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Abstract: Electron transport through a one-dimensional quantum ring, subjected to Rashba spin–
orbit interaction and connected with two external leads, is studied in the presence of external fields.
They include the optical radiation, produced by an off-resonant high-frequency electric field, and
a perpendicular magnetic field. By means of the Floquet theory of periodically driven quantum
systems the interference effects under these fields are described in detail. It is found analytically the
specific conditions to reach the spin-filtering effect, caused by the interplay of the external fields and
Rashba spin-orbit interaction.

Keywords: Rashba spin–orbit interaction; semiconductor quantum ring; Floquet theory; light–matter
coupling; magnetic field

1. Introduction

Progress in nanotechnology raised a tremendous activity in the field of quantum
electronics. In particular, a special attention is paid to the possibility to use spin–orbit
interaction (SOI) for the design of nanoelectronic devices, based on control of electron spin
without application of the magnetic field. In semiconductors there are two mechanisms of
SOI: the Dresselhaus SOI [1], caused by the inversion asymmetry of the crystal lattice; the
Rashba SOI [2], produced by the inversion asymmetry of a heterostructure. It is important
to note that the strength of the Dresselhaus SOI is determined exclusively by the material,
while the strength of the Rashba SOI can be by altered externally, for example, by means
of a gate voltage. Therefore, the vast majority of literature, devoted to spin-dependent
transport in nanostructures, is focused on materials with spin–orbit interaction of Rashba
type (e.g., Refs. [3,4]).

It was recently proposed to use a strong off-resonant optical field to manipulate spin-
orbit coupling [5]. In this case there is no real absorption of the wave. This is so-called
regime of strong light–matter interaction, when quantum nature of light can drastically
modify the properties of the matter itself. In fact, recent progress in laser physics provides
the possibility to use optical high-frequency fields to control various atomic and condensed–
mater structures, based on the Floquet theory of periodically driven quantum systems
(e.g., Refs. [6–8]). The concept of radiation-dressed states in atom [9] is the fundamental
background for this consideration. In this case, the hybrid electron-field object (dressed
electron) represents an elementary quasiparticle, which physical properties can differ
sufficiently from the “bare” electron.

Thanks to new generation of high-efficient lasers, this phenomenon may render pos-
sible its wide application in semiconductor physics. In particular, physical properties of
dressed electrons have been studied in quantum wells [10], quantum rings [11,12], and
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topological insulators [13,14]. Evidently, this phenomenon becomes quite attractive for
spintronics as well, since the spin of individual carriers can be controlled by optical means
with or without application of the magnetic field, indeed. From this point of view semi-
conductor quantum rings with the Rashba SOI represent a fertile ground in the regime of
strong light–matter coupling for applied physics, as well as for study of effects of different
geometric phases [15]. The control of electron spin by means of the optical method and by
a weak external magnetic field, and its consequences for transport properties in the above
system have been escaped in previous studies (see, e.g., Refs. [3,16–20] and references
therein). The main goal of this paper is to fill this gap in the case of the ring with the Rashba
SOI for dressed electrons in magnetic field.

2. Model
2.1. The Hamiltonian

To analyse the regime of strong light–matter interaction, we consider the
two-dimensional (2D) Hamiltonian describing ballistic electrons of charge −e(e > 0)
and the effective mass m, in the presence of the Rashba SOI, a magnetic field and a high-
frequency electric field:

Ĥ =
1

2m
ΠΠΠ2 + α(σσσ×ΠΠΠ)z + gµσσσBBB + V(rrr) . (1)

Here σσσ is the vector of the Pauli spin matrices, ΠΠΠ = ppp+ eAAA, α is the strength of the Rashba
SOI. The vector potential of a linear polarised electromagnetic wave AAA = ([E0/ω] cos(ωt)−
By/2, Bx/2, 0) includes the magnetic field BBB, pointing in the z direction (perpendicular to
the plane). The electric field is characterised by the amplitude E0 and by the wave frequency
ω. We consider a narrow ring, characterised by a steep confining potential V(rrr). If the field
is time-independent and E0 = 0, in such a ring geometry the electron energy spectrum is
determined by the 1D Hamiltonian in polar coordinates (see also [17,21]):

Ĥ(0)
R =

h̄2

2mR2

(
−i

∂

∂ϕ
+

Φ
Φ0

)2
+

h̄ωB
2

σz + h̄ωRσx(ϕ)

(
−i

∂

∂ϕ
+

Φ
Φ0

)
− i

h̄ωR
2

σy(ϕ) . (2)

