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Abstract: Geometrically uniform codes are fundamental in communication systems, mainly for
modulation. Typically, geometrically uniform codes are dependent on a given alphabet. The current
work establishes the necessary and sufficient conditions for obtaining a matched labeling between a
group G and a signal set S. It introduces the concept of the G-isometric signal set, allowing for the es-
tablishment of equivalences between different types of signal sets. In particular, we obtain isometries
between groups and geometrically uniform codes with a minimal generator. We also draw atten-
tion to the influence of the environment metric space, the group metric, and the matched mapping
on the labeling of a signal set. The results are valid for all environment metric spaces. The alphabet
emerges naturally from the relationship between the signal set S and the label group derived from its
symmetry group, Γ(S).

Keywords: geometrically uniform codes; matched labeling; signal sets; left invariant metric; groups;
signal constellations

1. Introduction

Forney [1] introduced the concept of geometrically uniform (GU) codes, which in-
cluded Lattice Codes and Slepian Group Codes [2]. The elements of the generator group
were regarded as arbitrary isometries of the Euclidean space Rn in that approach.
Then, it was possible to put together these two kinds of codes, which had little in common
and were treated separately until that time, as part of the same code class.

Besides encompassing these two categories of codes, Forney extended the process of
signal set partitioning created by Ungerboeck. This is a technique that brings significant
gains in signal coding and it was the starting point of coded modulation.
Furthermore, GU codes have good symmetry properties: all Voronoi’s regions are congru-
ent, the signals have the same error probability, and the distance profile is the same for each
signal, among others things.

Another important concept developed at the same time was “matched labeling”,
proposed by Loeliger [3]. This concept created a fairly adequate way to associate a signal
set with an appropriate algebraic structure. The main motivation was the search for certain
linearity to the code. Originally, code linearity was achieved by associating it with a
vector space structure or module. In more complex contexts, linearity occurs through
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an association via an application with the simplest possible algebraic structure. In this
work, the application is called matched labeling, and the algebraic structure used is the
group structure. In his main result, Loeliger proved that signal sets matched to groups
are equivalent to Slepian signals. He also demonstrated that if the group is commutative,
any set of signals is equivalent to phase modulation encoded with linear codes over ZM.
Both concepts were discussed in the context of Euclidean spaces, and they have a strong
relationship with each other. Loeliger proved that, under certain conditions, such concepts
are equivalent.

Because of the good characteristics of GU codes, several studies have been developed
to provide the theoretical basis necessary to extend them to larger classes of signal sets.

In this sense, for instance, signal labeling from a QAM constellation of cardinality
M by elements of a finite group coming from a finite field appeared in the works [4,5],
and only by elements of an additive group G of cardinality M that need not necessarily
come from a finite field, as shown in [6]. The alphabets in these papers are coset represen-
tatives derived from the quotient of integer rings by proper ideals. Labeling groups are
matched via a discrete Mannheim metric. These signal sets are subsets of signal spaces
identified by the integer rings Z[i] and Z[ω], where i and ω are the fourth and third roots
of unity, respectively.

The signals of these constellations in Z[i] and Z[ω] can be described geometrically
as a finite set of points coming from a set of barycenters of squares taken from a regular
tessellation by squares and by a set of barycenters of regular hexagons taken from a
hexagonal tessellation, respectively.

In addition, working in environments outside of the Euclidean space has proven to
be a very promising approach since certain properties of these spaces can be effectively
exploited in the design of new codes.

For instance, Albuquerque et al. [7] demonstrated that using two-dimensional surfaces
with genus g ≥ 2, it is possible to obtain a more efficient quantum error-correcting codes in
terms of error probability, and it is known that the inherent geometry of such surfaces is
hyperbolic geometry. In [8], Silva et al. introduced signal constellations in the hyperbolic
plane as an alternative to the traditional signal constellations in the Euclidean plane,
and such constellations were used to achieve better performance for the transmission of
digital signals, for example, in line power transmission. The regular tessellation {p, q}
exists in the hyperbolic plane, where q regular hyperbolic polygons with p sides meet
at each vertex if and only if (p − 2)(q − 2) > 4. Thus, there are an infinite number of
tessellations with regular polygons in hyperbolic space, whereas in Euclidean space there
are only three classes, given by squares, hexagons, and equilateral triangles. These are
some of the main features that make the hyperbolic space extremely conducive to the
construction of GU codes.

The authors of [9] proposed a generalization of the concept of geometrically uniform
codes from Euclidean to hyperbolic space, as well as a characterization of the equivalence
proved by Loeliger in [3] in both Euclidean and hyperbolic spaces, using the concept of
G-linearity. We recall that G-linearity is a generalization of the Z4-linearity, and it was
used in order to ensure the geometrical uniformity of nonlinear codes. An essential aspect
of this concept is the search for labeling between environment spaces instead of labeling
between codes [9,10]. A code S is G-linear if it is the image of a group code on G by an
isometry between the environment spaces (the formal definition of G-linearity will be given
in Section 2). In that approach, it is necessary to have a group G, a right invariant metric
(or bi-invariant metric in some cases) for G, and an alphabet.

Because the hyperbolic plane, unlike the Euclidean plane, lacks a vector space structure,
determining the group of labels for a signal constellation becomes more difficult when they
are characterized as a finite set of points derived from a set of barycenters of polygons taken
from a hyperbolic tessellation, because we must consider these signals as representing
lateral classes of a quotient group G′′ = G′/H. If we consider G′ as the symmetry group
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associated with signal points in the hyperbolic plane, then H must be a normal subgroup
in G′.

