuting operators do not
intersect. It is important that only one of the operators should be symmetrical.

Keywords: symmetric operator part; regular boundary value problems in time; boundary value
problem with displacement; uniqueness of solution; eigenfunctions; complete orthonormal systems

1. Introduction

The article investigates the question of the uniqueness of the solution of an operator
equation of the form

Bu = Au + f .

The primary purpose of this article is to establish the criterion of uniqueness of the solution
of the previous for the operator equation. Various ways of proving uniqueness are known.
Usually, the maximum principle [1] and its various generalizations such as [2,3] are an effec-
tive means of proving uniqueness. For the specified operator equation, the listed principles
are not fulfilled. Therefore, we need another tool, different from the extremum principle.

In the work of V.A. Ilyin [4], a fairly universal method of proving the uniqueness
of the solution for hyperbolic and parabolic equations is proposed. With fairly general
restrictions on the domain Ω, the uniqueness theorem of the solution for hyperbolic and
parabolic equations is proved in [4]. The meaning of the requirements of V.A. Ilyin’s
theorem [4] is that the elliptic part of a hyperbolic and parabolic operator is a symmetric
operator. A symmetric operator has a complete orthogonal system of eigenfunctions in the
corresponding function space.

In this article, the operator L corresponding to the operator equation represented as
the difference of two commuting operators A and B. The uniqueness of the solution is
guaranteed when the spectra of operators A and B do not intersect and operators A and
B have complete systems of root elements in the corresponding functional spaces. In this
case, it is not required that the operator B is symmetric.
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We also note the work of I.V. Tikhonov [5], devoted to the uniqueness theorem in
linear nonlocal problems for abstract differential equations. This work is interesting because
I.V. Tikhonov proposed a new method for proving uniqueness theorems. I.V. Tikhonov’s
method of proving uniqueness is based on the “method of quotients” for integral functions
of exponential type. In [6], the question of the uniqueness of the solution was studied for
the thermal conductivity equation with a non-local condition expressed by an integral
over time on a fixed interval. They managed to give a complete description of uniqueness
classes in terms of the behavior of solutions at |x| → ∞. In this article, I.V. Tikhonov’s
method is adapted for operators whose differential part is a higher-order operator.

The main issues studied in this article is the question of the uniqueness of the solution
of the equation of the form

∂nu(x, y; t)
∂tn +

n

∑
j=1

pj(t)
∂n−ju(x, y; t)

∂tn−j =

∂2u(x, y; t)
∂x2 − ∂2u(x, y; t)

∂y2 + f (x, y; t), (x, y) ∈ Ω, 0 < t < T (1)

with regular boundary conditions on t

Uν(u(x, y; ·)) = 0, ν = 1, 2, . . . , n, (x, y) ∈ Ω (2)

and with conditions displacement by (x, y)

u(θ, 0; t) = 0, 0 ≤ θ ≤ 1,

u
(

θ

2
, − θ

2
; t
)
= a u

(
θ + 1

2
,

θ − 1
2

; t
)

, 0 ≤ θ ≤ 1
2

, 0 < t < T. (3)

In this paper, Ω is a finite two-dimensional domain bounded by the segment OB : 0 ≤
x ≤ 1 of the y = 0 axis and the characteristics OC : x + y = 0, BC : x− y = 1.

In the work [7] in Q = Ω× [0, T], 0 < T < ∞ the quasi-hyperbolic equation

(−1)p ∂2pu(x, t)
∂t2p = −

n

∑
i,j=1

∂

∂xi

(
aij ∂u(x, t)

∂xj

)
+ a(x)u(x, t) + f (x, t) (4)

with initial conditions

∂ku(x, 0)
∂tk = 0, k = m, . . . , m + p, x ∈ Ω, (5)

∂ku(x, T)
∂tk = 0, k = m + 1, . . . , m + p− 1, x ∈ Ω, (6)

and with boundary condition

u(x, t) = 0, x ∈ ∂Ω, (7)

was considered. In this case, the right side of Equation (4) represents a semi-bounded elliptic
operator. In our paper, the right-hand side of Equation (4) represents an unconstrained
hyperbolic operator. Secondly, the left part of Equation (4) represents a one-dimensional
differential operator with respect to t with decaying boundary conditions. At the same
time, in our paper, the left side of Equation (4) represents an arbitrary one-dimensional
differential operator with coefficients variable in t with general non-decaying boundary
conditions (5) and (6).

