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Abstract: This article reflects on the Klein–Gordon model, which frequently arises in the fields of
solid-state physics and quantum field theories. We analytically delve into solitons and composite
rogue-type wave propagation solutions of the model via the generalized Kudryashov and the
extended Sinh Gordon expansion approaches. We obtain a class of analytically exact solutions in the
forms of exponential and hyperbolic functions involving some arbitrary parameters with the help of
Maple, which included comparing symmetric and non-symmetric solutions with other methods. After
analyzing the dynamical behaviors, we caught distinct conditions on the accessible parameters of the
solutions for the model. By applying conditions to the existing parameters, we obtained various types
of rogue waves, bright and dark bells, combing bright–dark, combined dark–bright bells, kink and
anti-kink solitons, and multi-soliton solutions. The nature of the solitons is geometrically explained
for particular choices of the arbitrary parameters. It is indicated that the nonlinear rogue-type wave
packets are restricted in two dimensions that characterized the rogue-type wave envelopes.

Keywords: the Klein–Gordon; the generalized Kudryashov scheme; the extended Sinh Gordon
expansion scheme; solid-state physics; rogue wave; bright bell; dark bell profile

1. Introduction

The exciting tripping subsistence of rogue waves has been forecast and detected in
a lot of physical scenarios, extending from oceanography [1] to hydrodynamics [2], as
well as nonlinear optical systems [3,4] to plasma state physics [5,6]. The hypothetical
inquiries of physical resonance phenomena through nonlinear evolution equations are
becoming dictatorial day by day. Because there are more vigorous intricate phenomena
in miscellaneous grounds, complex nonlinear scientific and engineering problems can be
decorated by exact explicit solutions of nonlinear models. Much effort has been devoted to
constructing the analytical solutions for the nonlinear evolution equation (NLEEs) [1–25].

In contrast with tsunamis and storms allied with typhoons that may possibly be able
to be predicted hours in advance, rogue-type surfs are abruptly visible from nowhere and
become invisible without trace [3]. They have also caught the interest of the extensive
technical community [4–8], and been detected in optical fiber communications [4], in
plasmas [5,6], in capillaries [7], and quantum fields [8]. Recently, in the nonlinear field,
rogue wave (RW), lump solutions, and breather waves have received more interest and
devotion [9–16]. Deformed defective soliton solutions were established and discussed in the
Refs. [17–20]. The applications and behaviors of various types of solitons in Bose–Einstein
condensates were discussed by energetic researchers [21–24]. Besides this, various effective
approaches have been established to derive complex nonlinear models to extract soliton
and multi-soliton solutions in the literature [25–27]. Very recently, kink–anti-kink scattering
and interactions were discussed in the Refs. [28,29] in detail.
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In this effort, our aim is to derive various types of rogue, bright bell, and dark bell
envelope solutions of the well-known nonlinear Klein–Gordon model (KGM) [30–34],

Utt − α2Uxx + βU − γU2 = 0 (1)

by the advantage of the generalized Kudryashov method (GKM) [35–41] and the extended
Sinh Gordon expansion (EShGE) techniques [42]. In Equation (1), α is the second-order
spatial dispersion and γ is the coefficient of quadratic nonlinearity. From the analysis of
each term and traveling wave variable ξ = kx−ωt, it is clear that Equation (1) is Lorentz-
invariant. The KGM (1) arises in different numerous scientific applications in relativistic
quantum fields, such as the transmission of disruption and the Bloch wall activity of
magnets in crystals, magnetic flux on a Josephson line, a ”splay wave” through a membrane,
and so on [30,34]. In fact, this model is the opening relativistic field equation amid the
quantum workings of wave profiles due to zero spin. Several appreciated and confident
techniques have been proposed to extract precise solutions of the quadratic nonlinear
KGM [30–34]. The application of these methods has been restricted to obtaining periodic
and soliton solutions. Here is a question of the possibility to obtain similar symmetric
and non-symmetric periodic solitons and even rogue-type breather wave solutions for
this model. Thus, we chose the well-known GKM [35–41] and the EShGE method [42]
to determine distinct and more significant solutions that can construct better rogue and
solitary waves than the other approaches [30–34].

