
Citation: Deng, G.; Qi, N.; Tang, M.;

Duan, X. Constructing Dixon Matrix

for Sparse Polynomial Equations

Based on Hybrid and Heuristics

Scheme. Symmetry 2022, 14, 1174.

https://doi.org/10.3390/sym14061174

Academic Editor: Mihai Postolache

Received: 8 May 2022

Accepted: 1 June 2022

Published: 7 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Constructing Dixon Matrix for Sparse Polynomial Equations
Based on Hybrid and Heuristics Scheme
Guoqiang Deng 1,2 , Niuniu Qi 2, Min Tang 2 and Xuefeng Duan 2,*

1 School of Computer Science and Information Security, Guilin University of Electronic Technology,
Guilin 541004, China; d9801242@guet.edu.cn

2 School of Mathematics and Computing Science, Guangxi Colleges and Universities Key Laboratory of Data
Analysis and Computation, Guilin University of Electronic Technology, Guilin 541004, China;
19072201023@guet.edu.cn (N.Q.); dengtangmin@guet.edu.cn (M.T.)

* Correspondence: duanxuefeng@guet.edu.cn

Abstract: Solving polynomial equations inevitably faces many severe challenges, such as easily
occupying storage space and demanding prohibitively expensive computation resources. There
has been considerable interest in exploiting the sparsity to improve computation efficiency, since
asymmetry phenomena are prevalent in scientific and engineering fields, especially as most of the
systems in real applications have sparse representations. In this paper, we propose an efficient
parallel hybrid algorithm for constructing a Dixon matrix. This approach takes advantage of the
asymmetry (i.e., sparsity) in variables of the system and introduces a heuristics strategy. Our method
supports parallel computation and has been implemented on a multi-core system. Through time-
complexity analysis and extensive benchmarks, we show our new algorithm has significantly reduced
computation and memory overhead. In addition, performance evaluation via the Fermat–Torricelli
point problem demonstrates its effectiveness in combinatorial geometry optimizations.

Keywords: sparsity; hybrid algorithm; successive Sylvester resultant computations; fast recursive
algorithm; Dixon matrix

1. Introduction

As a basic tool in computer algebra and a built-in function of most computer algebra
systems, the notion of a resultant is widely used in mathematical theory. A resultant
is not only of significance to computer algebra [1], but also plays an important role in
biomedicine [2], image processing [3], geographic information [4], satellite trajectory con-
trol [5], information security [6] and other scientific and engineering fields [7,8]. The most
widely used techniques for solving polynomial systems are Sylvester and Dixon resultants.
For example, applying a Dixon resultant to algebraic attacks can quickly solve multivariate
polynomial quadratic equations over finite fields. Although these resultant techniques have
been extensively studied and improved, they still face many severe challenges regarding
their easy occupation of storage space and demand for prohibitively expensive computation
resources.

Specifically, a successive Sylvester elimination technique has a shortcoming over a
multivariate resultant in that the performance of successive resultant computations is very
sensitive to the ordering of variables. Human intervention is required to determine the most
efficient ordering, and so they are not automatic methods [9]. Inappropriate choices may
cause the extreme intermediate expression to swell, consequently running out of memory
before accomplishment [10]. In fact, this method is very inefficient, with the number of
variables increasing. Moreover, this technique performs elimination variable by variable,
which is inherently sequential.

In contrast, in most cases, the Dixon method is more efficient for directly computing
resultant without eliminating variables one at a time. However, it is generally known that

Symmetry 2022, 14, 1174. https://doi.org/10.3390/sym14061174 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14061174
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-4973-932X
https://doi.org/10.3390/sym14061174
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14061174?type=check_update&version=3

Symmetry 2022, 14, 1174 2 of 18

the entries of the Dixon matrix are more complicated than the entries of other resultant
matrices. As a promising scheme, the fast recursive algorithm of the Dixon matrix (FRDixon
for short) [11–16] can greatly improve the computation efficiency of the Dixon matrix.
Recently, its effectiveness has been analyzed in detail and proven by [16]. Nevertheless, the
size of the Dixon matrix and computational complexity by FRDixon explode exponentially
as the number of variables increases. If the size of the Dixon matrix is relatively large, it
directly leads to difficulty computing the final resultant.

To sum up, it is difficult to overcome such difficulties mentioned above, whatever the
choices of resultants. Notice that the conventional resultants resort to general methods for
solving polynomial systems. From another point of view, if we can make use of the features
of given systems to design customized algorithms for constructing resultant matrices or
computing resultants [10], instead of general-purpose methods, it can be expected that we
can obtain a targetable method to solve some intractable problems efficiently. Therefore,
the main objective of this article is to make use of the sparsity of systems and advantages
of prevailing resultants to design a more suitable scheme according to the features of
different systems.

Symmetry/asymmetry phenomena are prevalent in scientific and engineering fields.
In computer algebra, especially most problems which arise in geometry, we observe the
fact that in the real polynomial systems, variables always do not stand uniformly (i.e., with
asymmetry features), such as the three combinatorial geometry problems posed in [10]
for Heron’s formula in three and four dimensions [17], the problem of mapping of the
topographical point to the standard ellipsoid [4], the Fermat–Torricelli point problem on a
sphere with an Euclidean metric [18] and bifurcation points of the logistic map [17,19,20].
As we know, in the last decade, there has been considerable interest in employing sparsity
to find the solutions in various fields, since most of the systems in real applications actually
have sparse representations, such as finding sparse and low-rank solutions [21], parallel
GCD algorithm for sparse multivariate polynomials [22], estimating the greatest common
divisor (GCD) with sparse coefficients of noise-corrupted polynomials [23] and sparse
multivariate interpolation [24].