Gomes et al. [11] presented a systematic way of labeling geometrically uniform
codes in hyperbolic environments arising from surfaces. In this case, the authors worked
with triangular tilings on the double torus and, despite explicitly providing the labels
for the codes, the metric used was the hyperbolic metric coming from the ambient space.
There were no alternatives to labels with discrete metrics, which is a desirable feature in
many cases.

In this paper, we propose a general treatment of the metric, providing a necessary
and sufficient condition for an isometry between a group G and a signal set S to be con-
sidered a matched labeling. We present the definition of G-isometric signal set, which
allows us to connect the various concepts discussed in this work. Despite emphasiz-
ing through examples the hyperbolic case because of its rich properties and Euclidean
cases for historical reasons and applications, the results are valid for any metric space.
Another key aspect of the current proposal is the emphasis on the role of environment metric
space, the G group metric, and the matched map m : G → S in the signal set labeling process.
This new approach, unlike G-linearity, does not require an a priori alphabet. For the label-
ing process, the alphabet is obtained naturally from the relationship between the set S and
the group of labels derived from its symmetry group Γ(S). The fact that it does not require
prior knowledge of an alphabet is a very useful feature, since in the applications we have
only the set S and the environment space in which S is considered, which makes such a
need an artificial hypothesis.

In summary, in our context, the search for “linearity” is performed by extracting
a subgroup of the symmetries group from the metric space and then by searching for
a matched labeling between the signal set and the elements of this group, according to
Definition 8. The metric used is of fundamental importance in this process, a fact that will
become evident throughout the present work.

Section 2 presents basic concepts, notations and results concerning GU codes and
matched labeling. In Section 3, we introduce the G-isometric signal sets, as well as the
main results. Section 4 presents several examples of constructions of G-isometric signal sets
and matched labelings to a group G. We have signal sets in the Euclidean and hyperbolic
spaces. Finally, Section 5 concludes the article.

2. Definitions and Basic Results

In this section, we give the basic definitions and results that are fundamental to
the work.

If M is a non-empty set and d is a metric on M, then M is a metric space denoted by
(M, d). The group of all isometries of M is denoted by ISO(M), where the composition
operation is the group operation.

A code is any non-empty subset S of M, and if in addition, S is discrete, then it will be
called a signal set.

Definition 1. A signal set S is geometrically uniform (GU) if, given any two points s and s′ of S,
there exists an isometry uss′ : M→ M such that uss′(s) = s′ and uss′(S) = S.

Thus, if Γ(S) denotes the symmetry group of S, then it is geometrically uniform if the
action of Γ(S) on S is transitive, that is, if the orbit of any point s0 in S on the action of Γ(S)
is S.

A geometrically uniform set S is called a uniform constellation if it is finite, and a
regular array if it is infinity.

Example 1 ([1]). Let S = {(−1,−1), (−1, 1), (1,−1), (1, 1)} be the signal set given by the four
vertices of a square in the metric space M = R2. The symmetric group Γ(S) is given by eight
symmetries of the square, i.e., Γ(S) = D4 (dihedral group).
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(a) If we take U(S) = Γ(S), we obtain that S is invariant under the action of Γ(S), which
means that the signal set S is geometrically uniform.

(b) Consider the rotation subgroup R4 of Γ(S), that is, the set of rotations multiples of
2π/4 = π/2. We also obtain that S is invariant under the action of

U(S) = R4 = 〈R π
2
〉 = {id, Rπ/2, Rπ , R3π/2} ,

where Rc represents the rotational angle c. Therefore, S is geometrically uniform.
(c) Let us consider the subgroup V2 of Γ(S) generated by the compositions of the reflections

about axis x and axis y. We also find that S is invariant when U(S) = V2 is applied. Therefore, S
is geometrically uniform.

We saw in Example 1 that non-trivial subgroups of the symmetry group Γ(S) associ-
ated with a signal set S can be used to show that S is geometrically uniform. As we will see
below, these are the Γ(S) subgroups of interest that are sought in practice. In this sense, we
consider Definition 2.

Definition 2. Given a signal set S, a subgroup U(S) of Γ(S) is a generator group of S, if
S = {u(s0), u ∈ U(S)} for an arbitrarily fixed s0, and U(S) is minimal, if the map m : U(S)→ S
defined by m(u) = u(s0) is bijective.

It is clear that the map m induces on S the group structure of U(S). Thus, m may be
considered an isomorphism between groups.

Example 2. Let S be the signal set in R2 given by S = {z = ω js0 ∈ C : 0 ≤ j ≤ M− 1}, where
ω = ei2π/M (the M-th root of unity) and 0 6= s0 ∈ C. In communication theory, S is called an
M-PSK signal set. We have that U(S) = RM is a natural generating group for S, where RM is the
group of rotation multiples of 2π/M, which is isomorphic to ZM (the additive group of integers
modulo M).

Let Γ(S) = VRM be the composition of the elements of RM with the elements of the group V,
where V is the group formed by the identity and the reflection between the line determined by the
origin and the midpoint of two adjacent signals of S. Then, VRM is the group of symmetries of S.
The M-ary dihedral group DM (semidirect product of RM by V) is isomorphic to Γ(S). If M is an
even number, we have a particular generator set, U(S) = V.RM/2.

Remark 1. The signal set S = {(−1,−1), (−1, 1), (1,−1), (1, 1)} of Example 1, is obtained
through a π/4 rotation of the 4-PSK signal set described in the form S′ = {z = ω js0 ∈ C :
0 ≤ j ≤ 3}, where ω = ei2π/4 (the 4-th root of the unit) and s0 =

√
2. Or rather, S = Rπ/4S′,

where Rπ/4 is an isometry of R2 given by a π/4 rotation matrix.