The class of operators of the form L = B− A studied by us refers, according to the
terminology of A.A. Dezin [8], to operators generated by differential operator equations.
Boundary value problem (1)–(3) is equivalent to a differential-operator equation according
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to paper [8]. Questions of solvability of differential-operator equations with a symmetric
operator part on space variables were studied in the works [7,9–12]. In [9], as well as in
our work, it is required that the spectra of operators A and B do not intersect. In work [9],
the semi-limitation of operator A is required. The given restriction in this article has been
removed. In this paper, the spectrum of operator A is located on the real axis and is not
bounded in both directions. Since the results of works [10,11] use the results of [9], that
is, the necessary of the semiboundedness of the operators A and B, they are preserved
in works [10,11]. V.V. Shelukhin [13,14] investigated the problem of predicting ocean
temperature from the average data for the previous period of time, which also belongs to
the class of differential operator equations. Practical applications of operators L = B− A
of the form can be found in the work [14]. A numerical analysis of some nonlinear partial
differential equations is given in [15,16].

2. On the Spectral Properties of a Differential Operator on a Segment

Since the left part of Equation (1) represents a higher-order linear differential operator
in the variable t with general boundary conditions (2), then in this paragraph we separately
recall the known spectral properties of these operators.

Consider the operator B generated by the differential expression in the functional
space L2(0, T)

l(w) ≡ dnw
dtn + p1(t)

dn−1w
dtn−1 + . . . + pn(t)w(t), 0 < t < T (8)

with regular boundary conditions

n−1

∑
k=0

[αkjw(k)(0) + βkjw(k)(T)] = 0, j = 1, 2, . . . , n (9)

where pj(t) ∈ C(n−j)[0, T], j = 1, 2, . . . , n.
Recall which boundary conditions are called regular. For this purpose, we denote by S

the sector of the complex plane of the ρ –plane defined by the inequalities 0 ≤ arg ρ ≤ π/n,
and let ω1, ω2, . . . , ωn be all the different roots of the n-th degree of −1, numbered so that
for all ρ ∈ S the inequalities are valid

Re(ρω1) ≤ Re(ρω2) ≤ · · · ≤ Re(ρωn).

We known that [17] the boundary conditions (5) can be reduced to the form

U1(w) = w(j1)(0) +
j1−1

∑
k=0

(α1,kw(k)(0) + β1,kw(k)(T)),

U2(w) = w(j1)(T) +
j1−1

∑
k=0

(α2,kw(k)(0) + β2,kw(k)(T)),

. . .

U2m−1(w) = w(jm)(0) +
jm−1

∑
k=0

(α2m−1,kw(k)(0) + β2m−1,kw(k)(T)),

U2m(w) = w(jm)(T) +
jm−1

∑
k=0

(α2m,kw(k)(0) + β2m,kw(k)(T)),

U2m+1(w) = α1w(ν1)(0) + β1w(ν1)(T) +
ν1−1

∑
k=0

(α2m+1,kw(k)(0) + β2m+1,kw(k)(T)),

. . .
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Un(w) = αrw(νr)(0) + βrw(νr)(T) +
νr−1

∑
k=0

(αn,mw(k)(0) + βn,mw(k)(T)),

among the numbers jk, νi, no two are the same (0 ≤ jk ≤ n− 1, k = 1, 2, . . . , m; 0 ≤ νi ≤
n− 1, i = 1, 2, . . . , r; 2m+ r = n, |αi|+ |βi| 6= 0). The regularity of the boundary conditions
is determined in different ways depending on whether n is odd or even.

