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Abstract: In this paper, we present an accurate numerical approach based on the reproducing
kernel method (RKM) for solving second-order fuzzy initial value problems (FIVP) with symmetry
coefficients such as symmetric triangles and symmetric trapezoids. Finding the exact solution of
FIVP is not an easy task since the definition will produce a complicated optimization problem. To
overcome this difficulty, a numerical method is developed to solve this type of problems. We start
by introducing the necessary definitions and theorems about the fuzzy logic. Then, we derived the
kernels for two Hilbert spaces. The RKM is derived for the second-order IVP in the Boolean sense,
and then we generalize it for the fuzzy sense. Numerical and theoretical results will be given to
obtain the accuracy of the developed technique. We solved four linear and non-linear fuzzy IVPs
numerically using the proposed method, and we compute the error in each case to show the efficiency
of the method. The absolute error was very small in the four examples.

Keywords: fuzzy initial value problems; convergence; reproducing kernel method

1. Introduction

In recent years, fuzzy logic has become attractive to many researchers due to its po-
tential applications in various fields, such as computer science [1], information science [2],
mathematics [3], engineering [4], economics [5], and business and finance [6]. Fuzzy
logic and fuzzy sets are powerful mathematical tools in modeling entropy systems, for
example, in industry, nature, and the humanities. Several researchers have studied the
fuzzy boundary value problems. For example, Sanchez et al. [7] discussed the fuzzy
solution for nonlinear fuzzy boundary value problem. Gong [8] illustrated discontinuous
FIVPs. Zhou et al. [9] illustrated numerous duality outcomes for fuzzy problems with
fuzzy coefficients. Tapaswini et al. [10] used the Galerkin method for solving nth-order FB-
VPs. Gumah et al. [11] used hybrid FODE with a RKM for FDE. Patel and Desai [12] used
Laplace transform to solve FIVPs. Diniz et al. [13] investigated the necessary conditions to
solve a fuzzy problems using Zadeh’s extension. Wu and Feng [14] used control problems
to explain a boundary-disturbed uncertain beam equation. Suhhiem [15] introduced a
modified method for solving second-order FDEs. Niu et al. [16] proposed a simplified
RKM to solve singular boundary value problems. Shah and Wang [17] developed a nu-
merical technique to solve fuzzy FDEs. Pradip [18] discussed a class of singular BVPs.
Wasques et al. [19] illustrated a numerical technique for higher FIVPs. Wasques et al. [20]
investigated FIVPs. Jeyaraj and Rajan [21] used RKM#4 to study FIVPs. Al-Refai et al. [22]
used the IHBM to solve FIVPs.

Several researchers study the RKM. For example, Kashkari and Syam [23] used the
RKM for solving Fredholm integro-differential equation (FIDE). Du et al. [24] developed an
RKM for solving FIDEs. Akgül [25] applied the RKM to FDEs. Akgül [26] investigated the
boundary layer flow of a Powell–Eyring non-Newtonian fluid over a stretching sheet by
RKM. A singular kernel is implemented by Sadamoto et al. [27] Gholami et al. [28] studied
the fuzzy inner product space. Mei [29] simplified the RKM to solve integral equations.
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Geng [30] investigated a class of singularly perturbed delay BVPs by RKM. Li and Wu [31]
constructed and applied reproducing kernels with polynomials. Moradi and Javadi [32]
used the RKM for studying oscillators under the damping effect. Alvandi and Paripour [33]
implemented the RKM for FIDEs. Arqub et al. [34] used RKM for studying FIDEs.
Saadeh et al. [35] implemented an iterative RKM to solve BVPs. Qi et al. [36] introduced
an RKM for solving FBVPs.

The purpose of this paper is to find an accurate numerical solution of the fuzzy initial
value problems of a second order. The proposed methods, which are given in this article,
are of high orders of precision and are very close to the exact solutions. Another advantage
to these methods is that they can be implemented even when it is impossible to find the
exact solution in the closed form. To reach this target, the reproducing kernel method
will be applied to second-order initial value problems. Then, the suggested methods
will be elaborated to solve the fuzzy type of these problems using some properties of
fuzzy operations. Moreover, the convergence of the suggested method will be examined.
In addition, various examples to represent the accuracy of the suggested methods are
demonstrated. It is worth mentioning that these numerical methods can be used for other
fuzzy problems such as fuzzy eigenvalue problems and fuzzy boundary value problems
when we combine them with the shooting method.

We divide this paper into five sections. This section is devoted to the literature
review, while, in Section 2, we present the necessary preliminaries which we will use. We
present the RKM for solving second-order fuzzy IVPs with symmetric coefficients, such as
symmetric triangles and symmetric trapezoids, in Section 3. In Section 4, we present some
numerical results, and finally, we draw some conclusions in Section 5.