Remark 2. It is not true that all geometrically uniform code has a minimal generator, see [1].
Moreover, if there is a minimal generator group, it is not necessarily unique, i.e., there are geometri-
cally uniform codes which allow more than one minimal generator group, such that they are not
isomorphic to each other, as we saw in Example 1, where the groups R4 and V2 are groups with
distinct minimal generators and are not isomorphic to each other.

The following theorem establishes a sufficient condition for signal sets to be GU.

Theorem 1. Let S be a signal set and Γ(S) be its group of symmetries. If a subgroup H of Γ(S)
acts transitively on S, then it is geometrically uniform.
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Proof. Let H be a subgroup of Γ(S) that acts transitively on S. Then, for a fixed s0 ∈ S we
have that S = {u(s0); u ∈ H}. We claim that S is GU. Indeed, for given s, s′ ∈ S, there exist
us and us′ in H, such that us(s0) = s and us′(s0) = s′. Taking us,s′ = us′u−1

s ∈ H, we have

us,s′(s) = (us′u
−1
s )(s) = us′(u

−1
s (s)) = us′(s0) = s′ .

Now, since u−1
s , us′ ∈ H ≤ Γ(S), it follows that u−1

s (S) = S and us′(S) = S. Thus,

us,s′(S) = (us′u
−1
s )(S) = us′(u

−1
s (S)) = us′(S) = S .

Therefore, S is GU.

Loeliger [3] introduced the notion of signal sets matched to groups, which is closely
related to geometrically uniform codes.

Definition 3. A signal set S is matched to a group G if exists a map m from G onto S such that,
for all g and h in G,

d(m(g), m(h)) = d(m(g−1h), m(e)) ,

where e denotes the neutral element of G. A map m satisfying this condition is called a matched
map. If we also have that m is injective, then m−1 is called a matched labeling.

Theorem 2. If Λ is a transitive group of isometries of a signal set S in a metric space (M, d), then
S is matched to Λ and, for all s ∈ S, the mapping ms : Λ → S given by ms( f ) = f (s), f ∈ Λ,
is a matched map. Reciprocally, if the signal set S is matched to a group G, then there exists a
homomorphism from G onto a transitive subgroup of Γ(S).

Proof. Since Λ is a transitive group, then ms is onto. For all f , g in Λ one has

d(ms( f ), ms(g)) = d( f (s), g(s)) = d( f−1 f (s), f−1g(s))

= d(s, f−1g(s)) = d(ms(e), ms( f−1g)) .

Reciprocally, let m be a matched mapping from the group G onto the signal set S.
For all h ∈ G, let us consider the map fh : S → S such that, given s ∈ S. let g ∈ G with
s = m(g). Then, fh : s = m(g) 7→ m(hg), which is well defined. If s = m(g) and s′ = m(g′)
for some g and g′ in G, then

d( fh(s), fh(s′)) = d( fh(m(g)), fh(m(g′))) = d(m(hg), m(hg′))

= d(m(g), m(g′)) = d(s, s′) ,

which shows that fh is an isometry of S, defined for each h ∈ G. Thus, we have a map
f : G → Γ(S). Let Λ = { fh : h ∈ G} ⊂ Γ(S). Then,

f (hh′) = fhh′(s) = fh( fh′(s)) = fh ◦ fh′(s) = f (h) ◦ f (h′)(s) ,

and it follows that f is a homomorphism from G onto Λ. Thus, Λ is a group. Furthermore,
Λ is transitive. Indeed, for e ∈ G let s = m(e). Let s′ be any element of S and let h ∈ G
satisfying m(h) = s′. Thus, fh(s) = s′, implying that Λ(s) = S.

As a result, a signal set S is matched to a group G via a matched map m : G → S if
and only if G is homomorphic to a transitive subgroup of Γ(S), the symmetry group of S.
This result is due to Loeliger for the Euclidean case, but the result is valid regardless of
the metric used. Therefore, it is also valid in hyperbolic spaces. As a consequence of this
theorem, one has the following result, which is fundamental in this work:

Corollary 1. If there exists a matched labeling between the signal set S and the group G, then G is
isomorphic to a transitive subgroup of Γ(S).
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Proof. This follows in a similar way to the reciprocal of Theorem 2, but in this case we
have that m is a bijection, then we obtain that f is an injection. Thus, G is isomorphic to
Im( f ) ≤ Γ(S), which acts transitively on S. Therefore, the result follows.

Remark 3. The reciprocal of Corollary 1 is not true. Consider the signal set
S = {(−1,−1), (−1, 1), (1,−1), (1, 1)} of the Example 1. We have seen that Γ(S) = D4 acts
transitively on S. There are eight symmetries of the square and these symmetries are the elements of
the dihedral group D4. Taking G = D4 = Γ(S), as |G| = 8 and |S| = 4 (the number of elements
in Γ(S) is greater than the number of elements in S), it follows that there is no bijection between G
and S, so there will be no matched labeling between them. However, there will be matched map from
group Γ(S) = D4 onto signals set S.

The next result follows immediately using the Corollary 1 and the Theorem 1. It is
interesting because S does not need to have a minimal generator U(S). It seems to be new
in the literature.

Corollary 2. If there exists a matched labeling between the signal set S and the group G, then S is
geometrically uniform.

Definition 4. Let G be a group. A function dG : G × G → R is compatible with the group
operation if

dG(g, h) = dG(gh−1, e) .

