
Citation: Li, F.; Zhang, L.; Wang, H.

On Fractional Hybrid Non-Linear

Differential Equations Involving

Three Mixed Fractional Orders with

Boundary Conditions. Symmetry

2022, 14, 1189. https://doi.org/

10.3390/sym14061189

Academic Editors: Cemil Tunç,

Jen-Chih Yao, Mouffak Benchohra

and Ahmed M. A. El-Sayed

Received: 14 May 2022

Accepted: 4 June 2022

Published: 9 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

On Fractional Hybrid Non-Linear Differential Equations
Involving Three Mixed Fractional Orders with
Boundary Conditions
Fang Li , Liping Zhang and Huiwen Wang *

School of Mathematics, Yunnan Normal University, Kunming 650092, China; fangli860@ynnu.edu.cn (F.L.);
lpzhang1998@163.com (L.Z.)
* Correspondence: orwang@ustc.edu.cn

Abstract: In this paper, we study a class of non-linear fractional hybrid differential equations
involving three mixed fractional orders with boundary conditions. Under weak assumptions, a
formula of solutions is constructed and the existence results of the solutions for the problem are
established. The results can be used to solve more general fractional hybrid equations, such as the
general variable coefficient fractional hybrid Langevin equations. Moreover, the form of the solution
for this kind of equation can provide a theoretical basis for the further study of the positive solution
and its symmetry. We provide an example to support our main result.
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1. Introduction

In conventional calculus, fractional calculus is a very popular tool for the modeling of
many phenomena in science and engineering, such as in the fields of physics, chemistry,
image processing, the electrodynamics of complex media and polymer rheology [1–11].
The non-local property of the fractional derivatives (and integrals) enables more effective
representation of the reality of nature. For this reason, many researchers have focused
on various types of fractional differential equations with more general boundary value
conditions [5,6,9,10].

Hybrid differential equations can be considered to be quadratic perturbations of non-
linear differential equations. As special cases of dynamical systems, they are of widespread
interest to researchers. In 2010, Dhage and Lakshmikantham initiated an investigation of a
new category of non-linear differential equations whereby they introduced ordinary hybrid
differential equations, and showed the existence of extremal solutions for this boundary
value problem with the help of some fundamental differential inequalities [12]. In the last
few decades, fractional hybrid differential equations with boundary value conditions have
attracted the interest and the attention of many researchers. In 2012, Zhao et al. extended
Dhage’s work to fractional orders and investigated an initial value problem of fractional
hybrid differential equations [13]: LDq

0+

(
x(t)

f (t, x(t))

)
= g(t, x(t)), t ∈ J = (0, 1],

x(0) = 0,

where q ∈ (0, 1). LDq
0+ is the standard Riemann–Liouville fractional derivative. Later, the

topics of different fractional hybrid initial and boundary value problems were discussed by
many researchers [14–16].
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In [14], the authors considered the following initial value problem for fractional hybrid
integro-differential equations: LDα

0+

( x(t)−
m
∑

i=1
Iβi
0+hi(t, x(t))

g(t, x(t))

)
= f (t, x(t)), t ∈ J = (0, 1],

x(0) = 0,

where α ∈ (0, 1) and Iβi
0+ denotes the Riemann–Liouville fractional sequential integrals of

order βi(i = 1, 2, · · · , m). f , g, hi ∈ C(J ×R,R) and hi(0, 0) = 0(i = 1, 2, · · · , m).
In [15], the authors considered the following fractional hybrid differential equations

with boundary conditions involving Caputo’s derivative
cDq

0+

(
x(t)

f (t, x(t))

)
= g(t, x(t)), t ∈ J = (0, T],

a x(0)
f (0,x(0)) + b x(T)

f (T,x(T)) = c,

where q ∈ (0, 1). cDq
0+ is the standard Caputo fractional derivative. f , g ∈ C(J ×R,R).

In [16], the authors considered the existence result for a fractional hybrid differential
equation with boundary conditions given by

cDα
0+

(
x(t)− f (t, x(t))

g(t, x(t))

)
= h(t, x(t)), t ∈ J = (0, 1],[

x(t)− f (t,x(t))
g(t,x(t))

]
|t=0 = 0,

[
x(t)− f (t,x(t))

g(t,x(t))

]
|t=1 = 0,

where α ∈ (1, 2], f , g, h ∈ C(J ×R,R).
Motivated by the studies mentioned above, the main objective of our present investiga-

tion was to study the following boundary value problem of the fractional hybrid differential
equations:

LDα
0+

( cDβ
0+x(t)−

m
∑

i=1
Iηi
0+hi(t, x(t))

g(t, x(t))

)
= f (t, x(t),LDδ

0+x(t)), t ∈ J = (0, 1], (1)

x′(0) = 0, x(0) = d, I1−α
0+

( cDβ

0+
x(t)

g(t,x(t))

)
(0+) = 0, (2)

where α ∈ [0, 1], β ∈ (1, 2], α + β > 2, δ ∈ [0, α), ηi ∈ [0, 1] and β + ηi − δ ∈ (1, 2), d ∈ R.
f , g, hi(i = 1, 2, · · · , m) are Lebesgue integrable, and they are suitable functions to be
specified later.