Requirement I. Suppose that the domain of the operator B is given by boundary
conditions that are regular in the sense of Birkhoff [18]. In other words, in the case of odd
n = 2p− 1, the following two determinants are nonzero

θ0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω
j1
1 . . . ω

j1
p−1 ω

j1
p 0 . . . 0

0 . . . 0 0 ω
j1
p+1 . . . ω

j1
n

· . . . · · · · . . .
ω

jm
1 . . . ω

jm
p−1 ω

jm
p 0 . . . 0

0 . . . 0 0 ω
jm
p+1 . . . ω

jm
n

α1ων1
1 . . . α1ων1

p−1 α1ων1
p β1ων1

p+1 . . . β1ω1
n

· . . . · · · · . . .
αrωνr

r . . . αrωνr
p−1 αrωνr

p βrωνr
p+1 . . . βrωr

nνr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

θ1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω
j1
1 . . . ω

j1
p−1 0 0 . . . 0

0 . . . 0 ω
j1
p ω

j1
p+1 . . . ω

j1
n

· . . . · · · · . . .
ω

jm
1 . . . ω

jm
p−1 0 0 . . . 0

0 . . . 0 ω
jm
p ω

jm
p+1 . . . ω

jm
n

α1ων1
1 . . . α1ων1

p−1 β1ων1
p β1ων1

p+1 . . . β1ων1
n

· . . . · · · · . . .
αrωνr

r . . . αrωνr
p−1 βrωνr

p βrωνr
p+1 . . . βrωνr

n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (10)

in this case, i = 1, 2, . . . , r; j = 1, 2, . . . , n.
When n = 2p is even, then the following two determinants

θ−1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω
j1
1 . . . ω

j1
p−1 ω

j1
p 0 0 . . . 0

0 . . . 0 0 ω
j1
p+1 ω

j1
p+2 . . . ω

j1
n

· . . . · · · · · . . .
ω

jm
1 . . . ω

jm
p−1 ω

jm
p 0 0 . . . 0

0 . . . 0 0 ω
jm
p+1 ω

jm
p+2 . . . ω

jm
n

α1ων1
1 . . . α1ων1

1 α1ων1
p β1ων1

p+1 β1ων1
p+2 . . . β1ων1

n

· . . . · · · · · . . .
αrωνr

r . . . αrωνr
p−1 αrωνr

p βrωνr
p+1 βrωνr

p+2 . . . βrωνr
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

θ1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω
j1
1 . . . ω

j1
p−1 0 ω

j1
p+1 0 . . . 0

0 . . . 0 ω
j1
p 0 ω

j1
p+2 . . . ω

j1
n

· . . . · · · · · . . .
ω

jm
1 . . . ω

jm
p−1 0 ω

jm
p+1 0 . . . 0

0 . . . 0 ω
jm
p 0 ω

jm
p+2 . . . ω

jm
n

α1ων1
1 . . . α1ων1

p−1 β1ων1
p α1ων1

p+1 β1ων1
p+2 . . . β1ων1

n

· . . . · · · · . . .
αrωνr

r . . . αrωνr
p−1 βrωνr

p αrωνr
p+1 βrωνr

p+2 . . . βrωνr
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(11)

are different from zero.
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Let’s introduce a fundamental system of solutions {w1(t, λ), . . . , wn(t, λ)} of the ho-
mogeneous equation

l(ws) = λ ws(t, λ), 0 < t < T, (12)

that satisfying the Cauchy conditions at zero

d(j−1)

dt(j−1)
ws(0, λ) = δj,s, j = 1, . . . , n, s = 1, . . . , n, (13)

where δj,s is the Kronecker symbol. Note that all solutions {ws(t, λ), s = 1, . . . , n} are
integral functions of λ. Denote by ∆(λ) the characteristic determinant given by the formula

∆(λ) = det(Uν(wj)).

Characteristic determinant zeros of the ∆(λ), taking into account their multiplicity, repre-
sent the eigenvalues of the operator B.