Moreover, if dG is a metric on G, then dG is a group metric.

Example 3. Let G = ZM = {0, . . . , M− 1} be the additive group of integers modulo M. Taking
in ZM the map given by dZM (g, h) = min{(g− h)mod M, (h− g)mod M}, it is easily proved
that dZM defines a metric in ZM ×ZM. On the other hand, we have that h−1 = −h and e = 0 in
ZM, it follows that

dZM (g− h, 0) = min{((g− h)− 0)mod M, (0− (g− h))mod M}
= min{(g− h)mod M, (h− g)mod M} = dZM (g, h) ,

for all h, g ∈ ZM. So, by the Definition 4, dZM is a group metric.

Remark 4. If dG is a group metric on a group G, then dn
G : Gn × Gn → R, given by

dn
G(( f1, . . . , fn), (h1, . . . , hn)) =

n

∑
i=1

dG( fi, hi) ,

is a group metric on Gn.

Definition 5. Let G be a group, dG a group metric in G and C ⊆ An a code of length n on the
alphabet A, with a metric d′ on An. We say that C is G-linear if C, or an equivalent code C′, is an
image of a group code H on the group G, that is, C = Φ(H), where Φ : Gn → An is an isometry
between Gn and An.

We now have a result that demonstrates the importance of having a minimal generator
set U(S) for geometrically uniform codes S.

Theorem 3. Let S be a signal set in a metric space (M, d). Then they are equivalent:

(a) S is a geometrically uniform code with a minimal generator U(S);
(b) a matched labeling exists between U(S)and S.
(c) S is a U(S)-linear code with m : U(S)→ S.
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Proof. (a)⇒ (b) Since S is GU with minimal generator U(S), S = {u(s0) : u ∈ U(S)} for
an s0 ∈ S fixed. Thus, m : U(S)→ S, given by m(u) = u(s0) is a bijection. Now, for every
u, v ∈ U(S) we have that

d(m(u), m(v)) = d(u(s0), v(s0)) = d(u−1u(s0), u−1v(s0))

= d(s0, u−1v(s0)) = d(m(e), m(u−1v)) .

Thus, m−1 is a matched labeling.
(b)⇒ (a) It follows from Theorem 1, since we assuming we have U(S).
(c) ⇒ (a) Again, since we are assuming we have U(S), it follows that S is geometrically
uniform with minimal generator U(S).
(a)⇒ (c) Since S is GU with minimal generator U(S), S = {u(s0) : u ∈ U(S)} for a fixed
s0 ∈ S, and m : U(S) → S, given by m(u) = u(s0) is a bijection. Considering in U(S) the
induced metric of S by m−1, it follows that m will be an isometry. Therefore, we have that S
is U(S)-linear.

Remark 5. We have two minimal groups U(S) given by R4 and V2 that act transitively on S,
implying that S is geometrically uniform, for the signal set S from Example 1. On the other hand,
we know that the group of rotations R4 = 〈Rπ/2〉 = {id, Rπ/2, Rπ , R3π/2} ' Z4 and the group
V2 = 〈rx, ry〉 = {id, rx, ry, rxry}, where id denotes the identity, rx and ry denote the reflection
about x axis and y axis, respectively. We also have that r2

x = r2
y = id and V2 ' Z2 × Z2. As a

result of Theorem 3, from the signal set S and the two distinct non-isomorphic subgroups of the
symmetry group Γ(S), we obtain two different codes S that have the properties of being G-linear,
one with a label group given by G = Z4 and another with a label group given by G = Z2 ×Z2.

Definition 6. Let U be a subset of a group G and let U−1 = {u−1 : u ∈ U}. Then G is generated
by U if, for all g ∈ G there exists n ∈ N such that g = u1u2 . . . un, where ui ∈ U ∪U−1 for all
1 ≤ i ≤ n. If U is finite, then G is called finitely generated.

Every finitely generated group admits, quite naturally, a metric. In fact, given a
generator set U of G, every element g in G can be written as a finite combination of
elements of U ∪U−1. Consider that the number of elements of U ∪U−1 required to write
g is a length associated with g. We may now define the norm of g as follows: ‖ g ‖ is the
least of all possible lengths for g. This norm induces a metric on G as follows: for every
f , g ∈ G let d( f , g) =‖ f−1g ‖. This metric is known as the word metric.

It must be observed that for all h ∈ G one has

d(h f , hg) =‖ (h f )−1hg ‖=‖ f−1h−1hg ‖=‖ f−1g ‖= d( f , g) .

3. Isometries and G-Isometric Signal Sets

In this section, we introduce some more concepts as well as the main results. We will
seek to clarify the reasons for the current proposal and its relation to previous works.

Two signal sets S and S′ in a metric space (M, d) are equivalent if there is an isometry
f : M→ M such that f (S′) = S.

Let M′ be the space formed by all signal sets in the metric space M. It is verified that
the equivalence between signal sets in M′ defines an equivalence relation; that is, signal
sets that are equivalent are in the same equivalence class in M′.

Example 4. Consider the 4-PSK signal set described in Remark 1, which is given by S′ = {z =√
2ω js0 ∈ C : 0 ≤ j ≤ 3}, where ω = ei.2π/4. Let Sθ be the signal set given by RθS′, where Rθ

denotes rotation matrices of R2 with rotation angle θ. So, the set M′ = {Sθ , 0 ≤ θ < 2π} denotes
the set of all signal sets that are in the same equivalence class in M′ and whose class representative
is the signal set S′.
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Definition 7. Given a group G and a metric d on G, then d is left invariant if d( f g, f h) = d(g, h)
for all f , g, h ∈ G. Similarly, d is right invariant if d(g f , h f ) = d(g, h) for all f , g, h ∈ G. If d is
both left and right invariant, then d is bi-invariant.