Here, ωB = 2µB/h̄, ωR = α/R, σx(ϕ) = cos ϕσx + sin ϕσy, σy(ϕ) = cos ϕσy − sin ϕσx,
ϕ is the polar angle of the electron on the ring, Φ = πBR2 is the magnetic flux through the
ring, and the magnetic flux quantum Φ0 = h/e. Once we add a time-dependent electric
field the Hamiltonian of an irradiated ring takes the following form

Ĥ1D = ĤR +

[
2

∑
n=1

V̂neinωt + H.c

]
, (3)

where the stationary term is complemented by a field-induced constant energy shift

ĤR = Ĥ(0)
R + E(0)

shift , E(0)
shift =

e2E2
0

4mω2 . (4)

The periodic term consists of two harmonics, raised by the irradiation,

V̂1 = − eE0

2mRω

(
sin ϕl̂z,Φ − ih̄

cos ϕ

2

]
− αeE0

2ω
σy , (5)

V̂2 =
e2E2

0
8mω2 , (6)

and we introduce the notation l̂z,Φ = −ih̄∂ϕ + h̄Φ/Φ0.
In the following we employ the high-frequency approximation for a periodically

driven quantum system (for a review see, e.g., Ref. [22]). Such the approach provides a
systematic high-frequency expansion for the effective Hamiltonian. In our analysis, we
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consider only the leading terms in the high-frequency limit. As a result, we can reduce the
time-dependent Hamiltonian (3) to the effective time-independent one (see also [19]):

Ĥ = ĤR +
2

∑
n=1

[V̂n, V̂†
n ]

nh̄ω
+

2

∑
n=1

[V̂n, ĤR], V̂†
n ] + H.c.

2(nh̄ω)2 = Ĥ0 + V̂ , (7)

where

Ĥ0 =
l̂2
z,Φ

2m∗R2 + ωR

[
σx(ϕ)l̂z,Φ − ih̄

σy(ϕ)

2

]
−
(

eE0α

Rω2

)2 l̂z,Φ

mh̄
σz (8)

+
h̄ωB

2
σz + E(0)

shift + E(1)
shift , E(1)

shift =
1

2m

(
h̄eE0

4mR2ω2

)2

V̂ =
h̄2

2mR2

[
V̂a + V̂b +

(
γ1 l̂z,Φ

2h̄

)2

cos 2ϕ

]
, (9)

V̂a =

[
3
16

γ2
1 cos 2ϕ− iγ2

1γ2

(
γ2

2 −
1
4

)
σx sin ϕ

]
, (10)

V̂b =

[
i
2

γ2
1 sin 2ϕ− 2γ2

1γ2

(
γ2

2 −
1
4

)
σx cos ϕ

]
l̂z,Φ

h̄
. (11)

Here, we introduce the following notations:

γ1 = eE0/(mRω2) , γ2 = mRα/h̄ , m∗ =
m

1 + 3(γ1/2)2 . (12)

The irradiation leads to the mass renormalization, i.e., m→ m∗. It yields as well the
energy shift to the zero energy ∆E = E(0)

shift + E(1)
shift, and introduces the coupling between

the strength of the Rashba SOI and the ring radius by means of the parameter γ2.

2.2. The Eigenvalue Problem

The Hamiltonian (7) possess the azimuthal symmetry. The operator Ĵz = I⊗ (−ih̄∂ϕ)+
h̄σz/2, defined in the laboratory frame, is an integral of motion [H, Ĵz] = 0. Let us anal-
yse, first, the eigenvalue problem for the Hamiltonian (8). It is convenient to trans-
form this Hamiltonian in the rotating frame by means of the unitary transformation
R = exp[i(σz/2)ϕ]. As a result, we obtain

ˆ̃H = RH0R+ =
X̂2

z,Φ

2m∗R2 +
α

R

[
σxX̂z,Φ − ih̄

σy

2

]
−
(

eE0α

Rω2

)2 X̂z,Φ

mh̄
σz +

h̄ωB
2

σz + ∆E . (13)

X̂z,Φ = −ih̄∂ϕ + h̄Φ/Φ0 − h̄
σz

2
. (14)

In the rotating frame the operator Ĵz takes the following form

ˆ̃Jz = RĴzR+ = I ⊗ (−ih̄∂ϕ) . (15)

Consequently, we search the eigenfunctions of the Hamiltonian (13) in a general form