2. Preliminaries

In this section, the definition of fuzzy number and the differentiation of fuzzy functions
with related definitions and theorems will be illustrated

Definition 1 ([37]). Let < be the set of real numbers. A fuzzy number is a function µ : < → [0, 1]
with the following:

1. µ is normal, i.e., µ(c) = 1 for some c ∈ <;
2. µ is a fuzzy convex, i.e., µ(θc1 +(1− θ)c2) ≥ min{µ(c1), µ(c2)} for all θ ∈ [0, 1], c1, c2 ∈ <;
3. µ is upper semi-continuous on <,;
4. {x ∈ < : µ(x) > 0} is compact.

Let F< be the collection of all fuzzy numbers.

Next, the α− cut of a fuzzy number will be illustrated.

Definition 2 ([2]). Let µ ∈ F<. Then, the α−cut set µα for α ∈ (0, 1] is

µα = {x ∈ < : µ(x) ≥ α},

and
µ0 = {x ∈ < : µ(x) > 0}.

Definition 3 ([3]). Let A and B be two subsets of <. Then, the Hausdorff metric dH is given as:

dH(A, B) = max

{
sup
x∈A

inf
y∈B
‖x− y‖, sup

y∈B
inf
x∈A
‖x− y‖

}
.

Then, the metric dF on F< is given as:
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dF(u, v) = sup
α∈[0,1]

{dH(uα, vα), uα, vα ∈ F<},

= sup
α∈[0,1]

max{ |uα − vα|, |uα − vα| }.

Theorem 1 ([4]). (F<, dF) is a complete metric space such that for all u, v, w, z ∈ F<, λ ∈ <:

dF(u⊕ w, v⊕ w) = dF(u⊕ v),

dF(λ� u, λ� w) = |λ|dF(u, w),

dF(u⊕ v, w⊕ z) ≤ dF(u⊕ w) + dF(v⊕ z).

Definition 4 ([37]). The Hukhara difference of two fuzzy numbers, a and b, is c = a	H b if

c⊕ b = a.

Definition 5 ([5]). Let X be a subset of <. A fuzzy function F : X → F< is called H-differentiable
at x0 ∈ X if and only if the following limit exists and equals D f (x0):

D f (x0) = lim
∆→0+

1
∆
� ( f (x0 + h)	H f (x0)),

= lim
∆→0+

1
∆
� ( f (x0)	H f (x0 − ∆)).

If f is Hukuhara differentiable for all x ∈ X, then f is H-differentiable on X.

Theorem 2 ([6]). Let f (x) : I → F< be a fuzzy function defined by

f (x) = u� h(x),

where u is a fuzzy number and I = (u, v) ⊂ <. Let h : I → <+ be differentiable function at x ∈ I.
If h′(x) > 0, then:

f ′(x) = u� h′(x). (1)

Theorem 3 ([37]). Let f : M → F< be an H-differentiable at x0 with derivative f
′
(x0), where

M ⊂ < and x0 ∈ M. Then, f ′α(x0) =
[

f
′
(x0), f̄ ′(x0)

]
and f (x), f (x) are differentiable at x0 for

all α ∈ [0, 1].

Now, consider the following fuzzy differential equation:

y′′ = f
(
t, y, y′

)
, a < t < b, (2)

If Equation (2) is a linear problem, then it can be written as:

a(t)y′′ + b(t)y′ + c(t)y = r(t), a < t < b,

where a, b, c, and r are fuzzy functions. Since the functions are fuzzy, then the linear fuzzy
problem can be written in the α-cut format as:[

aα(t), aα(t)][y′′(t), y′′(t)
]
+
[
bα(t), bα(t)][y′α(t), y′α(t)

]
+ [cα(t), cα(t)]

[
y

α
(t), yα(t)

]
= [rα(t), rα(t)].
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Thus, we will obtain two complicated optimization problems:

min
{

aαy′′, aαy′′, aαy′′, aαy′′
}
+ min

{
bαy′, bαy′α, bαy′

α
, bαy′α

}
+min

{
cαy

α
, cαyα, cαy

α
, cαyα

}
= rα(t),

and
max

{
aαy′′, aαy′′, aαy′′, aαy′′

}
+ max

{
bαy′, bαy′α, bαy′

α
, bαy′α

}
+max

{
cαy

α
, cαyα, cαy

α
, cαyα

}
= rα(t).

The above min–max problems are difficult to solve and sometimes not possible. For this
reason, a numerical method to solve Problem (2) will be given.

3. Second-Order Fuzzy Initial Value Problems

In this section, linear and nonlinear second-order fuzzy initial value problems will be
discussed. First, let us define the operation � for any a ∈ < and the α-cut of b as follows:

a� [b1,α, b2,α] =

{
[ab1,α, ab2,α], a ≥ 0
[ab2,α, ab1,α], a < 0

.