The composition of the remainder of this article is as follows: In Section 2, we recall
the summarization of the GKM and the EShGE. In Section 3, we demonstrate exact analytic
solutions of the KGM with quadratic nonlinearity using the GKM and the EShGE method.
Then, in Section 4, we present diverse rouge-type waves, bright bell-like, and dark bell-like
profiles with 3-D and 2-D diagrams. Finally, we present a graphical illustration of the
obtained solutions in the final section.

2. Methods

We briefly here discuss the two elegant methods, namely, the GKM and the EShGE
method, to integrate any nonlinear evolution equations.

2.1. General Form of the GKM

In this part, we disclose the working route of the GKM, which was introduced by
Kudryashov [35], broadly to pursue explicitly analytic solutions for any nonlinear models.
Reflect a nonlinear model of the form,

Q(U, Uxt, Uxxt, Uxx, Ut, Utt, . . .) = 0, (2)

where U(x, t) is an unrevealed function and Q includes various partial derivatives of U(x, t)
involving complex non-linearities.

Step 1: To switch the nonlinear partial differential Equation (2) into the ordinary
differential equation (ODE), anyone can use the wave-transformation relation,

R(x, t) = R(ξ), ξ = kx−ωt, (3)

where k, ω are the wave number and velocity, respectively. Therefore, inserting Equation
(3) into the Equation (2), we reach a corresponding ODE as

Q1(Uξ , UUξ , Uξξ , UUξξ,Uξξξ , . . .) = 0. (4)

If Equation (4) is integrable, then we integrate Equation (4) as many times as necessary
considering every integral constant as zero.
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Step 2: Deeming that the trial solution has the general structure as a polynomial
function of F(ξ):

U(ξ) =

N
∑

i=0
ai(F(ξ))i

M
∑

j=0
bj(F(ξ))j

, (5)

where ai, bj, ω, k; i = 0, . . . , m, j = 0, . . . , n are unfamiliar and will be evaluated afterward,
while aN 6= 0, bM 6= 0 together, where N and M are the positive integer, whose particular
values can be derived by balancing the power of nonlinear and height derivative terms.

We have a condition of F(ξ) satisfying the Riccati equation,

F′(ξ) = F2(ξ)− F(ξ), (6)

with a solution F(ξ) = (1 + heξ)
−1.

Step 3: Merging Equation (5) and Equation (4) with the ODE (6), and assembling
identical order of F(ξ) collectively, we present an algebraic polynomial for F(ξ). Set-
ting each of the coefficients of F(ξ) equal to zero acquiesces some algebraic systems of
ai, bj, ω, k; i = 0, . . . , m, j = 0, . . . , n. Solving the unknowns and setting them into Equation
(5), we reach the analytic wave solutions of the model Equation (2).

2.2. The EShGE Method

In this part, we disclose the working route of the EShGE method [42] briefly to pursue
the explicit and analytical solutions of any nonlinear models. We convert the NLEEs (2)
into ODE (4) in a similar way as in the previous method. Then, we carry the trial solution as

H(F) = a0 +
n

∑
`=1

cosh`−1 F(b`sinhF + a` cosh F). (7)

The function F satisfies the ODE F′ = sinh(F) extracted from the Sinh Gordon model
uxt = µsinhu [25] and gives the solutions,

sinhF = ±i sec hξ or sinhF = ± csc hξ with i =
√
−1 (8)

cosh F = ±tanhξ or cosh F = ±cothξ (9)

Now, differentiating (7) twice along with F′ = sinh(F) and inserting these into the
ODE (4) yields a set of unknown equations in a0, a`, b`. Solving and inserting the solutions
of the system into (7) with (8) and (9) gives the return results.