Φs
j (ϕ) = eijϕχs

j , χs
j =

(
χs

1
χs

2

)
. (16)

Evidently, the eigenvalues of the operator Ĵ are expected to be half-integers in the
laboratory frame, that should be hold in the rotating frame as well (RR−1 = 1)

ˆ̃JzΦs
j (ϕ) = h̄jΦs

j (ϕ), j = λn + 1/2, n = 1, 2, 3, . . . . (17)
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Here, the orbital quantum number n corresponds to the electron rotation either in the
counterclockwise direction λ = +1, or in the clockwise one λ = −1. The solution of the
Schrödinger equation by means of the probe functions (16) yields the eigenenergies

Es
j = h̄ω0

(j +
Φ
Φ0

)2
+

1
4
+ s

√
Ω2 +

(
m∗

m

)2
Q2

R

(
j +

Φ
Φ0

)2
+ ∆E; s = ±1 , (18)

where

Ω =
ωB
2ω0
−
[

1 + 2Q2
E

m∗

m

](
j +

Φ
Φ0

)
. (19)

Here, we introduce the following definitions: ω0 = h̄/(2m∗R2), QE = eE0α/(h̄ω2),
and QR = 2mαR/h̄. For the eigenfunctions we obtain two sets

χ
(s=1)
j =

(
sin γ

2
cos γ

2

)
, χ

(s=−1)
j =

(
cos γ

2
− sin γ

2

)
, (20)

where

tan γ =
αh̄/R

(
j + Φ

Φ0

)
Ω

=
QRm∗/m

1 + 2Q2
Em∗/m−ωB/[2ω0(j + Φ/Φ0)]

, (21)

γ is the angle between the local spin quantization axis and the z-axis. The high-
frequency (dressing) field decreases this angle relative to its value tan γ = QR, obtained
in Ref. [20] without the external electric field (E0 = 0) and Zeeman interaction. Evidently,
a proper choice of the Rashba coupling and parameters of the external high-frequency
electric field may lead to new features of the considered system (see below).

The eigenstates of the Hamiltonian (8) are defined in the laboratory frame as

Ψs
j (ϕ) = e−i σz

2 ϕΦs
j (ϕ) = eijϕe−i σz

2 ϕχs
j . (22)

Before proceeding further, there are a few comments required. The total effective
Hamiltonian (7) consists of the discussed Hamiltonian (8) and the term V̂. The terms (9)–(11)
are of order ∼γ2

1. In the high-frequency approximation, considered in our paper, γ1 � 1.
Consequently, we neglect the contribution of the above terms, and will analyse the trans-
port properties of semiconductor quantum rings with the reduced Hamiltonian (8) (see
also the discussion in Ref. [19]). For a typical semiconductor (for example, GaAs) the
magnetic orbital effect is much enhanced in comparison with the magnetic spin effect
(see, e.g., Ref. [23]). Moreover, we will consider the effect of the weak magnetic field (see
below). Consequently, without loss of generality, we can neglect the Zeeman effect in
Equations (19) and (21) and obtain

Es
λ,n = h̄ω0

[(
λn +

1
2
+

Φ
Φ0

)2
+

1
4
+ s
∣∣∣∣λn +

1
2
+

Φ
Φ0

∣∣∣∣× (23)

×

√[
1 + 2Q2

E
m∗

m

]2
+

(
m∗

m

)2
Q2

R

]
,

where the energy shift ∆E is omitted, since it is the same constant for the electron dressed
levels. In the case: (i) E0 = 0; (ii) BBB = 0, the reduced energies Equation (23) are equivalent
to the energies obtained in Ref. [17]. These energies are maximised for the up spin states
| ↑〉, i.e., for s = 1; and the factor QR plays the important role in transport properties. The
external high-frequency electric field gives rise to the additional factor QE. As we will see
below, its interplay with the factor QR leads to novel phenomena in transport properties of
the semiconductor rings.
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3. Transport Properties

In this section, we investigate the effect of two factors, QR and QE, on the conductance
and the polarization of the ballistic current in our 1D model. To model realistic transport, it
is desirable to take into account the effects of disorder. Since we consider the high-frequency
limit (a semiclassical regime), there are different classical paths connecting the entrance
and exit attached leads. It seems reasonable to assume that only pairs with the same length
could contribute essentially to the conductance. In our consideration we assume a perfect
coupling between leads and ring, neglecting the backscattering effects. In other words, in
our model the interference effects arising from counterclockwise and clockwise waves.