The problem (1)–(2) considered here is general in the sense that it includes the follow-
ing well-known classes of fractional differential equations:

Case I: Let ηi = 0(i = 1, 2, · · · , m), the problem (1)–(2) is reduced to the following
boundary value problem of the fractional hybrid differential equations

LDα
0+


cDβ

0+x(t)−
m
∑

i=1
hi(t, x(t))

g(t, x(t))

 = f (t, x(t),LDδ
0+x(t)), t ∈ J = (0, 1], (3)

x′(0) = 0, x(0) = d0,
( cDβ

0+
x(t)

g(t,x(t))

)
(0+) = 0.
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Case II: Let m = 1, η1 = δ = 0 and h1(t, x(t)) = −λx(t), λ is a constant, then (1) can
be written as the fractional hybrid Langevin equation:

LDα
0+

(
cDβ

0+x(t) + λx(t)
g(t, x(t))

)
= f (t, x(t)), (4)

which generalizes the well-known results in [17].
If g(t, x(t)) ≡ 1, then (4) is reduced to the fractional Langevin equation of the form

LDα
0+

(
cDβ

0+x(t) + λx(t)
)
= f (t, x(t)),

which has been studied by many researchers [18–20].
Case III: If m = 1, η1 = 0 and h1(t, x(t)) = −λ(t)x(t), λ(t) is Lebesgue integrable and

g(t, x(t)) ≡ 1, then (1) is reduced to the variable coefficient fractional Langevin equation of
the form

LDα
0+

(
cDβ

0+x(t) + λ(t)x(t)
)
= f (t, x(t),LDδ

0+x(t)).

To our knowledge, the above equation with the boundary value conditions has rarely
been studied. Our study can advance this field and make a theoretical contribution to the
further study of the positive solution and its symmetry.

In comparison to previous research, the problem (1)–(2) considered by us is more gen-
eral. In the problem (1)–(2), without the hybrid boundary value conditions (cf., e.g., [16]), a
mixed-type fractional equation with boundary value conditions is discussed, which can
inform more practical problems. We consider the problem (1)–(2) without the assumptions
of continuity on f , g, hi and apply the existence result to more fractional differential equa-
tions, for example, the general fractional non-homogeneous differential Equation (12) with
variable coefficient, the variable coefficient fractional hybrid Langevin Equation (13) and
the variable coefficient fractional Langevin Equation (14) in Section 4. There are few results
about the above equations with a variable coefficient.

The rest of this paper is organized as follows. In Section 2, we consider some concepts
and results of fractional calculus. In Section 3, we present a formula for solutions to the
linear case of (1)–(2). In Section 4, using Schauder’s fixed point theorem, we obtain the
existence results of solutions for the problem (1)–(2). In Section 5, we provide an example
to demonstrate application of our result.

2. Preliminaries

In this paper, let Lp(J,R) be the Banach space of all Lebesgue measurable functions

l : J → R with the norm ‖l‖Lp =
(∫

J |l(t)|
pdt
) 1

p
< ∞, and AC([a, b], R) be the space of all

the absolutely continuous functions defined on [a, b]. We use the following notation:

ACn([a, b], R) = { f : f ∈ Cn−1([a, b], R) and f (n−1) ∈ AC([a, b], R)}.

In particular, AC1([a, b], R) = AC([a, b], R).
First, some concepts and results are presented. Γ(·) and B(·, ·) are the Gamma and

Beta functions, respectively.

Definition 1 ([3,4]). The left-sided fractional integral of order q for a function x(t) ∈ L1 is
defined by

(Iq
a+x)(t) =

1
Γ(q)

∫ t

a
(t− s)q−1x(s)ds, t > a, q > 0,

(I0
a+x)(t) = x(t).
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Definition 2 ([3,4]). If k(t) ∈ ACn([a, b], R), then the Riemann–Liouville fractional derivative
(LDq

a+k)(t) of order q exists almost everywhere on [a, b] and can be written as

(LDq
a+k)(t) =

1
Γ(n− q)

dn

dtn

∫ t

a
(t− s)n−q−1k(s)ds, t > a, n− 1 < q ≤ n,

(LD0
a+k)(t) = k(t).

Definition 3 ([3,4]). If k(t) ∈ ACn([a, b], R), then the Caputo fractional derivative (cDq
a+k)(t)

of order q exists almost everywhere on [a, b] and can be written as

(cDq
a+k)(t) =

(
LDq

a+

[
k(s)−

n−1

∑
j=0

k(j)(a)
j!