Finally, for completeness, we present the Lagrange formula [18]. Let U1, . . . , Un be lin-
early independent forms of variables w(0), w′(0), . . . , w(n−1)(0), w(T), w′(T), . . . , w(n−1)(T).
Let’s add them with some linear forms Un+1, . . . , U2n to a linearly independent system of 2n
forms U1, U2, . . . , U2n. For any linearly independent forms U1, U2, . . . , U2n there is a single
set of 2n linear homogeneous forms

V2n, V2n−1, . . . , V1

with respect to the variables R(0), R′(0), . . . , R(n−1)(0), R(T), . . . , R(n−1)(T) for arbitrary
functions R(t) ∈Wn

2 [0, T]. Then, the Lagrange formula [18] for any two functions w(t) and
R(t) of Wn

2 [0, T] will be rewritten as

∫ T

0
l(w(t)) R(t) dt−

∫ T

0
w(t) l+(R(t)) dt =

= U1(w)V2n(R) + U2(w)V2n−1(R) + · · ·+ U2n(w)V1(R). j = 1, . . . , n, s = 1, . . . , n.
(14)

We have l+(·) is a formally adjoint differential expression to the expression l(·) and is given
by the formula

l+(R) ≡ (−1)n dnR(t)
dtn +

n−1

∑
j=0

(−1)n−j dn−j

dtn−j (pj(t)R(t)), 0 < t < T.

and domain of definition

D(B∗) = {R ∈Wn
2 [0, T] : V1(R) = 0, . . . , Vn(R) = 0}.

The adjoint operator B∗ is given by the differential expression

B∗R(t) = l+(R).

In [17], adjoint boundary conditions are calculated:

Vn(R) = R(n−1−γ1)(0) +
n−2−γ1

∑
k=0

(α∗n,kR(k)(0) + β∗n,kR(k)(T)),

Vn−1(R) = R(n−1−γ1)(T) +
n−2−γ1

∑
k=0

(α∗n−1,kR(k)(0) + β∗n−1,kR(k)(T)),

. . .

Vn−2m(R) = R(n−1−γm)(0) +
n−2−γm

∑
k=0

(α∗n−2m,kR(k)(0) + β∗n−2m,kR(k)(T)),
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Vn−2m+1(R) = R(n−1−γm)(T) +
n−2−γm

∑
k=0

(α∗n−2m+1,kR(k)(0) + β∗n−2m+1,kR(k)(T)),

Vr(R) = β1R(n−1−ν1)(0) + α1R(n−1−ν1)(T) +
n−2−ν1

∑
k=0

(α∗r,kR(k)(0) + β∗r,kR(k)(T)),

. . .

V1(R) = βrR(n−1−νr)(0) + αrR(n−1−νr)(T) +
n−2−νr

∑
k=0

(α∗1,kR(k)(0) + β∗1,kR(k)(T)),

where the numbers γ1, . . . , γm are determined from the relation

{γ1, . . . , γm} ∪ {j1, . . . , jm} ∪ {ν1, . . . , νr} = {0, 1, . . . , n− 1}.

Let us introduce a fundamental system of solutions {R1(t, λ), . . . , Rn(t, λ)} of a homoge-
neous adjoint equation

l+(Rs) = λ Rs(t, λ), 0 < t < T (15)

which is satisfying the Cauchy condition at zero

d(j−1)

dt(j−1)
Rs(0, λ) = δj,s, j = 1, . . . , n, s = 1, . . . , n. (16)

Note that all solutions {Rs(t, λ), s = 1, . . . , n} are integral functions of λ. Denote by ∆∗(λ)
the characteristic determinant given by the formula

∆∗(λ) = det(Vν(Rj)). (17)

Taking into account their multiplicity characteristic determinant zeros ∆∗(λ), represent the
eigenvalues of the adjoint operator B∗.

We also introduce τs(t, λ) for s = 1, . . . , n solutions of homogeneous adjoint Equation (15)
with inhomogeneous conditions

Vj(τs) = δj,s · ∆∗(λ), j = 1, . . . , n. (18)

Let λ0 be the of the characteristic determinant zero ∆(λ) and its multiplicity is equal to m0.
Then, for any s = 1, . . . , n in an ordered row

||τs(t, λ0),
1
1!

∂

∂λ
τs(t, λ0), . . . ,

1
(mo − 1)!

∂m0−1

∂λ
m0−1 τs(t, λ0)|| (19)

the first nonzero function represents an eigenfunction of the operator B∗, and the subse-
quent members of the row give a chain of associated functions generated by it.

In what follows, the eigenvalues of the operator B∗ will be denoted by λν, ν ≥ 1, and
the corresponding eigenfunctions and associated functions via Rν(t), ν ≥ 1.

The following statement is proved in [17].