2.3. Multi-Soliton via Burgers’ Model Scheme

In this part, we disclose the working route to derive a multi-kink wave solution using
the Burgers’ model

Bt − 2BBx − Bxx = 0. (10)

The multi-soliton solution of (10) is

B =

n
∑

j=1
k je

kjx−ωjt

1 +
n
∑

j=1
ekjx−ωjt

, (11)

where k j, ωj are constants and n is a positive integer number. Treat the traveling variable
ξ = kx−ωt, so that B(ξ) = B(x, t) with the dispersion relation k j = −ω2

j and convert the
Burgers’ equation into

B′ = B− B2/k. (12)
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Using this equation as an auxiliary multi-soliton solution of (1 + 1) − D models
is possible.

3. Extract Solutions through the Schemes

In these parts, we focus on presenting the applications of the GKM and the EShGE to
the KGM for extracting wave solutions of the above-mentioned Klein–Gordon (KG) model.

3.1. Application of the GKM to the KGM

In this part, we explore a reliable treatment of the KGM with the help of the GKM. We
first implement the GKM in the quadratic nonlinear (1 + 1)-dimensional KGM (1). Utilizing
the wave transformation relation Equation (3), we revamp Equation (1) into the ODE:(

ω2 − α2k2
)

H′′ + βH − γH2 = 0. (13)

The terms H′′ and H2 provide us the balance number of (10) as N = M + 2.
For the unit value of M, we reach the trial solution of Equation (5), taking the form as:

H(ξ) =
a0 + a1F(ξ) + a2(F(ξ))2 + a3(F(ξ))3

b0 + b1F(ξ)
. (14)

We now differentiate (14) with respect to ξ along with (6), and then insert U, U′, U′′
into (13), giving an equation. Equating the coefficients of Fl(ξ) from the required equation
equal to zero yields:

(F(ξ))7 : γa2
3b1 − 6w2a3b2

1 + 6α2k2a3b2
1 = 0,

(F(ξ))6 : −10α2k2a3b2
1 + 10w2a3b2

1 + γa2
3b0 + 2α2k2a2b2

1 − 16w2a3b0b1
+2γa2a3b1 − 2w2a2b2

1 + 16α2k2a3b0b1 = 0,

(F(ξ))5 : −16w2a2b0b1 − 4w2a3b2
1 + 2γa2a3b0 + γa2

2b1 − 3α2k2a2b2
1

+6α2k2a2b0b1 − 27α2k2a3b0b1 + 2γa1a3b1 − βa3b2
1 + 4α2k2a3b2

1
+12α2k2a2b2

0 + 27w2a3b0b1 − 12w2a3b2
0 + 3w2a23b2

1) = 0,

(F(ξ))4 : −w2a2b2
1 − 11w2a3b0b1 + γa2

2b0 + 2γa0a3b1 + 2γa1a3b0 − 6w2a2b2
0

−21α2k2a3b2
0 + 21w2a3b2

0 + α2k2a2b2
1 − βa2b2

1 − 2βa3b0b1 − 9α2k2a2b0b1
+2γa1a2b1 + 11α2κ2a3b0b1 + 9w2a2b0b1 + 6α2κ2a2b2

0 = 0,

(F(ξ))3 : −α2κ2a0b2
1 + 2α2κ2a1b2

0 + 2γa0a3b0 + 10w2a2b2
0 − w2a1b0b1 + 2γa1a2b0

+9α2κ2a3b2
0 − 3w2a2b0b1 + α2κ2a1bob1 − 9w2a3b2

0 + 2γa0a2b1 + 3α2κ2a2b0b1
−2βa2b0b1 + 2w2b1a0b0 − βa3b2

0 + γa2
1b1 − 2α2κ2b1a0b0 + w2a0b2

1
−10α2κ2a2b2

0 − βa1b2
1 − 2w2a1b2

0 = 0,

(F(ξ))2 : −3α2κ2a1b2
0 − 2βa1b0b1 + 4α2κ2a2b2

0 − α2κ2a1b0b1 − 3w2b1a0b0
+3α2k2b1a0b0 + α2κ2a0b2

1 + w2a1b0b1 + γa2
1b0 − w2a0b2

1 − βa0b2
1

+3w2a1b2
0 + 2γa0a1b1 + 2γa0a2b0 − βa2b2

0 − 4wa2b2
0 = 0,

(F(ξ)) : w2b1a0b0 − 2βb1a0b0 + α2κ2a1b2
0 − w2a1b2

0 − α2κ2b1a0b0
+2γa0a1b0 + γa2

0b1 − βa1b2
0 = 0,

(F(ξ))0 : γa2
0b0 − βa0b2

0 = 0.