(s− a)j
])

(t), t > a, n− 1 < q < n,

moreover, if k(a) = k′(a) = · · · = k(n−1)(a) = 0, then (cDq
a+k)(t) = (LDq

a+k)(t).

Lemma 1 ([4]). If µ > 0 and θ > 0, then

[Iµ
a+(s− a)θ−1](t) =

Γ(θ)
Γ(θ + µ)

(t− a)θ+µ−1,

(LDµ
a+1
)
(t) =

(t− a)−µ

Γ(1− µ)
, 0 < µ < 1,(LDµ

a+(s− a)µ−j)(t) = 0, j = 1, 2, · · · , [µ] + 1, (5)

where [µ] denotes the integer part of the real number µ.

Lemma 2 ([4]). If k(t) ∈ Lp([a, b])(1 ≤ p ≤ ∞) and θ1, θ2 > 0, then the following rela-
tions hold:

(1) (LDθ1
a+ Iθ1

a+k)(t) = k(t) a.e. t ∈ [a, b];
(2) (cDθ1

a+ Iθ1
a+k)(t) = k(t);

(3) For θ1 > θ2 > 0, (LDθ2
a+ Iθ1

a+k)(t) = Iθ1−θ2
a+ k(t), a.e. t ∈ [a, b];

(4) For θ2 > θ1 > 0, (LDθ2
a+ Iθ1

a+k)(t) = LDθ2−θ1
a+ k(t), a.e. t ∈ [a, b];

(5) For θ1 > 1, (
d
dt

Iθ1
a+)k(t) = Iθ1−1

a+ k(t);

(6) For θ1, θ2 > 0, (Iθ1
a+ Iθ2

a+k)(t) = Iθ1+θ2
a+ k(t).

Lemma 3 ([4]). For θ > 0, a general solution of the fractional differential equation (LDθ
0+x)(t) = 0

is given by

x(t) =
n

∑
i=1

citθ−i, t > 0,

where ci ∈ R, i = 1, 2, · · · , n(n = [θ] + 1).

Lemma 4 ([4]). For θ > 0, a general solution of the fractional differential equation (cDθ
0+x)(t) = 0

is given by

x(t) =
n−1

∑
i=0

citi, t > 0,

where ci ∈ R, i = 0, 1, 2, · · · , n− 1(n = [θ] + 1).

Next, we present and prove the following lemmas.

Lemma 5. If ω > 0, −1 < τ < 0, then for ψ ∈ L
1
p (0 < p < 1),
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(i)
∫ t

a
(t− s)ω−1ψ(s)ds ≤

(
1− p
ω− p

)1−p

(t− a)ω−p‖ψ‖
L

1
p

, for ω > p, t > a > 0;

(ii)
∫ t

0
(t− s)ω−1sτψ(s)ds ≤

(
B
(

ω−p
1−p , 1+τ−p

1−p

))1−p

tω+τ−p‖ψ‖
L

1
p

, for p < min{ω, 1 +

τ}, t > 0.

Proof. Using Hölder’s inequality, it follows that

∫ t

a
(t− s)ω−1ψ(s)ds ≤

( ∫ t

a
(t− s)

ω−1
1−p ds

)1−p

‖ψ‖
L

1
p
=

(
1− p
ω− p

)1−p

(t− a)ω−p‖ψ‖
L

1
p

, for ω > p,

∫ t

0
(t− s)ω−1sτψ(s)ds ≤

( ∫ t

0
(t− s)

ω−1
1−p s

τ
1−p dτ

)1−p

‖ψ‖
L

1
p

=

(
B
(

ω− p
1− p

,
1 + τ − p

1− p

))1−p

tω+τ−p‖ψ‖
L

1
p

, for p < min{ω, 1 + τ}, t > 0.

Lemma 6. If γ ∈ (1, 2) and y ∈ L
1
p (0 < p < 1), then

(i) for 0 < p < γ− 1, (Iγ
0+y(s))(t) ∈ C(J,R);

(ii) for 0 < p < γ−1
2 , (Iγ−1

0+ y(s))(t) ∈ AC(J,R) and (Iγ
0+y(s))(t) ∈ AC2(J,R).

Proof. (i) For any t1, t2 ∈ J and t1 < t2, from Hölder’s inequality and Lagrange’s mean
value theorem, we have∣∣∣∣(Iγ

0+y(s))(t2)− (Iγ
0+y(s))(t1)

∣∣∣∣
=

1
Γ(γ)

∣∣∣∣∫ t1

0

[
(t2 − s)γ−1 − (t1 − s)γ−1

]
y(s)ds +

∫ t2

t1

(t2 − s)γ−1y(s)ds
∣∣∣∣

≤ (t2 − t1)

Γ(γ− 1)

∫ t1

0
(ξ − s)γ−2|y(s)|ds +

( ∫ t2

t1

(t2 − s)
γ−1
1−p ds

)1−p ‖y‖
L

1
p

Γ(γ)