Consider the following linear second order FIVP:

y′′ + a(x)y′ + b(x)y = c(x), 0 6 x 6 1, (3)

y(0) = β̂, (4)

y′(0) = γ̂, (5)

where β̂ and γ̂ are symmetric fuzzy numbers a(x), b(x) is a continuous functions on [0, 1],
and c(x) is fuzzy function. Let the α-cuts of y′(x), y(x), c(x), β̂, and γ̂ be given by:

y′α(x) =
[
y′1α(x), y′2α(x)

]
,

yα(x) = [y1α(x), y2α(x)],
β̂ = [β1, β2],
γ̂ = [γ1, γ2],

and
cα(x) = [c1α(x), c2α(x)].

To solve Problem (3)–(5), four cases should be implemented.
Case l: Let a(x) > 0, b(x) > 0 for all x ∈ [0, 1]. Then,[

y′′1α(x), y′′2α(x)
]
+ a(x)�

[
y′1α(x), y′2α(x)

]
+ b(x)� [y1α(x), y2α(x)] = [c1α(x), c2α(x)],

which produces the following system of non-homogeneous IVPs:

y′′1α(x) + a(x)y′1α(x) + b(x)y1α(x) = c1α(x), y1(0) = β1, y′1(0) = γ1, (6)

and
y′′2α(x) + a(x)y′2α(x) + b(x)y2α(x) = c2α(x), y2(0) = β2, y′2(0) = γ2. (7)

Case 2: Let a(x) > 0, b(x) < 0 for all x ∈ [0, 1]. Then,[
y′′1α(x), y′′2α(x)

]
+ a(x)�

[
y′1α(x), y′2α(x)

]
+ b(x)� [y1α(x), y2α(x)] = [c1α(x), c2α(x)],

which implies that

y′′1α(x) + a(x)y′1α(x) + b(x)y2α(x) = c1α(x), y1α(0) = β1, y′1α = γ1, (8)
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and
y′′2α(x) + a(x)y′2α(x) + b(x)y1α(x) = c2α(x), y2α(0) = β2, y′2α = γ2. (9)

Let

Yα(x) =
(

y1α(x)
y2α(x)

)
, Cα(x) =

(
c1α(x)
c2α(x)

)
,

λ =

(
β1
β2

)
, λ′ =

(
γ1
γ2

)
, B(x) =

(
0 b(x)
b(x) 0

)
.

Then, Equations (8) and (9) can be written in the matrix form as:

Y′′α (x) + a(x)Y′α(x) + B(x)Yα(x) = Cα(x), Yα(0) = λ, Y′α(0) = λ′, (10)

where B is symmetric matrix.
Case 3: Let a(x) < 0, b(x) > 0 for all x ∈ [0, 1]. Then,[

y′′1α(x), y′′2α(x)
]
+ a(x)�

[
y′1α(x), y′2α(x)

]
+ b(x)� [y1α(x), y2α(x)] = [c1α(x), c2α(x)],

which implies that

y′′1α(x) + a(x)y′2α(x) + b(x)y1α(x) = c1α(x), y1α(0) = β1, y′1α(0) = γ1, (11)

y′′2α(x) + a(x)y′1α(x) + b(x)y2α(x) = c2α(x), y2α(0) = β2, y′2α(0) = γ2. (12)

Let

Yα(x) =
(

y1α(x)
y2α(x)

)
, Cα(x) =

(
c1α(x)
c2α(x)

)
,

λ =

(
β1
β2

)
, λ′ =

(
γ1
γ2

)
, A(x) =

(
0 a(x)
a(x) 0

)
.

Then, Equations (11) and (12) can be written in the matrix form as:

Y′′α (x) + A(x)Y′α(x) + b(x)Yα(x) = Cα(x), Yα(0) = λ, Y′α(0) = λ′, (13)

where A is a symmetric matrix.
Case 4: Let a(x) < 0, b(x) < 0 for all x ∈ [0, 1].[

y′′1α(x), y′′2α(x)
]
+ a(x)�

[
y′1α(x), y′2α(x)

]
+ b(x)� [y1α(x), y2α(x)] = [c1α(x), c2α(x)],

which implies that

y′′1α(x) + a(x)y′2α(x) + b(x)y2α(x) = c1α(x), y1α(0) = β1, y′1α(0) = γ1, (14)

y′′2α(x) + a(x)y′1α(x) + b(x)y1α(x) = c2α(x), y2α(0) = β2, y′2α(0) = γ2. (15)

Let

Yα(x) =
(

y1α(x)
y2α(x)

)
, Cα(x) =

(
c1α(x)
c2α(x)

)
,

λ =

(
β1
β2

)
, λ′ =

(
γ1
γ2

)
, A(x) =

(
0 a(x)
a(x) 0

)
B(x) =

(
0 b(x)
b(x) 0

)
.
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Then, Equations (14) and (15) can be written in the matrix form as:

Y′′α (x) + A(x)Y′α(x) + B(x)Yα(x) = Cα(x), Yα(0) = λ, Y′α(0) = λ′. (16)

Thus, we can summarize the four cases as follows. The linear system of non-homogeneous
IVPs is:

Y′′α (x) + A(x)Y′α(x) + B(x)Yα(x) = Cα(x), Yα(0) = λ, Y′α(0) = λ′, (17)

where

Yα(x) =
(

y1α(x)
y2α(x)

)
, Cα(x) =

(
c1α(x)
c2α(x)

)
,

λ =

(
β1
β2

)
, λ′ =

(
γ1
γ2

)
, A(x) =

(
µ1a(x) µ2a(x)
µ2a(x) µ1a(x)

)
B(x) =

(
γ1b(x) γ2b(x)
γ2b(x) γ1b(x)

)
,

such that µ1 = 1 and µ2 = 0 if a(x) ≥ 0 while µ1 = 0 and µ2 = 1 if a(x) < 0. In addition,
γ1 = 1 and γ2 = 0 if b(x) ≥ 0, while γ1 = 0 and γ2 = 1 if b(x) < 0, where A and B are
symmetric matrices.

Now, consider the following general form of theFIVP:

y′′ = f
(
x, y, y′

)
, 0 6 x ≤ 1,

subject to
y(0) = β̂, y′(0) = γ̂.

Let the α-cut of y(x), y′(x), y′′(x), β̂, γ̂, and f (x, y, y′) be given by

yα(x) = [y1α(x), y2α(x)], y′α(x) =
[
y′1α(x), y′2α(x)

]
,

y
′′
α(x) =

[
y′′1α(x), y′′2α(x)

]
, β̂ = [β1α, β2α], γ̂ = [γ1α, γ2α],

fα

(
x, y, y′

)
=
[

f1α

(
x, y, y′

)
, f2α

(
x, y, y′

)]
,

where
f1α

(
x, y, y′

)
= min

{
f (x, u, v) : u ∈ [y1α, y2α], v ∈

[
y
′
1α, y

′
2α

]}
,

and
f2α

(
x, y, y′

)
= max

{
f (x, u, v) : u ∈ [y1α, y2α], v ∈

[
y
′
1α, y

′
2α

]}
.

Then,
y′′1α = f1α

(
x, y, y′

)
, y1α(0) = β1α, y

′
1α(0) = γ1α,

and
y′′2α = f2α

(
x, y, y′

)
, y2α(0) = β2α, y

′
2α(0) = γ2α.

As we see from the previous discussion, the FIVP will produce a system of two IVPs. To
solve this system, we will use the RKM.

Definition 6 ([38,39]). Let F 6= ∅. A function Q : F × F → C is called a reproducing kernel
function of the Hilbert space H if and only if:

(a) Q(·, t) ∈ H, t ∈ F;
(b) 〈ϕ, Q(·, t)〉 = ϕ(t), t ∈ F, ϕ ∈ H.

A Hilbert space which possesses a reproducing kernel is called a reproducing kernel Hilbert space.
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Definition 7. Let W1
2 [0, 1] = {w : w be an absolutely continuous real-valued function on

[0, 1], w
′
,

w
′′ ∈ L2[0, 1]}.

The inner product in W1
2 [0, 1] is symmetric and is defined as:

(w(x), v(x))W1
2 [0,1] = w(0)v(0) +

∫ 1

0
w′(x)v′(x)dx, (18)

and its norm is defined as:

‖w‖W1
2 [0,1] =

√
(w(x), w(x))W1

2 [0,1], (19)

where w, v ∈W1
2 [0, 1].

Theorem 4. The Hilbert space W1
2 [0, 1] is a reproducing kernel, and its reproducing kernel function

Ry(x) can be defined by:

Ry(x) =
{

1 + x, x 6 y
1 + y, x > y

.

Proof. Let

w(y) =
(
w(x), Ry(x)

)
= w(0)Ry(0) +

∫ 1

0
w′(x)R′y(x)dx. (20)

Using integration by parts, we obtain:

w(y) = w(0)Ry(0) + R′y(1)w(1)− R′y(0)w(0)−
∫ 1

0
w(x)R(2)

y (x)dx.

Therefore:
Ry(0)− R′y(0) = 0, (21)

R′y(1) = 0. (22)

Thus:

w(y) =
〈
w(x), Ry(x)

〉
= −

∫ 1

0
w(x)R(2)

y (x)dx.

Hence:

−R(2)
y (x) = δ(x− y) =

{
1, if x = y
0, if x 6= y

.

Hence:

Ry(x) =
{

C1(y) + C2(y)x, y ≥ x
d1(y) + d2(y)x, y < x

.