However, researchers in symbolic computation mainly consider designing the methods to
solve an arbitrary given polynomial system and are not aware of such sparse scenarios. In fact,
similar studies on sparsity in other fields can go on in the field of solving polynomial systems.
In this paper, we propose a new approach to construct a Dixon matrix for solving polynomial
equations with sparsity. Through time-complexity analysis and extensive benchmarks, we
show our new algorithm has significantly reduced computation and memory overhead.

1.1. Contributions

Our method is combined with Sylvester resultant and fast recursive algorithm FRDixon.
It can be partitioned into two phases. In the first phase, we make use of the sparsity of
systems to obtain a smaller polynomial system in fewer variables via a Sylvester resultant
with fewer computational efforts. In the next step, we consider the multivariate algorithm
FRDixon. Since the computational complexity of FRDixon exponentially depends on the
number of variables, consequently, via Sylvester resultant elimination, the exported system
with fewer variables than operated by FRDixon is more effective than single FRDixon that
operates the original system directly. The idea is the genesis of our algorithm employing
the Sylvester resultant and FRDixon simultaneously.

The main contributions of this paper are as follows.

1. We take advantage of the sparsity of the system and present a heuristic strategy to
determine the most effective elimination ordering and remove part of the variables
via Sylvester resultant.

2. We propose a method to improve the fast recursive algorithm of the Dixon matrix,
which leads to reduced time and parallelism available.

3. We present a hybrid algorithm employing the methods of 1 and 2 to overcome some
computation problems arising in successive Sylvester resultant computations and

Symmetry 2022, 14, 1174 3 of 18

FRDixon separately. Meanwhile, we apply parallel computation to speed up these
two elimination processes.

4. We implement our hybrid algorithm and parallel version on Maple. Through time-
complexity analysis and extensive random benchmarks, we show our new algorithm
has significantly reduced computation and memory overhead in the cases of systems
with sparsity. In addition, performance evaluation via the Fermat–Torricelli point
problem on sphere with Euclidean metric demonstrates our algorithm’s effectiveness
in terms of the real combinatorial geometry optimization problems.

1.2. Related Work

It is well known that successive Sylvester resultant computations can be used to settle
the problem of elimination of variables from a multivariate polynomial system to obtain a
smaller polynomial system in fewer variables. Implementations of Sylvester resultants are
supported in most of the computer algebra systems. With respect to so-called multivariate
resultants, A.L. Dixon [25] proposed a method to simultaneously eliminate variables from
multivariate systems, aiming at solving the polynomial equations system by constructing a
Dixon matrix and computing its determinant.

Since then, Sylvester and Dixon approaches have been generalized and improved
(see [9,11,12,16,17,20,26–34]). In [26], using the Cholesky decomposition, Zhi et al. pro-
posed a method to compute the Sylvester resultant and reduced the time complexity to
O(r(m + n)), where m + n and r represent the size and numerical rank of the Sylvester
matrix, respectively. Kapur et al. [29] extended Dixon’s method for the case when Dixon
matrix is singular and successfully proved many non-trivial algebraic and geometric identi-
ties. In order to improve the efficiency of computing the Dixon resultant, several methods
came into existence, such as the Unknown-Order-Change [30], Fast-Matrix-Construction
method [9,31], Corner-Cutting method [32], etc. Zhao et al. [11,12] extended Chionh’s
algorithm [31] to the general case of n + 1 polynomial equations in n variables by n-degree
Sylvester resultant, and proposed the FRDixon algorithm, which initially constructed the
Dixon matrix of nine Cyclic equations. In 2017, Qin et al. [16] gave a detailed analysis of the
computational complexity of Zhao’s recurrence formula setting and applied parallel com-
putation to speed up the recursive procedure [33,34]. To deal with the determinant raised
in the Dixon matrix which is too large to compute or factor, some heuristic acceleration
techniques were raised to accelerate computation in certain specific cases [17,20].

1.3. Organization

The rest of this article is organized as follows. Section 2 reviews the successive Sylvester
resultant computations method and the FRDixon algorithm. In Section 3, a parallel hybrid
algorithm which combines the Sylvester resultant and modified FRDixon is developed.
Section 4 analyzes the time complexity of our proposed algorithm and conducts a series
of numerical experiments. Three sets of random instances and one detailed example are
presented to illustrate the application of our method. Finally, a conclusion is reported.

2. Review of Elimination Techniques

In this section, we first review the definition of a Sylvester resultant, which serves as
the basis of successive Sylvester resultant computations for solving a system of polynomial
equations. Then, we describe the fast recursive algorithm for construction of a Dixon matrix
(FRDixon) [11].

All the discussions are stated for a general field K[X, A], where X = {x1, . . . , xn} de-
notes the set of variables and A = {a is the parameter, a /∈ X} denotes the set of parameters
not belonging to X. Consider a system of n + 1 polynomial equations

Sys(f1, . . . , fn) = { f j(x1, . . . , xn) =

mj1

∑
i1=0

. . .
mjn

∑
in=0

aj,i1,...,in xi1
1 · · · x

in
n , j = 1, . . . , n + 1} (1)

Symmetry 2022, 14, 1174 4 of 18

in n variables xi and a number of coefficients aj,i1,...,in ∈ K[A], where mji is the degree of
the polynomial f j(x1, . . . , xn) with respect to xi. The objective is to construct the resultant
matrix of polynomial equation system (1).