≤ (t2 − t1)

Γ(γ− 1)

∫ t1

0
(ξ − s)γ−2|y(s)|ds +

( 1− p
γ− p

)1−p
‖y‖

L
1
p

Γ(γ)
(t2 − t1)

γ−p

≤ (t2 − t1)

Γ(γ− 1)

( ∫ t1

0
(ξ − s)

γ−2
1−p ds

)1−p

‖y‖
L

1
p
+
( 1− p

γ− p
)1−p

‖y‖
L

1
p

Γ(γ)
(t2 − t1)

γ−p (6)

≤ (t2 − t1)

Γ(γ− 1)
( 1− p

γ− 1− p
)1−p[

ξ
γ−1−p

1−p − (ξ − t1)
γ−1−p

1−p
]1−p‖y‖

L
1
p
+
( 1− p

γ− p
)1−p

‖y‖
L

1
p

Γ(γ)
(t2 − t1)

γ−p

→ 0, as t2 → t1,

that is, (Iγ
0+y)(t) ∈ C(J,R).

(ii) It follows from (6) and the definition of the derivative for Lebesgue integration
that d

dt
(
(Iγ

0+y(s))(t)
)

exists and d
dt
(
(Iγ

0+y(s))(t)
)
= (Iγ−1

0+ y(s))(t). Next, we show that

(Iγ−1
0+ y(s))(t) ∈ AC(J, R). In fact, for every finite collection {(ai, bi)}1≤i≤n on J with

n
∑

i=1
(bi − ai)→ 0, by applying Hölder’s inequality, we obtain
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n

∑
i=1

∣∣∣(Iγ−1
0+ y(s))(bi)− (Iγ−1

0+ y(s))(ai)
∣∣∣

≤ 1
Γ(γ− 1)

{
n

∑
i=1

∣∣∣∣∫ ai

0
[(bi − s)γ−2 − (ai − s)γ−2]y(s)ds

∣∣∣∣+ n

∑
i=1

∫ bi

ai

(bi − s)γ−2|y(s)|ds

}

≤
‖y‖

L
1
p

Γ(γ− 1)

{
n

∑
i=1

[∫ ai

0
|(bi − s)γ−2 − (ai − s)γ−2|

1
1−p ds

]1−p
+

n

∑
i=1

[∫ bi

ai

(bi − s)
γ−2
1−p ds

]1−p
}

=
‖y‖

L
1
p

Γ(γ− 1)

{
(2− γ)

n

∑
i=1

∫ ai

0

∣∣∣∣∫ bi

ai

(ζ − s)γ−3dζ

∣∣∣∣ 1
1−p

ds

1−p

+
( 1− p

γ− 1− p

)1−p n

∑
i=1

(bi − ai)
γ−1−p

}

≤ M
n

∑
i=1

{∫ ai

0

[
(ai − s)θ − (bi − s)θ

]
ds
}1−p

+
‖y‖

L
1
p

Γ(γ− 1)

( 1− p
γ− 1− p

)1−p n

∑
i=1

(bi − ai)
γ−1−p

= M
n

∑
i=1

[ a1+θ
i − b1+θ

i + (bi − ai)
1+θ

1 + θ

]1−p
+
‖y‖

L
1
p

Γ(γ− 1)

( 1− p
γ− 1− p

)1−p n

∑
i=1

(bi − ai)
γ−1−p

→ 0,

where M > 0 is a constant and θ =
γ− 2− p

1− p
∈ (−1, 0). Now, (Iγ−1

0+ y(s))(t) ∈ AC(J, R),

i.e., (Iγ
0+y(s))(t) ∈ AC2(J, R).

The proof of our main result is based on the following fixed point theorem.

Theorem 1 ([21] (Schauder Fixed Point Theorem)). If U is a non-empty, closed, bounded convex
subset of a Banach space X and T : U → U is completely continuous, then T has a fixed point in U.

3. The Linear Case

We consider the following linear fractional hybrid differential equations with boundary
value conditions

LDα
0+


cDβ

0+x(t)−
m
∑

i=1
Iηi
0+hi(t)

g(t)

 = f (t), t ∈ J = (0, 1],

x′(0) = 0, x(0) = d, I1−α
0+

( cDβ

0+
x(t)

g(t)

)
(0+) = 0,

(7)

where f ∈ L
1

p1 (J,R)(0 < p1 < α
2 ), g ∈ L

1
p2 (J,R)(0 < p2 < β−1

2 ) and hi ∈ L
1

p3 (J,R)(0 <

p3 < β+ηi−1
2 )(i = 1, 2, · · · , m).