The above system of equations yields four classes of solutions:
Set01: ω =

√
α2k2 + β, a0 = βb0

γ , a1 = − β(−b1+6b0)
γ , a2 = − 6β(−b1+b0)

γ , a3 = 6βb1
γ ,

where b0, b1, k are constants.
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Then, inserting these values of Set01 into (14), progress the following solution

U(x, t) =
βb0(1 + heξ)

3 − β(−b1 + 6b0)(1 + heξ)
2 − 6β(−b1 + b0)(1 + heξ) + 6βb1

γ(1 + heξ)
2{b0(1 + heξ) + b1}

, (15)

where ξ = kx−
√

α2k2 + βt, and k, α, β, γ, b0 and b1 are arbitrary constants. The velocity of
this wave solution is

√
α2k2 + β/k.

Set02: k = k, ω =
√

α2k2 − β, a0 = 6βb0
γ , a1 = 6βb0

γ , a2 = − 6β(−b1+b0)
γ , a3 = − 6βb1

γ ,
b0 = b0, b1 = b1.

Inserting Set02 into (14) takes the following form

U(x, t) =
6βb0(1 + heξ)

3
+ 6βb0(1 + heξ)

2 − 6β(−b1 + b0)(1 + heξ)− 6βb1

γ
{

b0(1 + heξ) + b1
} , (16)

where ξ = kx−
√

α2k2 − βt, and k, α, β, γ, b0 and b1 are arbitrary constants. The velocity of
this wave solution is

√
α2k2 − β/k.

Set03: k =

√
ω2−β
α , a0 = a3

6 + a2
6 , a1 = −a2 − 5a3

6 , b0 = γ(a3+a2)
6β , b1 = γa3

6β , and ω, a2, a3

are arbitrary constants.
With Set03, Equation (14) becomes

U(x, t) = −
(
−h2e2ξ + 4heξ − 1

)
β

γ
(
heξ + 1

)2 , (17)

where ξ =

√
ω2−β
α x−ωt, and k, α, β, γ and h are arbitrary constants. The velocity of this

wave solution is ωα/
√

ω2 − β.

Set04: k =

√
ω2+β
α , a0 = 0, a1 = −a3 − a2, b0 = γ(a3+a2)

−6β , b1 = − γa3
6β , and ω, a2, a3 are

arbitrary constants.
Inserting the values of the parameters into (14), we obtain the solution

U(x, t) =
6heξ β

γ
(
heξ + 1

)2 , (18)

where ξ =

√
ω2+β
α x−ωt, and k, α, β, γ and h are arbitrary constants. The velocity of this

wave solution is ωα/
√

ω2 + β.

3.2. Application of the EShGE to the KGM

This part extracts the solutions of model (1) via the EShGE method. We know that the
balance number of our model is N = 2. Thus, the trial solution of the EShGE technique
reduces to

H(F) = a0 + b1sinhF + a1 cosh F + b2sinhF cosh F + a2 cosh2 F. (19)

Switching (19) and its second derivative with F′ = sinh(F) into (13), and then gather-
ing the polynomial as the coefficients of hyperbolic function, we have:

−6α2k2b2 − 2γa2b2 + 6ω2b2 = 0,

−2α2k2b1 − 2γa1b2 − 2γa2b1 + 2ω2b1 = 0,

5α2k2b2 − 2γa0b2 − 2γa1b1 − 5ω2b2 + βb2 = 0,

α2k2b1 − 2γa0b1 −ω2b1 + βb1 = 0,



Symmetry 2022, 14, 1223 6 of 13

−6α2k2a2 − γa2
2 − γb2

2 + 6ω2a2 = 0,

−2α2k2a1 − 2γa1a2 − 2γb1b2 + 2ω2a1 = 0,

8α2k2a2 − 2γa0a2 − γa2
1 − γb2

1 + γb2
2 − 8ω2a2 + βa2 = 0,

2α2k2a1 − 2γa0a1 + 2γb1b2 − 2ω2a1 + βa1 = 0,

−2α2k2a2 − γa2
0 + γb2

1 + 2ω2a2 + βa0 = 0.