2.1. Elimination via Sylvester Resultant

In this subsection, we introduce the elimination process variable by variable based
on the Sylvester resultant. The classical Sylvester resultant is used to the elimination of
systems of two polynomials in one variable. Consider the polynomials f and g:

f = amxm + am−1xm−1 + · · ·+ a0,
g = bl xl + bl−1xl−1 + · · ·+ b0,

where m(>0) and l(>0) are the degrees of polynomials f and g in x, respectively. Recall that
the Sylvester matrix of f and g in x is the matrix of the form

S =

am am−1 . . . a0
am am−1 . . . a0

.
am am−1 . . . a0

bl bl−1 . . . b0
bl bl−1 . . . b0

.
bl bl−1 . . . b0

and the resultant of f and g in x is defined as the determinant of matrix S.

Let res(fi, f j, xk) represent the Sylvester resultant of the polynomial fi and f j in xk. By
computing the Sylvester resultant of fi and other polynomials f2, . . . , fn with respect to x1,
respectively, we obtain the system Sys(x2, . . . , xn) denoted by

f1,2 = res(f1, f2, x1)
f1,3 = res(f1, f3, x1)

. . .
f1,n+1 = res(f1, fn+1, x1)

which contains n equations in n− 1 variables x2, . . . , xn, i.e., the variable x1 is removed
from the original system (1). This procedure may be repeated until we have determined the
sequence of polynomial systems Sys(x3, . . . , xn), Sys(x4, . . . , xn), . . . , Sys(xn). Obviously,
the above elimination procedure yields the final resultant Sys(xn) for system (1).

Similar to the procedure above, we can eliminate x1, . . . , xi−1, xi+1, . . . , xn in any or-
der by successive Sylvester resultant computations and finally have a resultant in vari-
able xi(i ∈ {1, . . . , n}). In the worst cases, this method requires O(n2) times Sylvester
resultant computations.

2.2. Fast Recursive Algorithm of the Dixon Matrix (FRDixon)

We now give the key technique of the fast recursive algorithm for constructing the
Dixon matrix in [11]. To avoid the computation of polynomial division, the technique of
truncated formal power series (see [31]) is employed in the FRDixon algorithm.

Let ai(y)(i = 0, 1, . . . , n) be the polynomial in y. It is obvious that ∑n
i=0 ai(y)xi = 0

when x = y. Therefore, the quotient ∑n
i=0 ai(y)xi/(x− y) is a polynomial in y. We denote

1
/
(x− y) by series form ∑∞

u=1 x−uyu−1. Hence,

∑n
i=0 ai(y)xi

x− y
=

n

∑
i=0

ai(y)xi
i

∑
u=1

x−uyu−1 +
n

∑
i=0

ai(y)xi
∞

∑
u=i+1

x−uyu−1, (2)

Symmetry 2022, 14, 1174 5 of 18

here ∑0
u=1 x−uyu−1 is taken as zero. Since the powers of x of the second term are all

negatives, the left side of Equation (2) is a polynomial if, and only if, the second term of the
right side in (2) is equal to zero. Hence, the equation

∑n
i=0 ai(y)xi

x− y
=

n

∑
i=1

ai(y)xi
i−1

∑
k=1

xkyi−1−k (3)

holds.
The FRDixon algorithm is based on the following ideas: employing the technique

of truncated formal power series for reducing the Dixon matrix construction problem
into a set of sub-Dixon matrix construction problems with fewer variables, and using
the Sylvester resultant matrix and the Dixon matrix with k− 1 (3 ≤ k ≤ n) variables to
represent the Dixon matrix with k variables via matrix block computation. A recursive
process for constructing the Dixon matrix is then proposed. For more details, one can refer
to [11,12,16].

3. A Hybrid Algorithm for Constructing a Dixon Matrix

In this section, we will propose a new method to construct the Dixon matrix. Addi-
tionally, our proposed scheme is a parallel hybrid approach utilizing both the Sylvester
resultant and the modified FRDixon algorithm, and making our algorithm applicable in
either random polynomial systems or problems in reality.

The time complexity of our algorithm for construction of the Dixon matrix of
Sys(f1, . . . , fn+1) defined by (1) is O(m̄3(n2 − t2 + n + t) + m̃2

1t!3 ∏t
i=2 m̃3

i) (numerical type
determinant) or O(m̄!(n2− t2 +n+ t)+ m̃2

1t!3 ∏t
i=2 m̃3

i) (symbolic type determinant), where
m̄ is the degree bound of the polynomial, m̃i denotes the maximum degree of xi in all poly-
nomials f1, . . . , fn+1, n denotes the number of variables and t denotes the number of
variables in the polynomial system after the Sylvester resultant eliminates some variables.
See Section 4.1 for details of the proof. In comparison, our method is more efficient than
the existing methods for solving sparse polynomial systems.

Our method can be partitioned into two phases. In the first phase, we eliminate part
of variables by Sylvester resultant from the original system, and then in the second phase,
we construct the resultant matrix of the system derived from the first phase by a variant
version of FRDixon.

3.1. Sylvester Elimination by Heuristic Strategy

A successive Sylvester elimination technique requires n− 1 computations to remove a
variable for a non-sparse system. If the sparse condition is satisfied, we can obtain a smaller
system with the least computation costs.