Theorem 2. A function x ∈ AC2(J, R) is a solution of (7) if and only if x is a solution of the
following equation

x(t) = d +
m

∑
i=1

Iβ+ηi
0+ hi(t) + Iβ

0+

(
g(·)(Iα

0+ f )(·)
)
(t). (8)

Proof. (Necessity) For t ∈ J, it follows from Lemmas 2(1) and 3 that

LDα
0+


cDβ

0+x(t)−
m
∑

i=1
Iηi
0+hi(t)− g(t)(Iα

0+ f )(t)

g(t)

 = 0,
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then

cDβ
0+x(t) = c0tα−1g(t) +

m

∑
i=1

Iηi
0+hi(t) + g(t)(Iα

0+ f )(t),

furthermore

cDβ
0+

[
x(t)− Iβ

0+

(
c0tα−1g(t) +

m

∑
i=1

Iηi
0+hi(t) + g(t)(Iα

0+ f )(t)
)]

= 0.

Using Lemmas 2 and 4, we arrive at

x(t) = c1 + c2t + c0 Iβ
0+

(
sα−1g(s)

)
(t) +

m

∑
i=1

Iβ+ηi
0+ hi(t) + Iβ

0+

(
g(·)(Iα

0+ f )(·)
)
(t),

x′(t) = c2 + c0 Iβ−1
0+

(
sα−1g(s)

)
(t) +

m

∑
i=1

Iβ+ηi−1
0+ hi(t) + Iβ−1

0+

(
g(·)(Iα

0+ f )(·)
)
(t).

The boundary value conditions imply that

c0 = 0, c1 = x(0) = d, c2 = x′(0) = 0.

(Sufficiency) Let x(t) satisfy (8). It follows from Lemmas 2 and 6 that cDβ
0+x(t) exists

on J. It is not difficult to verify that x(t) satisfies (7). The proof is completed.

4. Main Results

To prove the existence of solutions to the problem (1)–(2), we need the following
hypotheses on the functions f : J ×R×R → R, g : J ×R → R \ {0} and hi : J ×R →
R(i = 1, 2, · · · , m), respectively.

Hypothesis 1 (H1). f (·, u, v) : J → R is measurable for all u, v ∈ R, f (t, ·, ·) : R×R→ R is

continuous for a.e. t ∈ J, and there exist the functions ϕ, a ∈ L
1

p1 (J,R+)(0 < p1 < min{α, 1−
α}) such that

| f (t, u, v)| ≤ ϕ(t)(|u|λ1 + |v|λ2) + a(t),

where 0 < λ1 < λ2 < 1.

Hypothesis 2 (H2). g(·, u) : J → R \ {0} is measurable for all u ∈ R, g(t, ·) : R→ R \ {0} is

continuous for a.e. t ∈ J, and there exists a function µ ∈ L
1

p2 (J,R+)(0 < p2 < β−1
2 ) such that

|g(t, x(t))| ≤ µ(t).

Hypothesis 3 (H3). hi(·, u) : J → R is measurable for all u ∈ R, hi(t, ·) : R→ R is continuous

for a.e. t ∈ J, and there exist functions φi, b ∈ L
1

p3 (J,R+)(0 < p3 < β+ηi−1
2 ) and a continuous

non-decreasing function Ψ : [0, ∞)→ [0, ∞) such that

|hi(t, u(t))| ≤ φi(t)Ψ(|u(t)|) + b(t)

and

lim inf
r→∞

Ψ(r)
r

= σ < ∞.

We define

Cδ = {x : x(t) ∈ C([0, 1],R), tδ LDδ
0+x(t) ∈ C([0, 1],R)}
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with the norm
‖x‖δ = max{max

t∈[0,1]
|x(t)|, max

t∈[0,1]
tδ|LDδ

0+x(t)|}.

Clearly, Cδ is a Banach space.
According to Theorem 2, we have the following result.

Theorem 3. Assume that (H1)–(H3) are satisfied, then a function x is a solution of the problem (1)–(2)
if and only if x is a solution of the following equation

x(t) = d +
m

∑
i=1

(
Iβ+ηi
0+ hi

)
(t) + (Iβ

0+ G̃)(t),

where

(
Iβ+ηi
0+ hi

)
(t) :=

∫ t

0

(t− s)β+ηi−1

Γ(β + ηi)
hi(s, x(s))ds,

G̃(t, x(t)) = g(t, x(t))
∫ t

0

(t− s)α−1

Γ(α)
f (s, x(s),LDδ

0+x(s))ds.

The proof of Theorem 3 is similar to that of Theorem 2, and is thus omitted.
For convenience, we set constants

Λ1 :=
(

B
(

α− p1

1− p1
,

1− λ2δ− p1

1− p1

))1−p1 1
Γ(α)

;

Λ2 :=
(

1− p2

β− δ− p2

)1−p2 ‖µ‖
L

1
p2

Γ(β− δ)
;

Mi :=
(

1− p3

β + ηi − δ− p3

)1−p3 1
Γ(β + ηi − δ)

, i = 1, 2, · · · , m;

M̂ := |d|max
{ 1

Γ(1− δ)
, 1
}
+

m

∑
i=1

max
{Γ(β + ηi − δ)

Γ(β + ηi)
, 1
}

Mi‖b‖
L

1
p3

+ Λ2Λ1‖a‖
L

1
p1

max
{Γ(β− δ)

Γ(β)
, 1
}

.