The system of equations provides us with six sets of solutions:
Set01: When a0 = 3β

2γ , a1 = 0, a2 = − 3β
2γ , b1 = 0, b2 = 0, ω = 1

2

√
4α2k2 − β, the

solutions become

H1(ξ) =
3β

2γ
±
(
− 3β

2γ

)
tanh2ξ. (20)

and

H2(ξ) =
3β

2γ
±
(
− 3β

2γ

)
coth2ξ (21)

where ξ = kx − 1
2

√
4α2k2 − βt, and α, β, γ and k are free constants. The velocity of the

wave solutions Equations (20) and (21) is
√

4α2k2 − β/(2k).
Set02: When a0 = − β

2γ , a1 = 0, a2 = 3β
2γ , b1 = 0, b2 = 0, ω = 1

2

√
4α2k2 + β, the

solutions become

H3(ξ) = −
β

2γ
±
(

3β

2γ

)
tanh2ξ (22)

and

H4(ξ) = −
β

2γ
±
(

3β

2γ

)
coth2ξ (23)

where ξ = kx− 1
2

√
4α2k2 + βt, and α, β, γ and k are arbitrary constants. The velocity of the

wave solutions Equations (22) and (23) is
√

4α2k2 + β/(2k).
Set03: For a0 = − 2β

γ , a1 = 0, a2 = b2 = 3β
γ , b1 = 0, ω =

√
α2k2 + β, the

solutions become
H5(ξ) = −

2β

γ
± i

3β

γ
tanhξ sec hξ ± 3β

γ
tanh2ξ (24)

and
H6(ξ) = −

2β

γ
± 3β

γ
cothξ cschξ ± 3β

γ
coth2ξ (25)

where ξ = kx−
√

α2k2 + βt,α, β, γ and k are arbitrary constants.
Set04: When a0 = − 2β

γ , a1 = 0, a2 = 3β
γ , b1 = 0, b2 = − 3β

γ , ω =
√

α2k2 + β, the
solutions become

H7(ξ) = −
2β

γ
± i
(
−3β

γ

)
tanh ξ sec hξ ± 3β

γ
tanh2ξ (26)

and

H8(ξ) = −
2β

γ
±
(
−3β

γ

)
cothξ cschξ ± 3β

γ
coth2ξ (27)

where ξ = kx−
√

α2k2 + βt, and α, β, γ and k are free constants. The velocity of the wave
solution Equations (24)–(27) is

√
α2k2 + β/k.

Set05: When a0 = 3β
γ , a1 = 0, a2 = − 3β

γ , b1 = 0, b2 = 3β
γ , ω =

√
α2k2 − β, we

achieve the solutions

H9(ξ) =
3β

γ
± i

3β

γ
tanh ξ sec hξ ±

(
−3β

γ

)
tanh2ξ (28)
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and

H10(ξ) =
3β

γ
± 3β

γ
cothξ cschξ ±

(
−3β

γ

)
coth2ξ (29)

where ξ = kx−
√

α2k2 − βt, and α, β, γ and k are arbitrary constants.
Set06: When a0 = 3β

γ , a1 = 0, a2 = b2 = − 3β
γ , b1 = 0 , ω =

√
α2k2 − β, we derive

the following solutions

H11(ξ) =
3β

γ
± i
(
−3β

γ

)
tanhξ sec hξ ±

(
−3β

γ

)
tanh2ξ (30)

and

H12(ξ) =
3β

γ
±
(
−3β

γ

)
cothξ cschξ ±

(
−3β

γ

)
coth2ξ (31)

where ξ = kx−
√

α2k2 − βt, and α, β, γ and k are random constants. The velocity of the
wave solutions Equations (28)–(31) is

√
α2k2 − β/k.