Example 5. Let G = ZM = {0, . . . , M − 1} be the additive group of integers modulo M.
When we consider the group metric dZM defined in Example 3, we obtain

dZM ( f + g, f + h) = min{(( f + g)− ( f + h))mod M, (( f + h)− (g + h))mod M}
= min{(g− h)mod M, (h− g)mod M} = dZM (g, h) ,

for all f , g, h ∈ ZM. Thus, we can conclude that the group metric dZM is left invariant. Similarly,
it is proved that dZM is right invariant. Therefore, dZM is bi-invariant.

For more details about invariant metrics, see [12]. Now, we introduce a main definition
to the work, which was inspired by the concept of G-linear codes, see [13].

Definition 8. Let G be a group and S a signal set of a metric space M. S is G-isometric if there is
an isometry m : (G, dG)→ (S, dS), where dG is a metric on G, dS is the metric in S ⊂ M, and dG
is left invariant.

Example 6. Let S be the M-PSK signal set in R2 given by the vertices of a polygon with M sides
inscribed in the unit circle, that is, S = {z ∈ C : z = ei.2kπ/M with k ∈ {0, 1, . . . , M− 1}}.

The elements of S can be seen as images of the map m : ZM → S given by m(k) = ei2kπ/M,
that is, each element m(k) ∈ S is a label of an element k ∈ ZM. For convenience we also denote
m(k) = ei2kπ/M by k.

The Lee metric (see [14]) on S is defined as follows

dS = dLee(a, b) = min{|a− b|, M− |a− b|} ,

where a, b are vertices of a polygon of M sides that assumes labels in ascending order of elements
ZM = {0, . . . , M− 1}. We prove that the map m defines an isometry m : (ZM, dZM )→ (S, dS),
where dS = dLee. Let k, k′ ∈ ZM. We have that

dZM (k, k′) = min{(k− k′)mod M, (k′ − k)mod M}. (1)

On the other hand,

dS = dLee(m(k), m(k′) = dLee(k, k′) = min{|k− k′|, M− |k− k′|}, (2)

In (1) one has dZM (k, k′) = (k− k′)mod M = |k− k′| = dLee(k, k′), if k ≥ k′, and dZM (k, k′) =
(k′ − k)mod M = M− (k− k′) = M− |k− k′| = dLee(k, k′), if k < k′.

Thus, dZM (k, k′) = dS(m(k), m(k′), for all k, k′ ∈ ZM. Therefore, the map m is an isometry
between (ZM, dZM ) and (S, dLee).

Example 7. Let G = Z8 and S be the 8-PSK signal set given by S = {z ∈ C : z =
ei.2kπ/8 with k ∈ {0, 1, . . . , 7}}. Then, we have:

(1) Taking k = 5 and k′ = 2, we have that dZ8(5, 3) = dZ8(5− 3, 3− 3) = dZ8(2, 0) = 2.
When we take the vertices in the regular octagon labeled by 5 and 3, we have dLee(5, 3) = min{|5−
3|, 8− |5− 3|} = min{2, 6} = 2, as can be seen in Figure 1.

(2) Taking k = 2 and k′ = 7, we have that dZ8(2, 7) = dZ8(2− 7, 7− 7) = dZ8(−5, 0) =
−5 = 3 mod 8. Taking the vertices in the regular octagon labeled 2 and 7, we obtain dLee(2, 7) =
min{|2− 7|, 8− |2− 7|} = min{3, 3} = 3, as can be seen in Figure 1.
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Figure 1. The 8-PSK signal set.

Remark 6. Note that when M = 2, the Lee metric in a signal set in R2 coincides with the
Hamming metric.

Remark 7. By environment metric space, we are referring to the space where the signal sets are
being constructed. As a consequence of Definition 8, we conclude that the concept of G-isometric is
an algebraic invariant that is preserved for all signal sets that are part of the same equivalence class
in the space M′. That is, if S and S′ are two equivalent signal sets, then, S is G-isometric if and
only if, S′ also is G-isometric.

Remark 8. Definition 8 requires an isometry between the code S and the group G, instead of an
isometry between the code S and a group code on G, as we have in the G-linearity (see Definition 5).
Moreover, we do not require an isometry between the environment spaces. The isometry is just
between G and S. The metric for the group G must be left invariant, and we do not need right
invariance, as required for G-linearity. Another important point is that it is not necessary to have
an alphabet for S. Once the isometry with the group G is determined, the alphabet is presented.

The next theorem shows that the left invariance of the group metric is the main
condition for an isometry between a group and a signal set to be a matched labeling.
That is, an isometry labels a signal set by a group only if the group metric is left invariant.

Theorem 4. Let m : (G, dG)→ (S, d) be an isometry. If dG is left invariant, then the map m−1 is
a matched labeling.

Proof. For all f , g ∈ G one has

dS(m( f ), m(g)) = dG( f , g) = dG( f−1 f , f−1g)

= dG( f−1g, e) = dS(m( f−1g), m(e)) ,

where e is the neutral element of G. Since m is bijective we obtain that m−1 is a
matched labeling.