Theorem 1 ([17]). Let the domain of the operator B be given by the boundary conditions regular in
the sense of Birkhoff. Then, the domain of the operator of the adjoint B∗ is also given by the boundary
conditions regular in the sense of Birkhoff.

We will also need the following statement [18].

Theorem 2 ([18]). Let the operator B be generated by the boundary conditions regular in the sense
of Birkhoff. Then, the system of root functions of operator B is a complete system in the space
L2(0, T).
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Applying theorems A and B to the adjoint operator B∗, we can formulate the statement.

Theorem 3. Let the requirement I be fulfilled. Then, the system of roots functions of the operator
B∗ is a complete system in the space L2(0, T).

3. Preliminaries

Since the right-hand side of Equation (1) represents a wave equation with a shift in
the variable (x, y), then in this paragraph we will separately recall the known spectral
properties of the specified operator.

Let Ω ∈ R2 be the finite region bounded by the segment OB : 0 ≤ x ≤ 1 axes y = 0
and characteristics OC : x + y = 0, BC : x− y = 1 equations

Av = vxx(x, y)− vyy(x, y) = f (x, y). (20)

Problem 1 (Sa). Find a solution to Equation (20) that satisfies the conditions

v(θ, 0) = 0, 0 ≤ θ ≤ 1,

v
(

θ

2
,− θ

2

)
= a v

(
θ + 1

2
,

θ − 1
2

)
, 0 ≤ θ ≤ 1

2
, (21)

where a is an arbitrary complex number.

The operator, corresponding to the boundary value problem Sa, is denoted by A. The
eigenvalues of the operator A will be numbered by a pair of integer indices ηk,m. The eigen-
functions of the operator A are denoted by vk,m(x, y) corresponding to the eigenvalue ηk,m.

In [19], the eigenvalues and eigenfunctions of the operator A are explicitly calculated:

ηk,m = −4(i ln(−a) + 2πk)(i ln(−a) + 2πm), k, m = 0,±1, . . . , (22)

vk,m(x, y) = (−a)−2x
(

e{2πi[(k+m)x+(k−m)y]} − e{2πi[(k+m)x−(k−m)y]}
)

, (23)

and when k1 6= k2, m1 6= m2 there can be∫
Ω
|a|2xvk1,m1(x, y)vk2,m2(x, y)dxdy = 0. (24)

The following statement is proved in [19].

Theorem 4 ([19]). For a = 0 the operator A is Voltaire and for a(a + 1) 6= 0 has a complete in the
space L2(Ω) system of eigenfunctions {vk,m(x, y)}, given by equality (23).

4. On the Uniqueness of the Solution of a Time Nonlocal Problem for a High-Order
Differential Operator Equation l(·)—A with the Wave Operator A

Boundary value problem (1)–(3) has the next operator form

Bu = Au(x, y; t) + f (x, y; t), (x, y; t) ∈ Q. (25)

The operator B applies on the variable t and its properties are given in paragraph 1. The
operator A applies on variables (x, y) and its spectral properties are given in paragraph 2.

In this section, we prove the criterion of uniqueness of the solution of the homogeneous
operator Equation (25).

Theorem 5. Let the requirement I be fulfilled and a(a + 1) 6= 0. Then, the operator

Bu = Au (26)
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has only a trivial solution u ∈ D(B) ∩ D(A) if and only if

σ(B) ∩ σ(A) = ∅, (27)

where σ(B) and σ(A) are the spectra of operators B and A, respectively.

Remark 1. The meaning of Theorem 1 is that it is sufficient to explicitly calculate the eigenvalues
ηk,m of the operator A. The eigenvalues of the operator B cannot be explicitly calculated. From the
dispersion relation ∆(λ) = 0 for operator B, it is sufficient to check the condition ∆(ηk,m) 6= 0 for
all ηk,m.

Remark 2. In [9–11], the requirements concerned the arrangement of the spectra of operators A
and B on the entire complex plane. In particular, in ref. [9], the operator A must be semi-bounded
from below, and the operator B must be semi-bounded from above. According to Theorem 1, there
are no such restrictions.

Example 1. Let n = 1. In this case, the regular boundary condition (2) will take the for

u(x, y; 0)− u(x, y; T) = 0, (x, y) ∈ Ω,

where b 6= 0. In this case, the characteristic determinant has the form

∆(λ) = b− eλT .