Since −R(2)
y (x) = δ(x− y), then

Ry(y+) = Ry(y−), (23)

and
∂Ry(y+)

∂y
−

∂Ry(y−)
∂y

= −1. (24)

For simplicity, let Ci(y) = Ci and di(y) = di for i = 1, 2. Solve system (20)–(23) to obtain:

C1 − C2 = 0,

C1 + C2y = d1 + d2y,

d2 − C2 = −1,

d2 = 0.
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Then,
C1(y) = 1, C2(y) = 1, d1(y) = 1 + y, d2(y) = 0.

Then, the kernel is symmetric and given by:

Ry(x) =
{

1 + x, y > x
1 + y, x > y

.

Definition 8. Let W3
2 [0, 1] = {w : w, w′, w

(2)
be absolutely continuous real-valued functions on

[0, 1], w
(i) ∈ L2[0, 1] for i = 3, 4, 5, 6, w(0) = w′(0) = 0} with the following inner product:

〈w(x), v(x)〉 = w(0)v(0) + w′(0)v′(0) + w(1)v(1) +
∫ 1

0
w(3)(x)v(3)(x)dx, w, v ∈W3

2 [0, 1],

and the norm
‖w‖W3

2
=
√
〈w, w〉W3

2
.

Theorem 5. The Hilbert space W3
2 [0, 1] is a reproducing kernel space and its reproducing kernel

function Ry(x) can be defined by

Ry(x) =


− x2

y2 , x ≤ y
1

120 y5 − 1
24 xy4 + y5−12

12y2 x2 − 1
12 x3y2

+ 1
24 x4y2 − 1

120 x5y2, x > y

.

Proof. Let

w(y) =
〈
w(x), Ry(x)

〉
= w(0)Ry(0) + w′(0)R′y(0) + w(1)Ry(1) +

∫ 1

0
w(3)(x)R(3)

y (x)dx.

Integrate by parts three times to obtain:

〈
w, Ry

〉
= w(0)Ry(0) + w′(0)R′y(0) + w(1)Ry(1) + w(2)(1)R

(3)

y (1)− w
(2)
(0)R

(3)

y (0)

−w
′
(1)R(4)

y (1) + w′(0)R(4)
y (0) + w(1)R(5)

y (1)− w(0)R(5)
y (0)−

∫ 1

0
w(x)R(6)

y (x)dx.

Substitute the conditions w(0) = w′(0) = 0 to obtain:

w(y) = w(1)Ry(1) + w
(2)
(1)R

(3)

y (1)− w
(2)
(0)R

(3)

y (0)− w
′
(1)R(4)

y (1)

+w(1)R(5)
y (1)−

∫ 1

0
w(x)R(6)

y (x)dx.

Let
Ry(1)− R(5)

y (1) = 0, (25)

R(3)
y (1) = 0, (26)

R(3)
y (0) = 0, (27)

R
(4)

y (1) = 0. (28)

Thus, under these conditions, we obtain:

w(y) = −
∫ 1

0
w(x)R(6)

y (x)dx. (29)
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Then,
−R(6)

y (x) = δ(x− y),

where

δ(x− y) =
{

1 if x = y
0 if x 6= y

.

Thus,

Ry(x) =
{

∑6
i=1 C1(y)xi−1 x 6 y

∑6
i=1 di(y)xi−1 x > y

.

Since
−R(6)

y (x) = δ(x− y),

then
∂kRy(y+)

∂yk =
∂KRy(y−)

∂yk , for k = 0, 1, 2, 3, 4, (30)

and
∂5Ry(y+)

∂y5 −
∂5Ry(y−)

∂y5 = −1. (31)

Since Ry ∈W3
2 [0, 1], then

Ry(0) = 0, (32)

and
R′y(0) = 0. (33)

Then, we obtain the following system:

6C4 = 0,

4!d5 + 5!d6 = 0,

6d4 + 24d5y + 60d6y2 = 0,

d1 + d2y + d3y2 + d4y3 + d5y4 + d6y5 − 5!d6 = 0,

C1 + C2y + C3y2 + C4y3 + C5y4 + C6y5 = d1 + d2y + d3y2 + d4y3 + d5y4 + d6y5,

C2 + 2C3y + 3C4y2 + 4C5y3 + 5C6y4 = d2 + 2d3y + 3d4y2 + 4d5y3 + 5d6y4,

2C3 + 6C4y+12C5y2 + 20C6y3 = 2d3 + 6d4y + 12d5y2 + 20d6y3,

6C4 + 24C5y + 60C6y2 = 6d4 + 24d5y + 60d6y2,

24C5 + 120C6y = 24d5 + 120d6y,

120d6 − 120C6 = −1,

C1 = 0,

C2 = 0.