3.3. Multi-Soliton via Burgers’ Equation

In this part, we derive the multi-soliton solution to the KGM via the Burger model as
an auxiliary equation. The balance number of Equation (13) is n = 2, so the trial solution
can be written as

H(ξ) = l0 + l1B(ξ) + l2B2(ξ). (32)

Differentiating Equation (32) twice with thehelp of Equation (12) and setting these into
Equation (13) yields a set of algebraic equations. Solving the sets for l0, l1, l2 and ωi yields

Set01: l0 = 0, l1 = 6β

γ
n
∑

j=1
kj

, l2 = −6β

γ
n
∑

j=1
k2

j

, ω =
√

α2k2 − β

Set02: l0 = β
γ , l1 = −6β

γ
n
∑

j=1
kj

, l2 = 6β

γ
n
∑

j=1
k2

j

, ω =
√

α2k2 + β

Utilizing Set01 and Set02 in the Equation (32) together with Equation (11), we achieve
n-soliton solutions as follows:

U(x, t) =
6β

γ
n
∑

j=1
k j

n
∑

j=1
k je

kjx−ωjt

1 +
n
∑

j=1
ekjx−ωjt

− 6β

γ
n
∑

j=1
k j


n
∑

j=1
k je

kjx−ωjt

1 +
n
∑

j=1
ekjx−ωjt


2

, ωj =
√

α2k2
j − β. (33)

U(x, t) =
β

γ
− 6β

γ
n
∑

j=1
k j

n
∑

j=1
k je

kjx−ωjt

1 +
n
∑

j=1
ekjx−ωjt

+
6β

γ
n
∑

j=1
k j


n
∑

j=1
k je

kjx−ωjt

1 +
n
∑

j=1
ekjx−ωjt


2

, ωj =
√

α2k2
j + β. (34)

Remark 1. All of the obtained solutions were verified by returning them to Equation (1) with the
computational software Maple and found to be correct. A numerical solver can compare their results
with our obtained solutions.

4. Results and Discussions

In this part, we physically explain and discuss the features of the solutions of the
quadratic nonlinear KGM via the GKM and the EShGE technique in 3-D graphics and
contour plots.
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4.1. Physical Descriptions for the Solutions of the KGM via the GKM

We present here dynamic properties, such as the rogue type, bright bell, and dark
bell envelopes, of the required solutions for the model via the KG scheme. Solution (15)
demonstrates both solitonic and breather generation of rogue-type wave propagations for
dissimilar conditions of the involved parameters. For the condition α2k2 + β < 0, the wave
transformation presents as the intricate function, which is why the real and imaginary
components of Equation (15) behaved as periodic rogue-type propagation. The profile and
the particle density of the periodical rogue-form wave are demonstrated in Figure 1a (the
real component) and Figure 1b (the imaginary component). Each rogue shape holds two
elevation peaks and two deep humps, which are shown in the corresponding density plots
under the 3D shapes. For the second condition, α2k2 + β > 0, solution (15) presents the real
function and reveals the bell envelope soliton solution, and it displayed a bright bell-shape
nature in favor of γ > 0 (Figure 1c), but a dark bell-shape nature with γ < 0 (Figure 1d).

Figure 1. Four-petal rogue shape of Equation (15) for the values of parameters α = γ = h = b0 = b1 =

k = 1, β = −2: (a) real part of (15), whose 3D plot is above and density plot is below, (b) imaginary
part of (9), whose 3D plot is above and density plot is below. Bell soliton solution (15) for the values
of the parameters α = 1.25, h = b0 = b1 = k = β = 1: (c) Bell-shape bright wave amid γ = 1 > 0,
(d) Bell-shape dark wave amid γ = −1 < 0.