Thus, the wave function of an incoming electron from the left lead, attached to the
ring, is split at the ring entrance into four partial waves. In particular, we consider that
electrons with Fermi energy EF move from the entrance to the exit with four different wave
numbers n⇒ λns

λ. In this case the eigenstates (22) can be written as (see also the discussion
in Ref. [17])

Ψ1
+n(ϕ) = ein+1

+ ϕ

(
sin γ

2
cos γ

2 eiϕ

)
, (24)

Ψ−1
+n(ϕ) = ein−1

+ ϕ

(
cos γ

2
− sin γ

2 eiϕ

)
, (25)

Ψ1
−n(ϕ) = e−in+1

− ϕ

(
cos γ

2
− sin γ

2 eiϕ

)
, (26)

Ψ−1
−n(ϕ) = e−in−1

− ϕ

(
sin γ

2
cos γ

2 eiϕ

)
. (27)

They meet at the exit (a right attached lead), exactly opposite to the entrance. The
wave, propagating clockwise, travels the angle −π from the entrance to the exit. The wave,
propagating counterclockwise, travels the angle π from the entrance to the exit.

3.1. Conductance

In order to analyse the conductance we use the Landauer–Büttiker formalism. In this
case the conductance at zero temperature has the following form (see, e.g., Ref. [24])

G =
e2

h ∑
s,s′

Ts,s′ . (28)

Here, Ts,s′ = |ts,s′ |2 is the quantum probability of transmission between incoming
state with spin s′ and outgoing state with spin s; ts,s′ is the corresponding transmission
amplitude. Using the results from Appendix A, we arrive to the expression

G =
e2

h

[
1 +

1
2
[cos π(n−1

− − n+1
+ ) + cos π(n+1

− − n−1
+ )]

]
. (29)

The quantities ns
λ can be obtained from the solution of Equation (18) at the condition

Es
λ,n = EF for different spin orientation s = ±1.

n−1
− − n+1

+ = 1 + 2
Φ
Φ0

+

√[
1 + 2Q2

E
m∗

m

]2
+

(
m∗

m

)2
Q2

R , (30)

n+1
− − n−1

+ = 1 + 2
Φ
Φ0
−

√[
1 + 2Q2

E
m∗

m

]2
+

(
m∗

m

)2
Q2

R . (31)
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Taking into account Equations (30) and (31), we arrive to the final expression for
the conductance

G =
e2

h

1− cos
(

2π
Φ
Φ0

)
cos π

√[
1 + 2Q2

E
m∗

m

]2
+

(
m∗

m

)2
Q2

R

 . (32)

Now we are ready to trace the conductance behaviour as a function of the following
variables: (i) the strength of the Rashba interaction α; (ii) the electric field E0; and (iii)
the magnetic field. As a typical example, we consider InGaAs-based quantum rings with
the following parameters: the effective mass m = 0.045me, radius R ≈ 200 nm, and the
strength of the Rashba SOI α ≈ 104 m/s. The effective mass and the radius determine the
energy scale h̄ω0 ≡ h̄2/(2mR2) ≈ 2.16× 10−5 eV at m∗ = m. Assuming the maximal flux
Φ = 0.5Φ0 through the ring in our consideration, we obtain

µB =
eh̄

2me
× h̄

e
1

R2 � h̄ω0 . (33)

Our approximation (neglecting the Zeeman term) is quite satisfactory, indeed.
At zero magnetic and electric fields the conductance is modulated by the strength QR

alone [17]. Taking into account that the amplitude

E0 =

√
2I
ε0c

, (34)

where I is the irradiance intensity, ε0 is the vacuum permittivity, we can enrich the inter-
ference of the conductance from the destructive to constructive and vice versa by altering
the intensity at a fixed value of the Rashba SOI α (see Figure 1). Once we switch on the
magnetic field, the conductance modulations are reversed (see Figure 2). Moreover, the
oscillations are removed with a proper choice of of the Rashba SOI strength.

0 500 1000 1500 2000
0.0

0.5

1.0

1.5

2.0

IHW�cm
2L

G
He

2
�h
L

Figure 1. Conductance versus irradiation intensity I. Electron effective mass m = 0.045me, the Rashba
coupling constant α = 5× 104 ms−1, and the ring radius is R = 200 nm. The dressing field has the
frequency ω = 1.6× 1012 s−1, the magnetic flux Φ = 0.