Thus,

C1(y) = 0, C2(y) = 0, C3(y) = −1
y2 , C4(y) = 0,

C5(y) = 0, C6(y) = 0, d1(y) = 1
120 y5,

d2(y) = − 1
24 y4, d3(y) =

y5−12
12y2 , d4(y) = − 1

12 y2,

d5(y) = 1
24 y2, d6(y) = − 1

120 y2.

Then,

Ry(x) =


− x2

y2 , x ≤ y
1

120 y5 − 1
24 xy4 + y5−12

12y2 x2 − 1
12 x3y2

+ 1
24 x4y2 − 1

120 x5y2, x > y

.
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Consider the following system of a second-order initial value problem:

u
′′
+ A(x)u′ + B(x)u = f (x, u, u′), 0 ≤ x ≤ 1, (34)

with
u(0) = 0, u

′
(0) = 0, (35)

when A and B are symmetric matrices, p, q ∈ C2(0, 1), and f ∈ L2[0, 1]. We can obtain
homogeneous initial conditions by using a change in variables. Thus,

(Lu)(x) = f (x, u, u′), 0 ≤ x ≤ 1 (36)

with
u(0) = u

′
(0) = 0, (37)

where

Lu =
d2u
dx2 + A(x)

du
dx

+ B(x)u′, (38)

and
L : W3

2 [0, 1]→W1
2 [0, 1]. (39)

Then,

L(µu + v)(x) =
d2

dx2 (µu + v)(x) + A(x)
d

dx
(µu + v)(x) + B(x)(µu + v)(x),

= µ
d2

dx2 u(x) + µA(x)
d

dx
u(x) + µB(x)u(x) +

d2

dx2 v(x),

+A(x)
d

dx
v(x) + B(x)v(x),

= µL(u)(x) + L(v)(x),

where µ is constant. Then, L is the linear operator.

Theorem 6. The linear operator L is a bounded linear operator.

Proof. By Equation (19), we have:

‖Lw‖2
W1

2
= 〈Lw, Lw〉W1

2
=
∫ 1

0
‖Lw′(x)‖2 dx + ‖Lw(0)‖2.

By Theorem (5), we have:
w(x) = 〈w(·), Rx(·)〉W3

2
,

and
Lw(x) = 〈w(·), LRx(·)〉W1

2
.

By the Cauchy–Schwartz inequality,

‖Lw(x)‖ ≤ ‖w‖W3
2
‖LRx‖W1

2
= M1‖w‖W3

2
,

where M1 > 0 is a positive constant. Thus,

‖(Lw)(0)‖2 ≤ M2
1‖w‖2

W3
2
.

Since
(Lw)′(x) =

〈
w(·), (LRx)

′(·)
〉

W1
2

,
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then
‖(Lw)′(x)‖ ≤ ‖w‖W3

2

∥∥∥(LRx)
′
∥∥∥

W3
2

= M2‖w‖W3
2
,

where M2 > 0 is a positive constant. We have

‖(Lw)′(t)‖2 ≤ M2
2‖w‖2

W3
2
,

and ∫ 1

0
‖(Lw)′(x)‖2 dx ≤ M2

2‖w‖2
W3

2
,

which implies that
‖Lw‖2

W1
2
≤ M‖w‖2

W3
2
,

where M = M2
1 + M2

2

Let {xi}∞
i=1 be a countable dense subset of [0, 1]. Let ϕi(x) = Rxi (x) and

ψi(x) = L∗ϕi(x), where L∗ is conjugate operator of L. Let
{

Ψ̂i(x)
}∞

i=1
⊂ W3

2 [0, 1] be

an orthonormal set of functions produced from {ψi(x)}∞
i=1 . Then,

ψ̂i(x) =
i

∑
k=1

βikψk(x), βii > 0, i = 1, 2, . . . .

Theorem 7. The exact solution of

u′′ = G(x, u, u′), 0 < x < 1, (40)

with
u(0) = u0, u′(0) = u1, (41)

then

u(x) =
∞

∑
i=1

i

∑
k=1

βikG
(
xk, uk, u′k

)
Ψ̂i(x), (42)

where {xi}∞
i=1 is dense in [0, 1].

Proof. Simple calculations imply that

u(x) =
∞

∑
i=1

〈
u(x), Ψ̂i(x)

〉
W3

2

Ψ̂i(x),

=
∞

∑
i=1

i

∑
k=1

βik〈u(x), Ψk(x)〉W3
2
Ψ̂i(x),

=
∞

∑
i=1

i

∑
k=1

βik〈u(x), L∗ϕk(x)〉W3
2
Ψ̂i(x),

=
∞

∑
i=1

i

∑
k=1

βik〈Lu(x), ϕk(x)〉W1
2
Ψ̂i(x),

=
∞

∑
i=1

i

∑
k=1

βik
〈

G(x, u, u′), Txk

〉
W1

2
Ψ̂i(x),

=
∞

∑
i=1

i

∑
k=1

βikG
(
xk, uk, u′k

)
Ψ̂i(x).
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4. Results

In this section, four examples will be discussed.