Spectrum B operator’s consists of eigenvalues having the form

∆(λ)λs =
ln b
T

+
2πis

T
, s ∈ Z.

The requirement of Theorem 1 is satisfied if

ln b
T

+
2πis

T
6= −4(i ln−a + 2πk)(i ln−a + 2πn),

for all s, k, m ∈ Z.

5. Proof of the Main Theorem (Theorem 1)

Proof of Necessary. Let λν— some eigenvalue of operator B (with eigenfunction wν(t)),
also an eigenvalue of operator A, that is, λν = ηk,m (with eigenfunction vk,m(x, y)). Then,
the function u(x, t) = wν(t) · vk,m(x, y) will be a nontrivial solution to the homogeneous
problem (26). The necessity of the requirements of Theorem 1 is proved.

Proof of Sufficient. Let none of the {λk, k ≥ 1} eigenvalues of operator B be the eigenvalue
of operator A. In other words, a number of the form (22) is not an eigenvalue of operator B, i.e.,

∆(ηk,m) 6= 0.

We show that u(x, y; t)—the solution of the homogeneous boundary value problem (22)
that is identically equal to zero in the space L2(Q).

To do this, for a fixed (x, y) ∈ Ω and j = 1, . . . , n we introduce the functions

Fj(x, y; λ) =
∫ T

0
τj(t, λ) u(x, y; t)dt. (28)

The Fj(x, y; λ) functions represent integrals of functions from λ. According to the
Lagrange formula (14), the function AFj(x, y; λ) at j = 1, . . . , n can be rewritten as:
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AFj(x, y; λ) =
∫ T

0
τj(t, λ) · Au(x, y; t)dt =

∫ T

0
τj(t, λ) · Bu(x, y; t)dt =

∫ T

0
u(x, y; t) l+(τj)dt + Un+1(u)Vn(τj) + · · ·+ U2n(u)V1(τj) =

λ
∫ T

0
u(x, y; t) τj(t, λ)dt + Un+1(u)Vn(τj) + · · ·+ U2n(u)V1(τj) =

λFj(x, y; λ) + ∆∗(λ) ·U2n−j+1(u). (29)

If λ0 is the of the characteristic determinant ∆(λ) zero of the multiplicity m0, then the
equalities follow from the relations (29)

AFj(x, y; λ0) = λ0 Fj(x, y; λ0),

A
dFj(x, y; λ0)

dλ
= λ0

dFj(x, y; λ0)

dλ
+ Fj(x, y; λ0),

· · ·

A
dm0−1

dλ
m0−1 Fj(x, y; λ0) = λ0

dm0−1Fj(x, y; λ0)

dλ
m0−1 +

dm0−2Fj(x, y; λ0)

dλ
m0−2 .

Because of λ0∈σ(A), the equalities follow from the relations (28)

dsFj(x, y; λ0)

dλ
s ≡ 0 for s = 0, 1, . . . , m0 − 1. (30)

Then j = 1, . . . , n relation
Fj(x, y; λ)

∆∗(λ)
are integral functions of λ, since at the point λ = λ0

the relations
Fj(x, y; λ)

∆∗(λ)
has only removable singularities .

Now, we move on to the second step of the proof. According to the methodology of V.
A. Ilyin [4], we multiply the function Fj(x, y; λ) scalar by the eigenfunction vk,m(x, y) and
denote them by

Gk,m
j (λ) ≡

∫
Ω

Fj(x, y; λ) vk,m(x, y) dx dy, k, m = 0,±1, . . . , j = 1, . . . , n. (31)

Multiplicities of functional Gk,m
j (λ) zeros at least not bigger than multiplicities of functions

Fj(x, y; λ) zeros. Hence, the relation

Qk,m
j (λ) ≡

Gk,m
j (λ)

∆∗(λ)
(32)

are define integral functions of λ.
Further analysis of integral functions Qk,m

j (λ) is based on the technique of estimating
the order of growth and the type of integral functions.