It follows from Theorem 3 that if S is GU with minimal generator, we always have a
matched labeling between U(S) and S but, from Theorem 4, for an isometry m : U(S)→ S
be a matched labeling, we need compatibility between the metric of the space ISO(M) and
the group structure of U(S), that is, the natural metric of U(S) (that one inherited from
ISO(M) is useful in the process of labeling by isometries, if the metric gives left invariance
to the labeling group U(S).

However, even when we do not have such compatibility, it is possible, in some cases,
to endow U(S) with a different metric than the one of ISO(M), so that we may ensure
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the left invariance property for the group of labels. The following corollary provides an
alternative in this direction.

Corollary 3. Let S be a signal set. If there is a finitely generated group G and a bijection m : G → S,
then m−1 is a matched labeling.

Proof. Let G be a finitely generated group. Then, we endowed G with the word metric,
which is left invariant. Since m : G → S is a bijection from G to S, then it is enough to
consider on S the metric induced by G through m, instead of consider the metric given by
M. Thus, m is an isometry, and by Theorem 4, m−1 is a matched labeling.

In other words, under the above conditions, any bijection between a finitely generated
group and a signal set can be considered a matched label. To accomplish this, simply
apply the map m to S and induce the metric of G. In this case, all the code properties, both
algebraic and metric, are inherited from the group G regardless of the environment metric
space of S.

Example 8. Let G = Z8, which is a finitely generated group.
(1) Let S = {z ∈ C : z = ei.2kπ/8 with k ∈ {0, 1, . . . , 7}} a signal set in R2. Considering the

bijection given by m : Z8 → S given by m(k) = ei2kπ/8, by Corollary 3 we conclude that m−1 is a
matched labeling.

(2) Let S′ = {z ∈ C : z = z0ei.2kπ/8 with k ∈ {0, 1, . . . , 7} and |z0| < 1} be a signal
set in D (hyperbolic plane). Moreover, considering the bijection given by m : Z8 → S given by
m(k) = z0ei2kπ/8, by Corollary 3 we conclude that m−1 is a matched labeling.

Theorem 5. Let G be a group and dG be any metric on G. If m−1 is a matched labeling, where
m : G → S is an isometry, then dG is left invariant.

Proof. Given f , g ∈ G one has

dG( f , g) = dS(m( f ), m(g)) = dS(m( f−1g), m(e)) = dG( f−1g, e) .

Thus, dG is left invariant.

The previous result requires that G has a metric dG, and also that there is an isometry
for that metric. The next result shows that it is enough to have a matched labeling between
G and S, such that we can induce a metric in G and obtain an isometry.

Theorem 6. Let m−1 be a matched labeling where m : G → S. If we consider on G the metric
induced by S through m−1, then dG is left invariant.

Proof. Considering on G the metric of S induced by m−1, the construction implies that m
is also an isometry, and by Theorem 5, it follows that dG is left invariant.

This theorem says that a matched labeling may also be considered an isometry. It
is enough to consider in the group G the metric induced from the signal set S by m−1.
This is independent of the metric of M and always gives a left invariant metric to the group
of labels.

The next result is the main result of the current work, where we obtain that, if a signal
set is G-isometric, then this is equivalent to the existing matched labeling between G and S.

Theorem 7. Let S be a signal set and G be a group. Then, S is G-isometric if, and only if, m−1 is a
matched labeling, where m : G → S.



Symmetry 2022, 14, 1214 11 of 16

Proof. Let S be a G-isometric signal set. It follows from Theorem 4 that m−1 is a matched
labeling. Conversely, suppose that there is a matched labeling between G and S, that is,
m : G → S is a bijection, and it satisfies

d(m(g), m(h)) = d(m(g−1h), m(e)) ,

for every g and h in G. According to Theorem 6, dG is left invariant, where dG is the metric
induced by S through m− 1. Thus, we have that m is an isometry, and therefore, it follows
that S is G-isometric. So, it follows the result.

Example 9. Let G = Z8 and S = {z ∈ C; z = ei.2kπ/8 with k ∈ {0, 1, . . . , 7}} be signal sets in
R2 and S′ = {z ∈ C; z = ei.2kπ/8 with k ∈ {0, 1, . . . , 7}} be a signal set in D. As a consequence
of Example 8 and the Theorem 7, we conclude that the signal set S in R2 is Z8-isometric and the
signal set S′ in D is also Z8-isometric.

Remark 9. We conclude from Example 9 that the 8-PSK signal set Sθ given in the form Sθ = RθS,
that is in the same equivalence class of the signal set S, is Z8-isometric, where Rθ denotes an isometry
of R2 given by rotation matrix with angle θ.

We have seen in this section that if a signal set S in a metric space is G-isometric, then
the signal sets in M that have S as equivalence class representant are also G-isometric,
as illustrated in item (a) of Example 9. As shown in item (b) of Example 9, there are signal
sets S and S′ that are G-isometric at the same time, but they are not in the same equivalence
class and even in different metric spaces.

In the next section, we will discuss situations of this nature in greater depth, where
we will see in particular that they are associated with the metric structure of the minimal
groups U(S) that we will take as subgroups of the isometry group ISOM(M) in the metric
space in question.

Corollary 4. Let S be a signal set in a metric space (M, d). Then, the following statements
are equivalent:

(a) the code S is geometrically uniform with minimal generator U(S);
(b) there exists a matched labeling between U(S) and S;
(c) the code S is U(S)-isometric.

Proof. The equivalence between (a) and (b) follows from Theorem 3, and the equivalence
between (c) and b) follows from Theorem 7.

The last two results give a characterization of the equivalence established by Loeliger.
Since the result does not depend on the metric space under consideration, it is valid for
hyperbolic and Euclidean cases. The aim is to search for isometries between signal sets
and groups with a left invariant metric. Note that the advantage of this result in relation to
Theorem 3 is that we do not need a group code or an alphabet.