In this subsection, we describe a heuristic strategy to determine which variable should
be eliminated first. According to the degrees of this variable in each polynomial of the
system, we can give the optimal combinational relationships of polynomials for removing
it by Sylvester resultant.

If there are some variables only appearing in a few equations of system (1), the
computation cost of eliminating such variables from (1) will be relatively small. In such a
case, our approach to decide the elimination ordering and then remove them via Sylvester
resultant in the first phase is fairly straightforward.

Let dji represent whether the variable xi appears in polynomial f j. That is,

dji =

{
1 if xi is in variable set of f j
0 otherwise

For each xi, we compute the sum of dji for j = 1, . . . , n + 1 denoted by

ei =
n+1

∑
j=1

dji , i = 1, 2, . . . , n. (4)

Symmetry 2022, 14, 1174 6 of 18

Assume xk denotes the first variable to be eliminated from system (1). Then, for
j = 1, . . . , k− 1, k + 1, . . . , n, it satisfies

(ek < ej) or (ek = ej and mk ≤ mj) (5)

mi means the maximum degree of xi in all polynomials f1, . . . , fn+1. Once xk is picked, we
move to adjust the ordering of f1, . . . , fn+1. Let ord(f j) for j = 1, 2, . . . , n + 1 be the order
of f j after rearrangement. We require that if mjk < mik , then ord(f j) < ord(fi). At this
stage, the ordering of polynomials is rearranged according to the degree mjk ; we denote the
rearrangement system by Sys(p1, . . . , pn+1).

From now on, the technique of successive Sylvester resultant computations is op-
erated on the newly adjusted system Sys(p1, . . . , pn+1). Assume the first l polynomials
do not contain variable xk. In such a case, we only need to eliminate xk from the last
(n + 1− l) polynomials pl+1, . . . , pn+1 by computing the resultants res(pl+1, pl+2, xk), . . . ,
res(pl+1, pn+1, xk). Let

pl+1,j = res(pl+1, pj, xk), l + 2 ≤ j ≤ n + 1.

Then, a new polynomial system

{p1, . . . , pl , pl+1,l+2, . . . , pl+1,n+1} (6)

with n− 1 variables is obtained.
We can proceed with eliminating a variable from (6) in way similar to that shown

above. This approach in the first phase is illustrated in Example 1.

Example 1. Given a system

f1 = −3x3
2 − x1x2x3 + x2

1x2 + 9x2x3
f2 = x2x3

2 − 3x2
2 − x3 + 5x2 + 11

f3 = −x2
2x3 − 7x1x2 − x2

3 + 2x2 − 9
f4 = −x2x2

3 − x2x3 − x2
2 + x3

we want to eliminate a variable with the least computation cost. For each variable xi, count the
number of times of xi appearing in Sys(f1, . . . , f4) according to (4). We find that the minimum of
{e1, e2, e3} is 2 corresponding to x1. Therefore, x1 is chosen to be eliminated first and { f1, f2, f3, f4}
can be rearranged by mj1(j = 1, . . . , 4). The rearranged system is

{p1 = f2, p2 = f4, p3 = f3, p4 = f1}.

Since x1 does not appear in p1 and p2, eliminating x1 by computing res(p3, p4, x1), we obtain
the system of 3 equations and 2 variables as

p1 = f2 = x2x3
2 − 3x2

2 − x3 + 5x2 + 11, p2 = f4 = −x2x2
3 − x2x3 − x2

2 + x3,
p3,4 = x5

2x2
3 + 7x4

2x2
3 + 2x3

2x3
3 − 4x4

2x3 + 7x2
2x3

3 + x2x4
3 + 445x3

2x3 − 151x2
2x2

3 + 4x3
2

+63x2
2x3 + 18x2x2

3 − 36x2
2 + 81x2

.

Note that if x3 is chosen to be eliminated first instead of x1, this yields a much larger system:

f1,2 = res(f1, f2, x3) = x4
1x4

2 − 3x2
1x5

2 − x3
1x3

2 − 13x2
1x4

2 + 54x1x5
2 + 50x2

1x3
2 − 90x1x4

2−
243x5

2 + 66x2
1x2

2 − 207x1x3
2 + 486x4

2 − 3x2
1x2 + 15x1x2

2 + 702x3
2 + 33x1x2−

504x2
2 + 693x2 + 1089,

f1,3 = res(f1, f3, x3) = x3
1x4

2 − 3x2
1x5

2 + x4
1x2

2 + 7x3
1x3

2 − 30x2
1x4

2 + 42x3
1x2

2 − 128x2
1x3

2+
195x1x4

2 + 438x2
1x2

2 + 576x1x3
2 − 54x4

2 + 54x2
1x2 − 414x1x2

2 + 81x3
2 + 1134x1x2

+765x2
2 − 324x2 + 729,

f1,4 = res(f1, f4, x3) = x2(x4
1x3

2 + x3
1x3

2 + x2
1x4

2 − x3
1x2

2 − 3x2
1x3

2 − 18x1x4
2 + 6x2

1x2
2−

3x1x3
2 + 81x4

2 + 6x2
1x2 + 3x1x2

2 + 36x3
2 − 3x2

1 − 27x2
2).

Symmetry 2022, 14, 1174 7 of 18

Remark 1. An attractive feature of the hybrid algorithm is that it reflects the polynomial sparsity
of the system. Hence, our overall algorithm is sensitive to the sparsity of variables appearing in its
original representation of a given system.