Theorem 4. If assumptions (H1)–(H3) hold, then the problem (1)–(2) has a solution x ∈ Cδ,
provided that,

σ
m

∑
i=1

max
{ 1

Γ(β + ηi)
,

1
Γ(β + ηi − δ)

}( 1− p3

β + ηi − δ− p3

)1−p3

‖φi‖
L

1
p3

< 1.

Proof. We define an operator F : Cδ → Cδ as

(Fx)(t) = d +
m

∑
i=1

(
Iβ+ηi
0+ hi

)
(t) + (Iβ

0+ G̃)(t),

then

(LDδ
0+Fx)(t) =

dt−δ

Γ(1− δ)
+

m

∑
i=1

Iβ+ηi−δ
0+ hi(t, x(t)) + (Iβ−δ

0+ G̃)(t).

It is easy to see that, F is well defined, and the fixed point of F is the solution of the
problem (1)–(2).

For x ∈ Cδ, by Lemma 5, we have



Symmetry 2022, 14, 1189 9 of 13

∫ t

0

(t− s)α−1

Γ(α)
f (s, x(s),LDδ

0+x(s))ds

≤
∫ t

0

(t− s)α−1s−λ2δ

Γ(α)

[
ϕ(s) · (‖x‖λ1

δ + ‖x‖λ2
δ ) + a(s)

]
ds

≤ Λ1

[
‖ϕ‖

L
1

p1
(‖x‖λ1

δ + ‖x‖λ2
δ ) + ‖a‖

L
1

p1

]
, (9)

∣∣(Iβ−δ
0+ G̃)(t)

∣∣ ≤ Λ1

∫ t

0

(t− s)β−δ−1µ(s)
Γ(β− δ)

ds ·
[
‖ϕ‖

L
1

p1
(‖x‖λ1

δ + ‖x‖λ2
δ ) + ‖a‖

L
1

p1

]
≤ Λ2 ·Λ1

[
‖ϕ‖

L
1

p1
(‖x‖λ1

δ + ‖x‖λ2
δ ) + ‖a‖

L
1

p1

]
, (10)∣∣∣∣(Iβ+ηi−δ

0+ hi(s, x(s))
)
(t)
∣∣∣∣ ≤ ∫ t

0

(t− s)β+ηi−δ−1φi(s)
Γ(β + ηi − δ)

ds ·Ψ(‖x‖δ) +
∫ t

0

(t− s)β+ηi−δ−1b(s)
Γ(β + ηi − δ)

ds

≤ Mi ·
[
‖φi‖

L
1

p3
Ψ(‖x‖δ) + ‖b‖

L
1

p3

]
. (11)

We prove that F has a fixed point in Cδ by splitting three steps.
Step I. For an r > 0, we define a ball Br ⊂ Cδ as Br = {x ∈ Cδ : ‖x‖δ ≤ r}. We claim

that FBr ⊆ Br. If this is not true, then, for each positive number r, there exists a function
x̃(·) ∈ Br, for some t0 ∈ J,

‖(F x̃)‖δ := max{|(F x̃)(t0)|, tδ
0|LDδ

0+(F x̃)(t0)|} > r.

Moreover, noting that (10) and (12), we have

|(F x̃)(t)| ≤ |d|+
m

∑
i=1

Γ(β + ηi − δ)

Γ(β + ηi)

∣∣Iβ+ηi−δ
0+ hi(t, x̃(t))

∣∣+ Γ(β− δ)

Γ(β)

∣∣(Iβ−δ
0+ G̃(s, x̃(s)))(t)

∣∣
≤ M̂ +

m

∑
i=1

Γ(β + ηi − δ)

Γ(β + ηi)
Mi‖φi‖

L
1

p3
Ψ(r) +

Γ(β− δ)

Γ(β)
Λ1Λ2‖ϕ‖

L
1

p1
· (rλ1 + rλ2),

tδ|LDδ
0+(F x̃)(t)| ≤ |d|

Γ(1− δ)
+

m

∑
i=1
|Iβ+ηi−δ

0+ hi(t, x̃(t))|+ |(Iβ−δ
0+ G̃)(t)|

≤ M̂ +
m

∑
i=1

Mi‖φi‖
L

1
p3

Ψ(r) + Λ1Λ2‖ϕ‖
L

1
p1
· (rλ1 + rλ2),

this yields

r < ‖(F x̃)‖δ ≤ M̂ + Λ1Λ2‖ϕ‖
L

1
p1
· (rλ1 + rλ2)max

{Γ(β− δ)

Γ(β)
, 1
}

+
m

∑
i=1

max
{Γ(β + ηi − δ)