Remark 10. Consider the signal set 4-PSK, Sθ of Example 8. As the signal sets Sθ are in the
same equivalence class, using the alphabet given by the group of labels G = Z4, we conclude that
each signal set/codes Sθ is Z4-isometric. Similarly, using of the alphabet given by the label group
G = Z2 ×Z2, we conclude that each one of the signal sets / codes Sθ and S′ are Z2 ×Z2-isometric.

However, it is worth noting that, depending on the application we are considering, there
are representatives Sθ in the equivalence class that are more convenient because of the geometric
arrangement of the signals, as is the case when looking for a signal set of maximum diversity, that
is, when all the components of the signal points of the signal set are distinct, which is useful in
transmission models in Rayleigh channels.
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4. Construction of G-iSometric Signal Sets and Matched Labelings to the Group G

In any matched labeling, the algebraic structure is always given by the group of labels,
but in relation to the metric proprieties, there are three distinct ways to proceed: (1) consider
in the group of labels for the metric given by ISO(M); (2) define in the group of labels
other metric than the one of ISO(M), in order that the algebraic and metric structures of
U(S) are compatible; and (3) consider the metric structure of S inherited of space M.

In the first case, it is necessary to have a previous compatibility between the metric of
ISO(M) and the group structure of U(S); in the second case, such compatibility is obtained
by imposition. However, in both cases, the idea is to obtain a matched labeling from an
isometry. On the other hand, in the last case, we have the opposite idea. We want a matched
labeling that is an isometry. It is possible to endow the group of labels with the geometric
properties of the space M using this method. This is not the case in cases (1) and (2).
Thus, it is under this approach that the search of metric spaces to obtain new signal
sets matched to groups becomes more interesting because, in this way, the geometrical
properties of M may be used in the labeling process. Euclidean space is a particular case of
this approach.

Case 1: In the first example, we consider the space metric M given by the Euclidean
plane R2, the metric of ISO(M) is the same, [15]. In this case, we do not have any change if
we use either the metric of M or the metric of the ISO(M).

Example 10. Consider the signal set S = Z2 + ( 1
2 , 1

2 ) ⊂ R2, see Figure 2. A minimal generator
group for S is

U(S) = T(Z2) = {T(m,n) ∈ Γ(S) : T(m,n)(x, y) = (x, y) + (m, n) ∀ (x, y) ∈ R2} ,

the group of translations by integers in each coordinate. On the other hand, we know that the
symmetry group of S is Γ(S) = D4 n T(Z2), where D4 denotes the Dihedral Group of order 8 and
n denotes the semi-direct product of the groups. Thus, one has two possibilities for the generator
group of S, U(S) = R4 n T(2Z2) (these symmetries are characterized by the composition of a
rotation with a translation) and U(S) = V2 n T(2Z2) (these symmetries are characterized by the
composition of a reflection and a translation), where R4 is the set of rotations by multiples of π/2,
and V2 is the group of reflections on any axis. For more details, see [1].

Therefore, by Corollary 4, there is a matched labeling m−1 where m : U(S)→ S for each one
of the three groups. Hence, in each case, imposing to S the group metric of the labels, induced by m,
it follows that m is an isometry. On the other hand, as we have a matched labeling, we can induce
the metric of S for the label group, and it follows from Theorem 6 that m is also an isometry.

S = Z2 + (1
2
, 1
2
)

Figure 2. Signal set in the plane for Example 10.
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The following example shows three possibilities for the minimal generator group U(S)
of a signal set S, where the three groups are not isomorphic to each other.

Example 11. Let S be the signal constellation in R3 given by the vertices of a unit cube, in which
we consider its center of mass at the origin (0, 0, 0) and its edges parallel to the coordinate axes.
There are three non-isomorphic groups acting on S. These groups are: a) U(S) = D4 the group
generated by θ4, a rotation of order four around the axis Oz, and θ2, a rotation of order two around
the axis Oy; b) U(S) = Z2×Z4, the group generated by θ4, a rotation around the axis Oy, and rxy,
a reflection in the plane xy, and c) U(S) = Z3

2 the group generated by rxy, rxz and ryz, the reflections
on the planes xy, xz and yz, respectively. See Figure 3.

According to Corollary 4, there is a matched labeling m−1 in each case, where m : U(S)→ S.
We can take on U(S) the metric of R3 through the map m−1 for each of these groups of labels,
and from Theorem 6, dU(S) is left invariant, so it is compatible with the group structure of U(S)
and m is an isometry.

Figure 3. Signals set for Example 11.

Example 12. Let S be a M-PSK signal set in R2 as described in Example 2. Taking M = 8 and
U(S) = R8 as the group of Euclidean rotations by angle 2π/8 around the origin, it follows that
m−1 is a mached labeling where m : U(S)→ S.

Case 2: Here we show an example in the hyperbolic plane, which is a non-Euclidean
space.

Example 13. In the model of Poincaré disc D for the hyperbolic plane, let us consider the Fuch-
sian group

G = 〈a1, a2, b1, b2 : [a1, b1][a2, b2] = e〉 ,

where [a1, b1][a2, b2] = a1b1a−1
1 b−1

1 a2b2a−1
2 b−1

2 . The group G has as a fundamental region a
regular hyperbolic octagon P0, and G generates the regular hyperbolic tiling {8, 8}, that is, a tiling
of D such that, in each vertex, there are eight copies of P0 (see Figure 4). The group G is a group
associated with a compact surface with genus 2 (a bitorus) and P0 is a flat model of such a surface.
From this information, one has

(i) D =
⋃

γ∈G
γ(P0),

(ii) γ(P0)
⋂

β(P0) = ∅ for all γ, β ∈ G, γ 6= β ,

(iii) γ(P0)
0 6= ∅ for all γ ∈ G ,

where γ(P0)
0 denotes the interior of γ(P0).