3.2. Construction of Dixon Matrix by Improved FRDixon

At this stage, assume that we have eliminated n− t variables via successive Sylvester
elimination techniques by making use of a heuristic strategy. The derived system is denoted
by Sys(q1, . . . , qt+1),

Sys(q1, . . . , qt+1) = {qj(x̃1, . . . , x̃t) =

m̃j1

∑
i1=0

. . .
m̃jt

∑
it=0

ãj,i1,...,it x̃
i1
1 · · · x̃

it
t , j = 1, . . . , t + 1}, (7)

where m̃ji denotes the degree of variable x̃i in {q1, q2, . . . , qt + 1}. ãj,i1,...,it denotes the
coefficients of monomial.

The rest of the work constructs a Dixon matrix using an improved FRDixon algo-
rithm. In our new version, we replace the computations of the product of Sylvester matrix
Si(i = 0, . . . , m̃1 − 1) and block matrix Fj(j = 0, . . . , tm̃1 − 1) to the sum of products of a set
of matrices with smaller size, which leads to reduced time and parallelism available.

Specifically, Si is expressed by

Si =

ã1,i,0,...,0 · · · ãt+1,i,0,...,0

ã1,i,0,...,1 · · · ãt+1,i,0,...,1
. . .

... · · ·
...

. . . ã1,i,0,...,0 · · · ãt+1,i,0,...,0

ã1,i,m̃2,...,m̃t · · · ãt+1,i,m̃2,...,m̃t

. . .
... · · ·

...
. . . ã1,i,m̃2,...,m̃t−1 · · · ãt+1,i,m̃2,...,m̃t−1

ã1,i,m̃2,...,m̃t · · · ãt+1,i,m̃2,...,m̃t

,

where ãj,i,i2,...,it is exacted from the coefficients of polynomials q1, . . . , qt+1. The order of Si

is t! ∏t
l=2 m̃l × (t + 1)(t− 1)! ∏t

l=2 m̃l .
The block matrix Fj is constructed by

Fj =

DD1,j+1(1, :)
...

DDt+1,j+1(1, :)
...

DD1,j+1((t− 1)!Πt
l=2m̃l , :)

...
DDt+1,j+1((t− 1)!Πt

l=2m̃l , :)

,

where DDk,j+1(l, :) denotes the l-row of DDk,j+1 defined by (14). The order of Fj is (t + 1)
(t− 1)! ∏t

l=2 m̃l × (t− 1)! ∏t
l=2 m̃l .

In the original version, Si and Fj are computed, respectively. The improved algorithm
considers Si · Fj as the sum of products of a set of Pk,i · DDk,j+1; that is

Si · Fj =
t+1

∑
k=1

Pk,i · DDk,j+1, 0 ≤ i ≤ m̃1 − 1, 0 ≤ j ≤ tm̃1 − 1, (8)

where Pk,i is the t! ∏t
l=2 m̃l × (t− 1)! ∏t

l=2 m̃l matrix defined by (13).
In our theoretical analysis in Theorem 1 with an improved FRDixon algorithm, we

find that the key advantages to this matrix decomposition are as follows.

Symmetry 2022, 14, 1174 8 of 18

• There is no need to construct matrix Fj for j = 0, . . . , tm̃1 − 1 explicitly. This is in
contrast with the original FRDixon, which requires computing matrix Fj from DDk,j+1
one by one.

• Compared to Si, matrix Pk,j with a smaller size can be computed independently and,
consequently, has the advantage of working in parallel.

• Decomposition of (8) leads to reduced time.

Based on above analysis, we now give a description of Algorithm 1.

Algorithm 1: Improved FRDixon algorithm.

Input: Sys(q1, . . . , qt+1): multivariate polynomial system with t + 1
equations and t variables x̃1, . . . , x̃t.

Output: Dixon(q1, . . . , qt+1): Dixon matrix of Sys(q1, . . . , qt+1).
Step 1. (Decompose Dixon polynomial δ(q1, . . . , qt+1) into a set of sub-Dixon polynomials.)
By introducing the new variables x̄1, . . . , x̄t to qj(x̃1, . . . , x̃t), we form the Dixon polynomial δ(q1, . . . , qt+1)
defined as

δ(q1, . . . , qt+1) =
t

∏
i=1

1
x̄i − x̃i

∣∣∣∣∣∣∣∣∣
q1(x̃1, . . . , x̃t) q2(x̃1, . . . , x̃t) . . . qt+1(x̃1, . . . , x̃t)
q1(x̄1, . . . , x̃t) q2(x̄1, . . . , x̃t) . . . qt+1(x̄1, . . . , x̃t)

...
...