Solution (16) demonstrated solitonic as well as periodical rogue waves due to the dis-
tinct conditions of involved parameters. Under the condition α2k2− β < 0, the propagation
transformation presented the intricate function, and each component in Equation (16) be-
haved by the way of periodical rogue-type propagation (See Figure 2a: real part, Figure 2b:
imaginary part). This is different from Figure 1a,b, as each rogue held three height cusp
peaks and two deep humps that are shown in their corresponding density plots under
the 3D shapes (see the density plot in Figure 2a,b). Again, for the condition α2k2 − β > 0,
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solution (16) presents the real-valued function and exhibits a kink soliton (shock wave)
solution bright for γ > 0 (Figure 2c) and dark for γ < 0 (Figure 2d).

Figure 2. Four-petal rogue shape of Equation (16) for the values of the parameters α = γ = h =

b0 = b1 = k = 1, β = 3: (a) Real part of (16), whose 3D plot is above and density plot is below,
(b) imaginary part of (16): 3D profile is above and density profile is below. Topological kink soliton
solution (16) for the values of the parameters α = 1.25, γ = h = b0 = b1 = β = 1, k = 2: (c) Bright
kink soliton with γ = 1 > 0, (d) dark kink soliton with γ = −1 < 0.

The other solutions (17) and (18) both exhibit solitonic and periodic rogue waves,
which were similar to (15). Solution (17) represented a rogue wave for ω2 − β < 0 and
bell wave for ω2 − β > 0, which was bright for γ > 0 and dark for γ < 0. Solution (18)
represents a rogue wave for ω2 + β < 0 and bell wave for ω2 + β > 0, which was bright
for γ > 0 and dark for γ < 0. Since the natures of the other solutions were identical to
Figure 1a–d, we ignored them for convenience.

4.2. Physical Descriptions for the Solutions of the KGM via the EShGE Technique

We present here the dynamic properties, such as the rogue shape, bright bell, and
dark bell-shaped solitons of the required resolutions for the model via the EShGE scheme.
Solutions (20) and (21) describe shock waves, and (21) and (23) exhibit singular solitons. All
the solutions had solitonic ad well as periodical rogue waves to apply, unlike the conditions
of the existing parameters.

Solutions (20) and (21) represent rogue waves for 4α2k2 − β < 0, and bell waves for
4α2k2 − β > 0, which were bright for γ > 0 and dark for γ < 0. Solutions (22) and (23)
represent rogue waves for 4α2k2 + β < 0, and bell waves for 4α2k2 + β > 0, which were
bright for γ > 0 and dark for γ < 0. The natures of the other identical solutions were
ignored as they had the same characteristics, similar to Figure 1a–d.
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The other solutions (24), (26), (28), and (30) describe shock waves, and (25), (27), (29),
and (31) exhibit singular solitons. All the solutions had solitonic as well as periodic rogue
waves for dissimilar conditions of the involved parameters. Due to α2k2 + β < 0, the
erratic transformation presented an intricate function, and a component of Equation (24)
behaved as periodic rogue-type propagation. The profile and the particle density of the
periodical rogue shapes are shown in Figure 3a (real component) and Figure 3b (imaginary
component). Again for α2k2 + β > 0, solution (24) exhibited the bell-type soliton solution,
whose real part exhibited a dark bell (see Figure 3c) and imaginary part exhibited a bright–
dark nature (see Figure 3d) for γ > 0. However, for γ < 0, the real part exhibited only a
bright bell (see Figure 3e) and the imaginary part behaved as dark–bright (see Figure 3f).
As the profile of the other solutions was similar to that of Figure 3, we ignored them
for convenience.

Figure 3. Four-petal rogue wave of solution (24) for the values α = k = γ = 1, β = −3: (a) Real part
of (24), whose 3D plot is above and density plot is below, (b) imaginary part of (24): 3D profile is
above and density profile is below. Bell soliton solution (24) of the values α = k = β = 1: (c) Real
part of (24) with a dark bell wave, (d) imaginary part with a bright–dark bell wave with γ = 1 > 0.
For γ = −1 < 0: (e) Real part of (24) with a bright bell wave, (f) imaginary part with a dark–bright
bell wave.