Now, ci represents the center of the i-th octagon Pi of the tiling {8, 8}, and gi represents an
isometry of G that applies P0 to Pi, i ∈ N. Thus, if S = {ci : i ∈ N}, the map m : G → S given by
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m(gi) = ci (m(g0) = m(e) = c0 is a map such that a point of S is associated with each isometry
of the group G. From this construction, (i), (ii), and (iii), we have that m is well defined and it
is bijective.

Because G is a transitive group on S, Theorem 2 states that m is a matched map, but because
m is a bijection, m−1 is a matched labeling. Note that the metric of M in this case is the hyperbolic
metric of D, and the metric of ISO(M) is the Euclidean metric of R4. Whatever metric we adopt, it
gives distinct geometric properties.

Figure 4. Signal set for Example 13.

Example 14. Let us consider the triangular arithmetic Fuchsian group (5, 5, 5), which has a normal
subgroup N of index 5 associated to the bitorus [16,17]. Therefore, (5,5,5)

N ' Z5 = G, and it follows
that PG subdivides PN into 5 congruent regions, where PG and PN denote the fundamental regions
of G and N, respectively. The fundamental region PN is the regular polygon of the tessellation
{10, 5} and the fundamental region PG is the polygon with 4 equal sides and alternating internal
angles π

5 and 2π
5 . Thus, we have a tessellation of the flat double torus such that, considering as a

signal set S given by the centers of these 5 regions (see Figure 5) we obtain that Z5 is a group of
labels for S.

Taking U(S) as the group of hyperbolic rotations by an angle of 2π
5 around the origin of D, it

follows that m−1 is a matched labeling where m : U(S)→ S.
Case 3: In the next example, we have a geometrically uniform code, which may be seen as a

signal constellation on a flat torus. For more details, see [18]. As we will see, in this example, it is
possible to label using three non-isomorphic groups of labels, each one containing 16 elements.

D

{10, 5}

0

1

2

3

4

Figure 5. The double torus.
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Example 15. Let S be the same set of Example 1. The three possible choices for U(S) preserve S and
have the subgroup G1 = 〈Te1 , Te2〉, G2 = 〈Rπ/2, T2e1 , T2e2〉, G3 = 〈Rv, Rh, T2e1 , T2e2〉, where Tc
is the translation by c, Rπ/2 is the rotation of π/2 around the origin, Rv is the reflection on the
axis y and Rh is the reflection on the x axis. These three symmetry groups preserve S and have in
common the subgroup G′ = 〈T4e1 , T4e2〉. Consider the signal set S = S

G′ in the torus Tα = R2

G′ ,
α = {4e1, 4e2}, which can be seen as the set of vertices of a regular graph in Tα (see Figure 6).
Each one of the three choices for U(S) induces a different label for the 16 points of S, that is, for the
tessellation in the torus. We have U(S)

G ' Z2
4, U(S)

G ' Z4
2 and U(S)

G ' Z4 ×Z2
2. In a similar way

to Example 4, endowing the group of labels with the metric of the flat torus, the matched labeling
m−1 is an isometry.

(0, 4)

(4, 0)(0, 0)

( 12 ,
1
2 )

(4, 4)

Figure 6. The signal set in the flat torus.

Remark 11. It is worth noting that in item (c) of Example 11, we saw that U(S) = Z3
2 is one of

the possibilities. Notice that the alphabet is obtained naturally from the relationship between the
set S and the group of labels Z3

2 coming from its symmetry group Γ(S) during the labeling process,
and in this case, the natural distance matched to S is the Hamming metric.

In Example 15, we saw that there are three possibilities for the group of labels U(S)
G

for the

signal set S in the double torus, among these we have U(S)
G
' Z2

4 and U(S)
G
' Z4

2. For the case

where U(S)
G
' Z4

2, we have that the alphabet is obtained naturally from the relationship between the
set S and the group of labels Z4

2 coming from its symmetry group Γ(S) during the labeling process
and in this case the natural distance matched to Sís the Hamming metric.

In the case where U(S)
G
' Z2

4, the alphabet is obtained naturally from the relationship between
the set S and the group of labels Z2

4 derived from its symmetry group Γ(S) during the labeling
process, and the natural distance matched to S is the Lee metric. The fact that it does not require
prior knowledge of an alphabet is a very useful feature, since in the applications we have only the
set S and the environment space in which S is considered, which makes such a need an artificial
hypothesis.

5. Conclusions and Discussions

The procedure proposed in this article allowed to reproduce groups of labels (alphabet)
matched to a signal set/code S via already known discrete metrics and naturally from the
relationship between the set S and the group of labels coming from its symmetry group
Γ(S) during the labeling process. Additionally, the article opens up new possibilities for
applying discrete metrics that come from the group metric obtained from the (finitely
generated) group of labels.

Another important point is to expand the possibilities for new theoretical and practical
constructions based on these labels, since, in this approach, we do not necessarily need to
use the metric of the ambient space.

As a possible future application of the results presented in this work, we note that
advanced machine learning approaches are available to search for optimum solutions
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of complex and unknown functions under uncertainties. The recent paper [19] can give
connections in this direction.
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