...
...

q1(x̄1, . . . , x̄t) q2(x̄1, . . . , x̄t) . . . qt+1(x̄1, . . . , x̄t)

∣∣∣∣∣∣∣∣∣ (9)

By comparing the form of the left side in Equation (3), we conclude that Dixon polynomial δ(q1, . . . , qt+1) has a
structure identical to (3). Hence, we can use the technique of truncated formal power series to split (9) into
several sub-Dixon polynomials:

δ(q1, . . . , qt+1) =
tm̃1−1

∑
u1=0

tm̃1
∑

i=u1+1
x̃i−1−u1

1 x̄u1
1 ((−1)0q1 ∑

i1+···+it=i
δ(q2,i1 , q3,i2 , . . . , qt+1,it)

+(−1)1q2 ∑
i1+···+it=i

δ(q1,i1 , q3,i2 , . . . , qt+1,it) + · · ·

+(−1)tqt+1 ∑
i1+···+it=i

δ(q1,i1 , q2,i2 , . . . , qt,it)),

(10)

where m̃i = max{m̃ji , j = 1, . . . , t + 1} for i = 1, . . . , t. If terms of qj are collected with respect to x̃k, qj can be
written as a univariate polynomial in x̃k,

qj =

m̃jk

∑
i=0

qj,i(x̃1, . . . , x̃k−1, x̃k+1, . . . , x̃t)x̃i
k,

then qj,i(x̃1, . . . , x̃k−1, x̃k+1, . . . , x̃t) is regarded as the coefficient polynomial from K[x̃1, . . . , x̃k−1, x̃k+1, . . . , x̃t]

with respect to x̃i
k. This procedure reduces the original Dixon polynomial δ(q1, . . . , qt+1) into several sub-Dixon

polynomials δ(q1,i1 , . . . , qk−1,ik−1
, qk+1,ik , . . . , qt+1,it) with fewer variables and fewer polynomials.

Step 2. (Express the Dixon polynomial in terms of Dixon matrix.)
Deduce the recursive formula for Dixon matrix, express sub-Dixon polynomials in Dixon matrix from

∑
i1+···+it=i

δ(q1,i1 , . . . , qk−1,ik−1
, qk+1,ik , . . . , qt+1,it)

= [1, · · · ,
t

∏
l=2

x̃(l−1)m̃l−1
l]× ∑

i1+···+it=i
Dixon(q1,i1 , . . . , qk−1,ik−1

, qk+1,ik , . . . , qt+1,it)×

[1, · · · ,
t

∏
l=2

x̃(t−l+1)m̃l−1
l]T ,

(11)

Symmetry 2022, 14, 1174 9 of 18

Algorithm 1: Cont.
for k = 1, . . . , t + 1 and i = 1, . . . , tm̃1. Then, substitute (11) into (10); we can obtain the Dixon matrix
representation of (10) as follows,

δ(q1, . . . , qt+1)

=
tm̃1−1

∑
u1=0

tm̃1

∑
i=u1+1

x̃i−1−u1
1 x̄u1

1 (q1 · [1, · · · ,
t

∏
l=2

x̃(l−1)m̃l−1
l] · ∑

i1+···+it=i
Dixon(q2,i1 , . . . , qt+1,it)

+ · · ·+ (−1)tqt+1 · [1, · · · ,
t

∏
l=2

x̃(l−1)m̃l−1
l] · ∑

i1+···+it=i
Dixon(q1,i1 , . . . , qt,it))

×[1, · · · ,
t

∏
l=2

x̃(t−l+1)m̃l−1
l]T .

(12)

Step 3. (Construct the matrix Pk,i.)
Extract the coefficients of q1, . . . , qt+1 to construct the matrix

Pk,i =

ãk,i,0,...,0

ãk,i,0,...,1
. . .

...
. ãk,i,0,...,0

ãk,i,m̃2,...,m̃t

.
...

. . . ãk,i,m̃2,...,m̃t−1
ãk,i,m̃2,...,m̃t

, (13)

where k = 1, . . . , t + 1 and i = 0, . . . , m̃1 − 1. From (13), it is easy to see that Pk,i is a block matrix. The order of
Pk,i is t! ∏t

l=2 m̃l × (t− 1)! ∏t
l=2 m̃l .

Step 4. (Construct the matrix DDk,j+1.)
Compute the sum of sub-Dixon matrices corresponding to sub-Dixon polynomials in (12), denoted by

DDk,j+1 = ∑
i1+···+it=j+1

Dixon(q1,i1 , . . . , qk−1,ik−1
, qk+1,ik , . . . , qt+1,it). (14)

where k = 1, . . . , t + 1 and j = 0, . . . , tm̃1 − 1. The order of DDk,j+1 is (t− 1)! ∏t
l=2 m̃l × (t− 1)! ∏t

l=2 m̃l .
Step 5. (Compute Si · Fj.)
From (13) and (14), compute the product of Si · Fj by (8).
Step 6. (Construct Dixon(q1, . . . , qt+1) using Si · Fj.)
From the evaluations of Si · Fj for 0 ≤ i ≤ m̃1 − 1 and 0 ≤ j ≤ tm̃1 − 1, construct Dixon matrix,

Dixon(q1, . . . , qt+1) =

 D0,0 · · · D0,tm̃1−1
...

...
...

Dm̃1−1,0 · · · Dm̃1−1,tm̃1−1

=

 S0
...

. . .
Sm̃1−1 · · · S0

 ·
 F0 · · · F(t−1)m̃1

· · · Ftm̃1−1
...

Fm̃1−1 · · · Ftm̃1−1

,

where

Di,j =
min{i,tm̃1−1−j}

∑
k=0

Si−k · Fj+k (15)

is a block matrix of order t! ∏t
l=2 m̃l × (t− 1)! ∏t

l=2 m̃l .

3.3. The Parallel Hybrid Algorithm

In Sections 3.1 and 3.2, we describe the two phases involved in our hybrid algorithm.
Now, the overall algorithm is presented.

Symmetry 2022, 14, 1174 10 of 18

Remark 2. The Algorithm 2 presented corresponds to our sequential implementation. Further
parallel is available. In particular,

• In step 2, once xk is determined to be eliminated, we simultaneously have at our disposal the
computations pl+1,l+2, . . . , pl+1,n+1. Hence, res(pl+1, pj, xk) can be obtained in parallel.