4.3. Physical Descriptions for the Multi-Soliton Solutions of the KGM

We present here the dynamic-properties multi-soliton solution derived in Section 3.3.
Both solutions (33) and (34) exhibited similar behaviors. For n = 1, 2, 3, . . . , n, provide one,
two, three and so on upto n-solitons. In Figure 4, we present a few finite interactions of two
and three solitons only. Here, we experience a non-elastic collision of solitons. Figure 4a
shows that, before interaction (t < 0), there was only one kink, but after collision (t > 0), a
single kink split into double kinks. Figure 4b shows that, before interaction (t < 0), there
was a kink and a bell wave, but after collision (t > 0), it split into a double kink and a
bell wave.
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Figure 4. Four-petal rogue wave of solution (33) for the values α = k1 = 1, γ = β = −1 : (a) Single
kink splits into two kink waves for k2 = −2, n = 2, (b) kink–bell soliton split into two kinks and a
bell soliton for n = 3, k2 = −1.5, k3 = −2.

Remark 2. Anyone can see that the same solution reduces to another nature for the opposite sign of
parametric conditions, which were discussed in the results and discussions section. The methods
being performed with the help of a particular auxiliary equation is the limitation of our work.

5. Comparison

We observed that Agom and Ogunfiditimi [30] used a modified Adomian decomposi-
tion method to solve the quadratic nonlinear KGM and derived only periodic solutions.
Additionally, Zhang [31] used the Exp-function method to solve the same KGM and found
periodic and soliton solutions only. He had no parametric conditions and did not explain
when, why, and which type of solitonic nature arose in his achieved solutions. In our inves-
tigation, we obtained bright-bell, dark-bell, and combined bright–dark bell-shaped solitons,
combined dark–bright bell-shaped solitons, and periodic rogue-wave solutions. We use
a different technique to derive a multi-soliton solution with the help of the Burger model
and derived such non-elastic solitons, which were not found in previous literature with the
auxiliary equation method. We also settled the parametric conditions for which one type of
solitonic solution reduces to another type of solitonic nature in the previous section.

6. Conclusions

We successfully achieved a number of solitary envelope solutions of the quadratic
nonlinear KGM in this manuscript. The results were obtained by means of reliable mathe-
matical tools: the GKM and the EShGE technique. The methods play a substantial role in
deriving exciting soliton solutions interms of exponential functions. To apply different con-
ditions to the existing parameters in the solutions, we constructed kink, anti-kink soliton,
periodic rogue waves, bright bell, dark bell, combined bright–dark bell, combined dark–
bright bell-shaped solitons, and multi-soliton solutions. The application of a few methods
was restricted in obtaining periodic, kink, and bell soliton solutions in Refs. [30–34] only,
but we acquired similar symmetric and non-symmetric periodic solitons, even a rogue-
type breather wave solution, for this model via three schemes. We present and explain
their natures in 3D profiles and contour plots. The importance of the dark, bright, and
rogue soliton solutions has been clearly discussed in the literature [21–24] for the field of
Bose–Einstein condensates only. Since the KGM (1) arises in different numerous scientific
applications in relativistic quantum fields, such as the transmission of disruption and the
Bloch wall activity of magnets in crystals, magnetic flux on a Josephson line, and a ”splay
wave” through a membrane, we think that our solutions can explain and be important for
all such fields of KGM. The physical elucidation of the required solutions was described
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with various adoptable parameters in quantum field theories. Moreover, the results and
their graphical representations are highly interesting and applicable in solid-state physics
and quantum field theories. Bifurcation analysis of the quadratic nonlinear KGM and the
derivation of various types of solitary wave solutions according to each energy orbit of
the phase portrait will be our next work. Numerical investigations of kinks carrying a
charge [43], multi-kinks [44], and compact lumps [45] in higher fields from Lagrangian and
direct experimental applications of obtained solutions in the mentioned fields will also be
our future task.
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