Thus, the magnetic field provides the additional key element of possible ring-shaped
spintronic devices operated by light.
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0 500 1000 1500 2000
0.0

0.5

1.0

1.5

2.0

IHW�cm
2L

G
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2
�h
L

Α=10
4
m s
-1

Α=5´10
4
m s
-1

Figure 2. Conductance versus irradiation intensity I for different Rashba coupling constant α. Electron
effective mass m = 0.045me and the ring radius is R = 200 nm. The dressing field has the frequency
ω = 1.6× 1012 s−1, the magnetic flux Φ = 0.5Φ0.

To get deeper inside let us consider the minimum of the conductance at m∗ = m. At
zero magnetic field, we have the condition

cos π

√[
1 + 2Q2

E
m∗

m

]2
+

(
m∗

m

)2
Q2

R = 1 , (35)

which is subject to the equation√[
1 + 2Q2

E
]2

+ Q2
R = 2n, n = 1, 2, . . . . (36)

By introducing the variables

sin γ =
QR
2n

, cos γ =
1 + 2Q2

E
2n

, (37)

we arrive to Equation (21) at ωB = 0. Thus, the single-valuedness of the eigenfunctions (20)
determines the character of the conduction modulations (35).

3.2. Spin-Filtering Effect

The question we address in this section is could we control the polarization of the
electron beam by means of our quantum ring with the aid of the intensity of the external
electric field and with the strength of the vertical magnetic field?

The spin polarization P, determined as

P =
T↑↑ + T↑↓ − T↓↑ − T↓↓
T↑↑ + T↓↑ + T↑↓ + T↓↓

, (38)

in virtue of the results for transmission probabilities T
σσ
′ (see Appendix A), yields

P = cos 2γ
sin
(

2π Φ
Φ0

)
sin π

√[
1 + 2Q2

E
m∗
m
]2

+
(m∗

m
)2Q2

R

1− cos
(

2π Φ
Φ0

)
cos π

√[
1 + 2Q2

E
m∗
m
]2

+
(m∗

m
)2Q2

R

. (39)

From Equation (39) it follows that the presence of the magnetic field is the basic
condition for the polarization process, since P = 0 at Φ = nΦ0/2, n = 0, 1, 2, . . .. On the
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other hand, once the magnetic field takes, for example, the value Φ/Φ0 = 1/4, we can
require that

sin π

√[
1 + 2Q2

E
m∗

m

]2
+

(
m∗

m

)2
Q2

R = 1 . (40)

Without loss of generality we consider the case m∗ = m and obtain

sin γ =
QR
k

, cos γ =
(1 + 2Q2

E)

k
, k = 2n + 1/2, n = 0, 1, 2, . . . (41)

In this case the polarization is defined as

P = cos 2γ = [(1 + 2Q2
E)

2 −Q2
R]/k2 . (42)

At a fixed value of the strength of the Rashba SOI, we can define the value of the
intensity of the electric field that could provide the maximal polarization P = 1 (see
Figure 3).

0 500 1000 1500 2000
-1.0

-0.5

0.0

0.5

1.0

IHW�cm
2L

P

Α=10
4
m s
-1

Α=2´10
4
m s
-1

Figure 3. Spin polarization P versus the irradiation intensity I. The calculations are performed at the
magnetic flux Φ = 0.25Φ0; the dressing field frequency is ω = 0.8× 1012 s−1. The solid (blue) line
corresponds to the strength α = 2× 104 m/s, while the dashed (red) line corresponds to α = 104 m/s.

For example, taking into account the definition of QE = eE0α/(h̄ω2) and the intensity (34),
we have at k = 1/2

2Q2
E =

√
Q2

R +
1
4
− 1 =

4I
ε0c

(
h̄ω2

eα

)2

. (43)

From Equation (43) it follows evidently that QE > 0 if the following relation takes
place (taking into account the definition QR = (2mR/h̄)α)

α >

√
3

2
Rω0 . (44)

Once this condition is fulfilled, the minimal value of the intensity is

I =
ε0c
4

(
h̄ω2

eα

)−2[√
Q2

R +
1
4
− 1

]
, (45)

that allows to observe the spin-filtering effect in our system. Altering the value of the
magnetic field, we can decrease, as well, the dynamic threshold intensity field at a fixed
value of the strength of the Rashba SOI (see Figure 4).
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0 500 1000 1500 2000
-1.0

-0.5

0.0

0.5

1.0

IHW�cm
2L

P

Α=10
4
m s
-1

Α=2´10
4
m s
-1

Figure 4. Similar to Figure 3 at the magnetic flux Φ = 0.2Φ0.