Example 1. Consider the following problem:

y
′′
+ y

′
= x2, 0 ≤ x ≤ 1,

subject to

y(0) = β̂,

y
′
(0) = γ̂,

where β̂ = (0, 1, 2) and γ̂ = (1, 2, 3). Then, the α− cut of y, y′, y′′, β̂, and γ̂ are

yα = [y1α, y2α], y
′
α = [y

′
1α, y

′
2α], y

′′
α = [y

′′
1α, y

′′
2α],

β̂ = [α, 2− α], γ̂ = [α + 1, 3− α].

Then,
y
′′

1α + y
′
1α = x2, yα(0) = α, y′α(0) = α + 1,

y
′′
2α + y′2α = x2, y2α(0) = 2− α, y′2α(0) = 3− α.

Then, the exact solution is

yα(x) =
[

2α + 1− (α + 1)e−x − 1
3

x3 − x2, 5− 2α− (3− α)e−x − 1
3

x3 − x2
]

.

Using n = 8, the absolute error in y1α and y2α are given in Table 1.

Table 1. The absolute errors in Example 1.

xk Abs. Error of y1α Abs. Error of y2α

0 0 0
0.1 2.3 × 10−14 2.4× 10−14

0.2 2.4× 10−14 2.5× 10−14

0.3 2.5× 10−14 2.6× 10−14

0.4 2.6× 10−14 2.7× 10−14

0.5 2.7× 10−14 2.8× 10−14

0.6 2.8× 10−14 3.1× 10−14

0.7 3.0× 10−14 3.2× 10−14

0.8 3.1× 10−14 3.4× 10−14

0.9 3.3× 10−14 3.6× 10−14

1 3.5× 10−14 3.8× 10−14

Example 2. Consider the following problem:

y′′ + (−1)� y′ + y = 1,

subject to
y(0) = β̂,
y′(0) = γ̂,

where β̂ = (−1, 0, 1) and γ̂ = (0, 1, 2). Then, the α-cut of y, g′, y′′, β̂, and γ̂ are:

yα = [y1α, y2α], y′α =
[
y′1α, y

′
2α

]
, y′′α

[
y′′1α, y

′′
2α

]
,

β̂ = [α− 1, 1 + α], γ̂ = [α, 2− α].
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Then,
y
′′
1α − y

′
2α + y1α = 1, y1α(0) = α− 1, y′1α(0) = α,

y
′
2α − y′1α + y2α = 1, y2α(0) = 1 + α, y′2(0) = 2− α.

Then, using Mathematica, the exact solution is

yα(x) =

−1
3

e−x/2

3 cos

[√
3x
2

]
+ 3ex cos

[√
3x
2

]
− 3αex cos

[√
3x
2

]
− 3ex/2 cos

[√
3x
2

]2

+3
√

3 sin

[√
3x
2

]
− 2
√

3α sin

[√
3x
2

]
− 3
√

3ex sin

[√
3x
2

]
+
√

3αet sin

[√
3t

2

]

−3ex/2 sin

[√
3x
2

]2
,−1

3
e−x/2

(
−3 cos

[√
3x
2

]
+ 3ex cos

[√
3x
2

]
− 3αet cos

[√
3x
2

]

−3ex/2 cos

[√
3x
2

]2

− 3
√

3 sin

[√
3x
2

]
+ 2
√

3α sin

[√
3x
2

]
− 3
√

3ex sin

[√
3x
2

]

+
√

3αex sin

[√
3x
2

]
− 3ex/2 sin

[√
3x
2

]2
.

Using n = 8, the absolute error in y1α and y2α are given in Table 2.

Table 2. The absolute errors in Example 2.

xk Abs. Error of y1α Abs. Error of y2α

0 0 0
0.1 3.4× 10−13 3.6× 10−13

0.2 3.6× 10−13 3.8× 10−13

0.3 3.9× 10−13 4.1× 10−13

0.4 4.2× 10−13 4.4× 10−13

0.5 4.5× 10−13 4.6× 10−13

0.6 4.8× 10−13 4.9× 10−13

0.7 5.2× 10−13 5.3× 10−13

0.8 5.6× 10−13 5.7× 10−13

0.9 5.9× 10−13 6.0× 10−13

1 6.2× 10−13 6.3× 10−13

Example 3. Consider the following problem:

y′′ = −
(
y′(x)

)2,

subject to
y(0) = β̂, y′(0) = γ̂,

where
β̂ = [α, 2− α], γ̂ = [1 + α, 3− α].