• In step 3 and step 4, Pk,i and DDk,j+1 can each be obtained independently. Hence, the
computations of Pk,i and DDk,j+1 can be carried out in parallel.

• In step 5, once Pk,i and DDk,j+1 are known to us, we can compute Di,j immediately. Hence,
the initialization of Di,j can be performed in parallel.

• In step 6, recursive operation is carried out on each anti-diagonal line as Dixon(q1, . . . , qt+1)
can also be performed in parallel.

Algorithm 2: Hybrid algorithm.

Input: Sys(f1, . . . , fn+1): multivariate polynomial system with n + 1
equations and n variables x1, . . . , xn over K[X, A].

Output: Dixon(f1, . . . , fn+1): Dixon matrix of Sys(f1, . . . , fn+1).
Step 1. (Select variable xk to be eliminated from Sys(f1, . . . , fn+1) by applying
heuristic scheme.)
Select the variable xk to be eliminated according to (5). Then, rearrange the
polynomial f j in terms of the degrees of f j(j = 1, . . . , n + 1) in xk. Denote the
rearranged polynomial system as Sys(p1, . . . , pn+1).

Step 2. (Eliminate xk from Sys(p1, . . . , pn+1).)
Assume the polynomials p1, . . . , pl do not contain variable xk. Eliminate xk from
{pl+1, . . . , pn+1} by Sylvester resultant:

pl+1,j = res(pl+1, pj, xk), j = l + 2, . . . , n + 1

According to the size and feature of given system (1), the process of selection and
elimination can be continued until n− t variables are removed from
Sys(f1, . . . , fn+1). Assume the derived system is denoted by Sys(q1, . . . , qt+1).

Step 3. (Construct the matrix Pk,i.)
for i = 0, . . . , m̃1 − 1 do

for k = 1, . . . , t + 1 do
Construct the Pk,i by (13) in Algorithm 1.

end k for;
end i for ;
Step 4. (Construct the matrix DDk,j+1.)
for j = 0, . . . , tm̃1 − 1 do

for k = 1, . . . , t + 1 do
Construct the DDk,j+1 by (14) recursively in Algorithm 1.

end k for;
end j for ;
Step 5. (Initialize the elements Di,j of Dixon(q1, . . . , qt+1).)
From step 3 and step 4, compute the product of Si · Fj by (8) and then initialize the
elements Di,j = Si · Fj of Dixon(q1, . . . , qt+1).

Step 6. (Construct the Dixon(q1, . . . , qt+1).)
Observing (15), we find that the following relationship holds,

Di,j = Di−1,j+1 + Si · Fj, 1 ≤ i ≤ m̃1 − 1, 0 ≤ j ≤ tm̃1 − 2,

then recursive operation is carried out on each anti-diagonal line. Hence,
constructing the Dixon(q1, . . . , qt+1) as follows

Symmetry 2022, 14, 1174 11 of 18

Algorithm 2: Cont.

Dixon(q1, . . . , qt+1) =

S0 · F0 · · · S0 · Fm̃1−1 S0 · Fm̃1 · · · S0 · Ftm̃1−1
↙ . . . ↙ ↙ . . . S1 · Ftm̃1−1

.
...

↙ . . . ↙ ↙ . . . Sm̃1−2 · Ftm̃1−1
↙ . . . ↙ ↙ . . . Sm̃1−1 · Ftm̃1−1

 (16)

can avoid a mount of repeated computations.

Our method exploits the sparsity in variables of the system and introduces heuristics
strategy. Parts of the variables are chosen to be eliminated from the original system
via successive Sylvester resultant computations. Next, the exported system with fewer
variables is operated by improved FRDixon. Meanwhile, these two elimination processes
can be paralleled.

4. Analysis and Evaluation

We first analyze the time complexity of the hybrid algorithm in Section 4.1, and then
evaluate the performance of our algorithm. In Section 4.2, we discuss implementations in
random instances. Section 4.3 reports on our approach in a real problem. The effectiveness
and practicality of our method are illustrated in these examples.

4.1. Time Complexity Analysis

We now give the sequential complexity of the hybrid algorithm in terms of the number
of arithmetic operations, and use big-O notation to simplify expressions and asymptotically
estimate the number of operations algorithm used as the input grows.

Theorem 1. The time complexity of the hybrid algorithm (Algorithm 2) for construction of Dixon
matrix of Sys(f1, . . . , fn+1) defined by (1) is O(m̄3(n2− t2 + n+ t)+ m̃2

1t!3 ∏t
i=2 m̃3

i) (numerical
type determinant) or O(m̄!(n2 − t2 + n + t) + m̃2

1t!3 ∏t
i=2 m̃3

i) (symbolic type determinant).

Proof. Similar to the framework of a hybrid algorithm, we partition two phases to analyze
the sequential complexity of our new method.

In the first phase, we consider successive Sylvester resultant computations. The most
expensive component of this part is to compute a set of Sylvester resultants. It can be
shown that evaluation of a m×m numerical determinant using row operations requires
about 2m3/3 arithmetic operations ([35]). If symbolic determinant needs to be computed, a
cofactor expansion requires over m! multiplications in general. Suppose that n− t variables
are eliminated in the whole successive Sylvester resultant computations. When the ith
elimination process is performed, we let li(≤ n+ 1− i) for 1 ≤ i ≤ n− t denote the number
of Sylvester resultant computations and m̄ denote the degree bound of polynomials.