Γ(β + ηi)
, 1
}

Mi‖φi‖
L

1
p3

Ψ(r),

then we deduce that

σ
m

∑
i=1

max
{ 1

Γ(β + ηi)
,

1
Γ(β + ηi − δ)

}( 1− p3

β + ηi − δ− p3

)1−p3

‖φi‖
L

1
p3
≥ 1,

which is a contradiction. Therefore, FBr ⊆ Br.
Step II. Let {xn} be a sequence such that xn → x in Br, then there exists ε > 0, such

that ‖xn − x‖δ < ε for n sufficiently large. By (H1)–(H3) and (9), we have
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| f (t, xn(t),LDδ
0+xn(t))− f (t, x(t),LDδ

0+x(t))| ≤ t−λ2δ ϕ(t)(ελ1 + ελ2 + 2rλ1 + 2rλ2) + 2a(t),

|hi(t, xn(t))− hi(t, x(t))| ≤ 2φi(t)Ψ(r) + 2b(t),

|g(t, xn(t))− g(t, x(t))| ≤ 2µ(t),

and

|G̃(t, xn(t))− G̃(t, x(t))|

≤ |g(t, xn(t))− g(t, x(t))|
Γ(α)

∫ t

0
(t− s)α−1| f (s, xn(s),LDδ

0+xn(s))|ds

+
|g(t, x(t))|

Γ(α)

∫ t

0
(t− s)α−1| f (s, xn(s),LDδ

0+xn(s))− f (s, x(s),LDδ
0+x(s))|ds

≤ 4µ(t)

[
Λ1(ε

λ1 + ελ2 + rλ1 + rλ2) +
( 1− p1

α− p1

)1−p1
‖a‖

L
1

p1

Γ(α)

]
.

Moreover, using (H1)–(H3), for almost every t ∈ J, we arrive at

| f (t, xn(t),LDδ
0+xn(t))− f (t, x(t),LDδ

0+x(t))| → 0, as n→ ∞,

|hi(t, xn(t))− hi(t, x(t))| → 0, as n→ ∞,

|g(t, xn(t))− g(t, x(t))| → 0, as n→ ∞,

hence

|G̃(t, xn(t))− G̃(t, x(t))|

≤ |g(t, xn(t))− g(t, x(t))|
Γ(α)

∫ t

0
(t− s)α−1| f (s, xn(s),LDδ

0+xn(s))|ds

+
|g(t, x(t))|

Γ(α)

∫ t

0
(t− s)α−1| f (s, xn(s),LDδ

0+xn(s))− f (s, x(s),LDδ
0+x(s))|ds

→ 0, as n→ ∞.

From Lebesgue’s dominated convergence theorem, (10) and (11), it follows that∣∣(Iβ+ηi
0+ hi(s, xn(s)))(t)− (Iβ+ηi

0+ hi(s, x(s)))(t)
∣∣→ 0, as n→ ∞,∣∣(Iβ

0+ G̃(s, xn(s)))(t)− (Iβ
0+ G̃(s, x(s)))(t)

∣∣→ 0, as n→ ∞,

which implies that |(Fxn)(t)− (Fx)(t)| → 0 as n→ ∞. Similarly, we have |(LDδ
0+Fxn)(t)−

(LDδ
0+Fx)(t)| → 0 as n→ ∞. This yields the continuity of F .

Step III. Arguments similar to those in Lemma 6, yield

|(Fx)(t2)− (Fx)(t1)| → 0 and |t2(
LDδ

0+Fx)(t2)− t1(
LDδ

0+Fx)(t1)| → 0,

therefore FBr ⊂ Br is equicontinuous. F is completely continuous which follows from the
Arzela–Ascoli theorem. Now, Theorem 1 shows that F has a fixed point in Br which is a
solution of (1)–(2).

When α = 1, m = 1, η1 = α, g(t, x(t)) ≡ 1, h(t, x(t)) = −λ(t)x(t) and f (t, x(t),
LDδ

0+x(t)) = −µLDδ
0+x(t) + h(t), the Equation (1) reduces to the general fractional non-

homogeneous differential equation with a variable coefficient of the form

cDβ+1
0+ x(t) + µLDδ

0+x(t) + λ(t)x(t) = h(t).

The existence result of the solution to the above case can be stated below.
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Corollary 1. Assume that (H1), (H3) and λ(t) ∈ L
1
p (0 < p < β−1

2 ) are satisfied, then the problem
cDβ+1

0+ x(t) + µLDδ
0+x(t) + λ(t)x(t) = h(t), t ∈ J = (0, 1],

x′(0) = 0, x(0) = d, lim
t→0+

t1−α (cDβ
0+x)(t) = 0,

(12)

has a solution x ∈ Cδ if

max
{ 1

Γ(β)
,

1
Γ(β− δ)

}
·
(

1− p
β− p

)1−p
·
‖λ‖

L
1
p

Γ(β)
< 1.