4. Conclusions

The effect of a high-frequency optical field and an external magnetic field on quantum
transport through the one-dimensional quantum ring subject to Rashba SOI is manifested in
a rich variety of phenomena. To carry on our analysis of the external fields, we employed the
Floquet theory of periodically driven quantum system. In our consideration we assumed a
perfect coupling between leads and ring, neglecting the backscattering effects. In this limit,
several mechanisms, responsible for quantum interference effects have been proposed. In
particular, it shown that the conductance oscillations, produced by the ring irradiated by
the dressing field, can be reversed by the application of the weak magnetic field (compare
Figures 1 and 2). In other words, our system behaves like a diode, operating at a certain
intensity of the dressing field, that allows the current flow only at a certain value of the
external magnetic field. Finally, we formulated analytically the requirements to reach the
spin- filtering effects under the external fields (see Section 3.2). Our findings may provide
new capabilities for spintronics devices, exploiting the combined effect of optical and
magnetic fields.

Author Contributions: All authors contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
DOAJ Directory of open access journals
TLA Three letter acronym

Appendix A. Transmission Probabilities

Let us consider the case of the incoming electron with spin ↑ (s = +1) [see Equation (20)]
entering the ring at ϕ = 0

| ↑〉 =
(

sin γ
2

cos γ
2

)
. (A1)
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Evidently, states of a particular spin split equally into the clockwise path (λ = −1)
and the counterclockwise path (λ = 1) in the ring

|Ψ(↑, ϕ)〉 = 1
2

exp[in+1
+ ϕ]

(
sin γ

2
cos γ

2 eiϕ

)
+

1
2

exp[−in−1
− ϕ]

(
sin γ

2
cos γ

2 eiϕ

)
(A2)

Additionally, in particular, we have at the exit of the ring

|Ψ(↑, π)〉 = 1
2

exp[in+1
+ π]

(
sin γ

2
cos γ

2 eiπ

)
+

1
2

exp[−in−1
− (−π)]

(
sin γ

2
cos γ

2 e−iπ

)
(A3)

Consequently, the probability amplitude without the spin flip for the incoming electron
with spin ↑ is

t↑↑ = 〈↑ |Ψ(↑, π)〉 , (A4)

which determines the corresponding transmission probability as

T↑↑ = |t↑↑|2 =
1
2

cos2 γ
[
1 + cos π(n−1

− − n+1
+ )
]

. (A5)

The amplitude of probability that the incoming electron with spin ↑ is outgoing with
the spin ↓ [see Equation (20)] is

t↓↑ = 〈↓ |Ψ(↑, π)〉 , | ↓〉 =
(

cos γ
2

− sin γ
2

)
, (A6)

which yields the following result

T↓↑ = |t↓↑|2 =
1
2

sin2 γ
[
1 + cos π(n−1

− − n+1
+ )
]

. (A7)

Let us consider the case of the incoming electron with spin ↓ (s = −1) [see Equation (20)]
entering the ring at ϕ = 0. In this case electron traverses the ring, and its wave function
[see Equations (25) and (26)] is

|Ψ(↓, ϕ)〉 = 1
2

exp[in−1
+ ϕ]

(
cos γ

2
− sin γ

2 eiϕ

)
+

1
2

exp[−in+1
− ϕ]

(
cos γ

2
− sin γ

2 eiϕ

)
. (A8)

It takes the following form at the exit of the ring

|Ψ(↓, ϕ)〉 = 1
2

exp[in−1
+ π]

(
cos γ

2
− sin γ

2 eiπ

)
+

1
2

exp[−in+1
− (−π)]

(
cos γ

2
− sin γ

2 ei(−π)

)
. (A9)

For the amplitude of probability that the incoming electron with spin ↓ is outgoing
with spin ↓ we have

t↓↓ = 〈↓ |Ψ(↓, π)〉 . (A10)

Consequently, the corresponding transmission probability is

T↓↓ = |t↓↓|2 =
1
2

cos2 γ
[
1 + cos π(n+1

− − n−1
+ )
]

. (A11)

The amplitude of probability that the incoming electron with spin ↓ is outgoing with
spin ↑ is

t↑↓ = 〈↑ |Ψ(↓, π)〉 . (A12)

It results in the following transmission probability

T↑↓ = |t↑↓|2 =
1
2

sin2 γ
[
1 + cos π(n+1

− − n−1
+ )
]

. (A13)
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