Note that the whole function Qk,m
j (λ) does not depend on the choice of the fundamen-

tal system of solutions of the homogeneous equation

l+ (R(t, λ)) = λ · R(t, λ), 0 < t < T. (33)

Denote by ω1, ω2, . . . , ωn all the different roots of the n-th degree of (−1)n+1. Let us
first analyze the case of odd n = 2p − 1. Let ρ be an arbitrary complex number from
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the sector S0 = {ρ ∈ C| 0 < arg ρ < π
n }. Renumber the numbers ω1, ω2, . . . , ωn in the

following order
ε1 = ωi1 , ε2 = ωi2 , . . . εn = ωin . (34)

Then ∀ρ ∈ S0 inequalities are fulfilled

Re(ρε1) ≤ Re(ρε2) ≤ · · · ≤ Re(ρεp−1) < 0,

Re(ρεp−1) ≤ Re(ρεp) ≤ Re(ρεp+1),

0 < Re(ρεp+1) ≤ Re(ρεp+2) ≤ · · · ≤ Re(ρεn). (35)

Instead of solutions{R1(t, ρn), . . . , Rn(t, ρn)} a fundamental system we will consider an-
other fundamental system of solutions of a homogeneous adjoint equation

l+ (R(t, λ)) = λ · R(t, λ), 0 < t < T, λ = (−ρ)n.

Let choose it according to Theorem 1 [18]

h1(t, ρ) = eρε1t[1 + o(1/ρ)], . . . , hn(t, ρ) = eρεnt[1 + o(1/ρ)], ρ ∈ S0, ρ→ ∞. (36)

Owing to [18] ∀ρ ∈ S0 we have an asymptotic representation of the characteristic determinant
∆̃(ρ) for ρ→ ∞, written through the fundamental system of solutions {h1(t, ρ), . . . , hn(t, ρ)}.

When ρ ∈ S0, ρ→ ∞, we have

Vn(hj) = (ρε j)
(n−1−γ1)[1], Vn−1(hj) = (ρε j)

(n−1−γ1)[0], . . . ,

Vn−2m+2(hj) = (ρε j)
(n−1−γm)[1], Vn−2m+1(hj) = (ρε j)

(n−1−γm)[0], . . . ,

Vr(hj) = (ρε j)
(n−1−ν1)[α1], V1(hj) = (ρε j)

(n−1−νr)[αr], at j < p.

Just as if j > p we have ρ ∈ S0, ρ→ ∞

Vn(hj) = (ρε j)
(n−1−γ1)eρε jT [0], Vn−1(hj) = (ρε j)

(n−1−γ1)eρε jT [1], . . . ,

Vn−2m+2(hj) = (ρε j)
(n−1−γm)eρε jT [0], Vn−2m+1(hj) = (ρε j)

(n−1−γm)eρε jT [1], . . . ,

Vr(hj) = (ρε j)
(n−1−ν1)eρε jT [β1], V1(hj) = (ρε j)

(n−1−νr)eρε jT [βr].

We denote for simplicity
[a] = a + o(1/ρ).

All these expressions substitute in the relation (16)

∆̃∗(λ) = det(Vν(hj)) = ρα̂eρ(ωp+1+...+ωn)T∆∗0 , (37)

where
α̂ = 2[n− 1− γ1 + . . . + n− 1− γm] + n− 1− ν1 + . . . + n− 1− νr,

∆∗0 = [θ∗0 ] + eρωp [θ∗1 ].

The numbers θ∗0 and θ∗1 are determined by adjoint forms {V1, . . . , Vn} and are anal-
ogous to the numbers θ0 and θ1, defined by the forms {U1, . . . , Un}. These numbers are
nonzero according to Theorem 1.