Then,
y′′1α(x) = f1α

(
x, y, y′

)
, y1α(0) = α, y

′
1α(0) = 1 + α,

and
y′′2a(x) = f2α

(
x1y, y′

)
, y2α(0) = 2− α, y′2α(0) = 3− α,

where
f
(
x, y, y′

)
= −

(
y′(x)

)2.
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Then, the exact solution is:

yα(x) = [ln((αeα + eα)x + ex), ln
(
(3e2−α − αe2−αx) + e2α

)
].

Then, using the method proposed in the previous section, one obtains:

y1αn(x) =
n

∑
i=1

i

∑
k=1

βikψ̂i(x) f1α

(
xk, yαk, y′αk

)
,

y2αn(x) =
n

∑
i=1

i

∑
k=1

βikψ̂i(x) f2α

(
xk, yαk, y′αk

)
,

where
f1α

(
xk, yαk , y′αk

)
= min

{
−ν2 : ν ∈ [y′1α

(
xk), y′2α(xk)

]}
,

and
f2α

(
xk, yαk , y′αk

)
= max

{
−ν2 : ν ∈ [y′1α

(
xk), y′2α(xk)

]}
.

Let n = 8. Let E1(xk) and E2(xk) be the absolute error in y1α and y2α, respectively. The results are
reported in Table 3.

Table 3. The absolute error of Example 3.

xk E1(xk ) E2(xk )

0 0 0
0.1 3.1× 10−12 2.9× 10−12

0.2 3.3× 10−12 3.2× 10−12

0.3 3.7× 10−12 3.5× 10−12

0.4 4.1× 10−12 3.9× 10−12

0.5 4.5× 10−12 4.3× 10−12

0.6 4.8× 10−12 4.7× 10−12

0.7 5.2× 10−12 5.1× 10−12

0.8 5.5× 10−12 5.4× 10−12

0.9 5.8× 10−12 5.7× 10−12

1 6.2× 10−12 6.0× 10−12

Example 4. Consider the following problem:

y′′ = x2 � y′(x)⊕ 2x� y(x)⊕ x� β̂,

subject to
y(0) = β̂ , y′(0) = γ̂,

where
β̂ = [1 + α, 3− α], γ̂ = [0, 0].

Then,
y
′′
1(x) = f1α

(
x, y, y′

)
, y1α(0) = 1 + α, y′1α(0) = 0,

and
y
′′
2α(x) = f2α

(
x, y, y′

)
, y2x(0) = 3− α, y2α(0) = 0,

where
f
(
x, y, y′

)
= x2 � y′(x)⊕ 2x� y(x)⊕ x� β̂.

Then, the exact solution is given by[(
e(x3/3) − 1

)
(1− α),

(
2e(x3/3) − 1

)
(3− α)

]
.
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Then using the method which proposed in the previous section, one obtains:

y1αn(x) =
n

∑
i=1

i

∑
k=1

βikψ̂i(x) f1α
(
xk, yαk, y′αk

)
,

y2an(x) =
n

∑
i=1

i

∑
k=1

βikψ̂i(x) f2α

(
xk, yαk, y′αk

)
,

where
f1α

(
xk, yαk, y′αk

)
= x2y′2α + 2xy1α + xβ1,

f2α

(
xk, yαk, y′αk

)
= x2y′2α + 2xy1α + xβ2.

Let n = 8. Let E1(xk) and E2(xk) be the absolute error in y1α and y2α, respectively. The results are
reported in Table 4.

Table 4. The absolute error of Example 4.

xk E1(xk ) E2(xk )

0 0 0
0.1 2.7× 10−14 2.5× 10−14

0.2 2.9× 10−14 2.7× 10−14

0.3 3.1× 10−14 2.8× 10−14

0.4 3.4× 10−14 3.0× 10−14

0.5 3.5× 10−14 3.2× 10−14

0.6 3.7× 10−14 3.4× 10−14

0.7 3.9× 10−14 3.7× 10−14

0.8 4.2× 10−14 3.9× 10−14

0.9 4.4× 10−14 4.1× 10−14

1 4.7× 10−14 4.4× 10−14

5. Conclusions

In this article, the reproducing kernel method has been presented for second-order
fuzzy initial value problems. It started with preliminaries about fuzzy numbers and
differentiation and then highlighted the direct method for solving fuzzy problems. When
the direct method was used to solve the problem, complicated optimization problems
that are difficult to solve appeared. The proposed method was based on an RKM and the
Gram Schmidt process. The structure of the RKM was explained and supported by several
examples. The numerical results showed the efficiency of the proposed method. The
absolute errors were computed using Mathematica. For future work, the fuzzy boundary
value problems should be investigated using RKM by implementing the shooting method.
Moreover, several applications for this method should be investigated, such as Fuzzy
Strum–Liouville problems and the delay fuzzy initial value problems. In addition, this
approach can be used to solve several fuzzy integral and differential equations such as
fuzzy integro-differential equations, fractional IVPs, fuzzy Cahn–Allen equations, and
fuzzy duffing modesl.
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