When m = 1, η1 = 0 and h(t, x(t)) = −λ(t)x(t), the Equation (1) reduces to the
variable coefficient fractional hybrid Langevin equation of the following form

LDα
0+

(
cDβ

0+x(t) + λ(t)x(t)
g(t, x(t))

)
= f (t, x(t),LDδ

0+x(t)).

Obviously, the result below follows immediately.

Corollary 2. Assume that (H1)–(H3) and λ(t) ∈ L
1
p (0 < p < β−1

2 ) are satisfied, then the problem
LDα

0+

(
cDβ

0+x(t) + λ(t)x(t)
g(t, x(t))

)
= f (t, x(t),LDδ

0+x(t)), t ∈ J = (0, 1],

x′(0) = 0, x(0) = d, lim
t→0+

t1−α (cDβ
0+x)(t) = 0,

(13)

has a solution x ∈ Cδ if

max
{ 1

Γ(β)
,

1
Γ(β− δ)

}
·
(

1− p
β− p

)1−p
·
‖λ‖

L
1
p

Γ(β)
< 1.

For g(t, x(t)) ≡ 1, δ = 0, we can determine the existence of solutions for the fractional
Langevin equation with a variable coefficient.

Corollary 3. Let λ(·) ∈ L
1
p (0 < p < β−1

2 ) and f : J × R → R. If f (·, u) : J → R is
measurable for all u ∈ R, f (t, ·) : R→ R is continuous for a.e. t ∈ J, and there exist the functions

ϕ, a ∈ L
1
p (J,R+)(0 < p < α) such that

| f (t, u)| ≤ ϕ(t)|u|σ + a(t), 0 < σ < 1.

Then the problem
LDα

0+

(
cDβ

0+x(t) + λ(t)x(t)
)
= f (t, x(t)), t ∈ J = (0, 1],

x′(0) = 0, x(0) = d, lim
t→0+

t1−α (cDβ
0+x)(t) = 0,

(14)

has a solution x ∈ C(J,R) if (
1− p
β− p

)1−p
·
‖λ‖

L
1
p

Γ(β)
< 1.
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5. Example

Example 1. We consider the following boundary value problem for the fractional hybrid differential
equation:

LD
4
5
0+

 cD
7
5
0+ x(t) + t

1
12 |x(t)| 1

2

g(t, x(t))

 =
1
7
√

t

(
|x(t)|

1
2 + |LD

1
6
0+ x(t)|

3
5

)
+

1
10
√

t
, t ∈ J = (0, 1],

x′(0) = 0, x(0) = d, lim
t→0+

t
1
5 (cD

7
5
0+ x)(t) = 0.

(15)

Putting α = 4
5 , β = 7

5 , m = 1, δ = 1
6 , η1 = 0, g(t, x(t)) = x(t)

8√t(1+|x(t)|)
, h(t, x(t)) =

−t
1

12 |x(t)| 12 , f (t, x(t), LD
1
6
0+x(t)) = 1

7√t

(
|x(t)| 12 + |LD

1
6
0+x(t)| 35

)
+ 1

10√t
, we can see

| f (t, x(t), LD
1
6
0+x(t))| ≤ ϕ(t)

(
|x(t)|

1
2 + |LD

1
6
0+x(t)|

3
5

)
+ a(t), ϕ(t) =

1
7
√

t
∈ L6, a(t) =

1
10
√

t
∈ L6;

|g(t, x(t))| =
|x(t)|

8
√

t(1 + |x(t)|)
≤ 1

8
√

t
= µ(t) ∈ L7;

|h(t, x(t))| ≤ Φ(t
1
6 |x(t)|), Φ(u) =

√
u.

Clearly, lim inf
r→∞

Ψ(r)
r

= 0. By Theorem 4, the problem (15) has at least one solution x ∈ C 1
6
.

6. Conclusions and Outlook

Using a new technique which does not need the assumptions f ∈ C(J ×R×R,R)
and g, hi ∈ C(J ×R,R), we obtain results that have practical applications for a couple of
problems. The results for some important fractional differential equations, for example, the
general fractional non-homogeneous differential Equation (12) with variable coefficient,
can be obtained directly by our results. The proposed technique can be extended to other
fractional hybrid differential equations. Furthermore, the technique can be employed to
solve other types of equations. In future work, we will study the positive solution and its
symmetry for the following boundary value problem of the fractional hybrid differential
equations:

HDα1,α2
0+

( cDβ
0+x(t)−

m
∑

i=1
Iηi
0+hi(t, x(t))

g(t, x(t))

)
= f (t, x(t),LDδ

0+x(t)), t ∈ J = (0, 1],

where α1, α2 ∈ [0, 1], β ∈ (1, 2], δ ∈ [0, α1), ηi ∈ [0, 1] and β + ηi − δ ∈ (1, 2). H Dα1,α2
0+ is the

standard Hilfer fractional derivative.
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