In any ρ from the sector S0 asymptotic representation τ̃1(t, ρ) at ρ → ∞ has the
following form, written through the fundamental system of solutions (36) τ̃1(t, ρ) ρ→ ∞

τ̃1(t, ρ) =
1

(ρεp)(n−1−γ1)
ρα̂eρ(ωp+1+···+ωn)Teρεpt([ξ∗0 ]e

−ρεpt + eρωp(T−t)[ξ∗1 ]), (38)
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where ξ∗0 , ξ∗1 are some numerical determinants. Similar asymptotic representations we
receive for τ̃j(t, ρ) at j > 1. Here, we see

Qk,m
1 (λ) =

∫
Ω

(∫ T

0

τ̃1(t, λ)

∆̃∗(ρ)
u(x, y; t)dt

)
vk,m(x, y) dxdy =

∫
Ω

∫ T

0

eρεpt([ξ∗0 ]e
−ρεpt + eρωp(T−t)[ξ∗1 ])

(ρεp)(n−1−γ1)([θ∗0 ] + eρωp [θ∗1 ])
u(x, y; t) vk,m(x, y) dt dx dy. (39)

By Riemann’s lemma [20] in the case of Re(ρεp) = Re(ρεp+1) = 0, we easily get

lim
|ρ|→∞

Qk,m
1 (λ) = 0, ρ ∈ S0.

If Re(ρεp) > 0, then Re(ρεp+1) < 0. Next, we get

lim
ρ→∞

Qk,m
1 (λ) = 0, at ρ ∈ S0.

Therefore, along all rays ρ ∈ S0 and ρ→ ∞, then we have the limit equality

lim
ρ→∞

Qk,m
1 (λ) = 0.

Similar asymptotic representations are obtained for Qk,m
j (λ) at j > 1 with all possible

(k, m).
Exactly the same analysis can be carried out for the sector ρ ∈ S1, where S1 = {ρ ∈

C| π
2p < arg ρ < π

p }. Consequently, by the Fragmen–Lindelof and Liouville theorem [21]
for functions of finite order, we obtain that

Qk,m
j (λ) ≡ 0 at all λ ∈ C.

For any valid (k, m) and for any j = 1, . . . , n we have∫
Ω

vk,m(x, y)Fj(x, y; λ) dxdy ≡ 0, ∀λ ∈ C.

Then, from the completeness of the system {vk,m(x, y), k, m = 0,±1, . . . } in L2(Ω) fol-
lows that

Fj(x, y; λ) ≡ 0, ∀x, y ∈ Ω, ∀λ ∈ C, j = 1, . . . , n.

Therefore ∫ T

0
τ̃j(t, λ) u(x, y; t) dt ≡ 0, ∀x, y ∈ Ω, ∀λ ∈ C, j = 1, . . . , n.

Hence, we have:

1
ν!

∂ν

∂λν

∫ T

0
τ̃j(t, λ) u(x, t) dt ≡ 0, ∀x, y ∈ Ω, ∀λ ∈ C, j = 1, . . . , n, ∀ν ≥ 0. (40)

Now, instead of λ into equality (40) we substitute λτ—an arbitrary eigenvalue of
operator B. Eigenvalue multiplicity of λτ is considered as equal to mτ . Let the parameter
ν in formula (40) take the values 1, 2, . . . , mτ − 1. Using by the formulas (19) and (40), we
find that for any fixed x, y ∈ Ω function, u(x, y; t) is orthogonal to all root functions of the
operator B∗. Since the system of root functions of the operator B∗ is a complete system in
L2(0, T), then we have

u(x, y; t) ≡ 0 at all t ∈ (0, T), x, y ∈ Ω.
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The statement of Theorem 1 is proved similarly for even n = 2p. Thus, the sufficiency of
Theorem 1 is completely proved.

6. Conclusions

In this paper, the operator L is investigated. The operator L represented the difference
of two commuting operators, A and B. The operator B is generated by a high-order linear
differential expression and regular two-point boundary conditions [0, T]. The symmetric op-
erator A corresponds to a wave equation in a plane domain bounded by two characteristics
and their coinciding segment. The operator A considered by us is not semi-bounded and
has a complete orthogonal system of eigenfunctions in the corresponding functional space.
With the specified choice of operators B and A, the operator equation Lu = Bu− Au = 0
has a trivial solution if and only if the spectra of operators B and A do not intersect.

Let us pay attention to the method of proving the uniqueness theorem proposed in
the article. The method is a hybrid of M.G. Krein’s method of direct functionals [18] and
V.A. Ilyin’s method [4].

Further generalizations of the main result of this article can be carried out in the
following directions:

1. Weakening of the regularity conditions of the boundary conditions of operator B;
2. Extension of Theorem 1 for multidimensional operators B depending on several variables.
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