In terms of the complexity of determinant computation, the first phase requires
2
3 m̄3 ∑n−t

i=1 li arithmetic operations for numerical determinant or m̄!
2 ∑n−t

i=1 li arithmetic opera-
tions for the symbolic determinant. Hence, the complexity of this part is O(m̄3(n2 − t2 +
n + t)) or O(m̄!(n2 − t2 + n + t)) using big-O notation.

In the second phase, we consider improved FRDixon for system (7). The main cost is
calculation of (8). Each of these Pk,i · DDk,j+1’s requires

[((t− 1)! ∏t
l=2 m̃l)

3 + (t− 1)((t− 1)! ∏t
l=2 m̃l)

2]

multiplications and

[((t− 1)! ∏t
l=2 m̃i)

3 − (t− 2)((t− 1)! ∏t
l=2 m̃l)

2] + (t− 2)(t− 1)! ∏t
l=2 m̃l)

Symmetry 2022, 14, 1174 12 of 18

additions. The tm̃2
1 calls to compute Si · Fj cost

(t2 − 1)tm̃2
1[((t− 1)! ∏t

l=2 m̃l)
3 + (t− 1)((t− 1)! ∏t

l=2 m̃l)
2]

multiplications and

(t2 − 1)tm̃2
1[((t− 1)! ∏t

l=2 m̃l)
3 − (t− 2)((t− 1)! ∏t

l=2 m̃l)
2 + (t− 2)(t− 1)! ∏t

l=2 m̃l+

(t! ∏t
l=2 m̃l)

2]

additions. The Dixon(q1, . . . , qt+1) can be constructed in (tm̃1 − 1)2 additions using the
method given in (16). Hence, the complexity of improved FRDixon is

(t2 − 1)tm̃2
1[((t− 1)! ∏t

l=2 m̃l)
3 + (t− 1)((t− 1)! ∏t

l=2 m̃l)
2]

multiplications and

(t2 − 1)tm̃2
1[T̃

3 − (t− 2)T̃2 + (t− 2)T̃ + (t! ∏t
l=2 m̃l)

2] + (tm̃1 − 1)2

additions, where T̃ = (t− 1)! ∏t
l=2 m̃l . If we use big-O notation, the complexity of improved

FRDixon is O(m̃2
1t!3 ∏t

l=2 m̃3
l).

Hence, the complexity of hybrid algorithm is O(m̄3(n2 − t2 + n + t) + m̃2
1t!3 ∏t

i=2 m̃3
i)

for numerical type or O(m̄!(n2 − t2 + n + t) + m̃2
1t!3 ∏t

i=2 m̃3
i) for symbolic type.

4.2. Random Systems

To compare the performance of our hybrid algorithm, successive Sylvester resultant
elimination method and FRDixon ([11,16]), we have implemented these algorithms on three
benchmark sets with different sizes. All timings reported are in CPU seconds and were
obtained using Maple 18 on Intel Core i5 3470 @ 3.20 GHz running Windows 10, involving
basic operations such as matrix multiplication and determinant calculations.

4.2.1. Timings

Each polynomial of systems S1–S30 in Tables 1–3 is generated at random using the
Maple command ‘randpoly’. To guarantee the sparsity of the system, remove one variable
randomly from each polynomial in every system of S1–S30. One hundred instances are con-
tained in each system and the average running time is reported. The timings for columns 4,
5 and 6 of Tables 1–3 are for the successive Sylvester resultant elimination method (SylRes
for short), FRDixon and hybrid algorithm (Hybrid for short), respectively. To better assess
the parallel implementation of our algorithm, we report timings and speed-ups for four
cores listed in column 7 in Tables 1–3. ’—’ indicates that the program went on for more
than 2000s, or ran out of space.

Benchmark #1
This set of benchmarks consists of 10 groups of systems. Every system of S1–S10

contains five polynomial equations in four variables.
The data in Table 1 show that for systems S1–S10, our new algorithm has a better

performance compared to FRDixon. For systems S1–S4, SylRes has fewer timings than
the hybrid algorithm. As terms and degrees increase, systems become more complex.
Our hybrid algorithm is superior to SylRes. Considering test instances S9 and S10, we
tried successive resultant computations using the existing implementations of Sylvester’s
resultant in Maple for various variable orderings, but most of the time, the computations
run out of memory. We also tried to compute Dixon matrix by FRDixon. The program ran
for up to 2000s in these examples.

Symmetry 2022, 14, 1174 13 of 18

Table 1. Benchmark #1: variables = 4.

System Term Degree
Average Time (s)

SylRes FRDixon Hybrid Hybrid (in Parallel)

S1 4 2 0.43 11.575 2.283 0.771
S2 5 2 0.93 19.274 2.673 0.879
S3 6 3 11.40 216.115 40.398 11.481
S4 7 3 36.02 234.975 49.641 13.264
S5 8 4 234.51 558.974 94.813 24.813
S6 9 4 265.42 568.757 105.221 28.952
S7 10 5 1469.08 906.224 287.381 73.475
S8 11 5 1564.15 921.901 297.517 76.837
S9 12 6 — — 764.242 195.073
S10 13 6 — — 773.361 197.019

Benchmark #2
This set of systems differs from the first benchmark in that the degree of each poly-

nomial is set to be four in the second set. The number of terms and variables varies from
small to large.

In the experimentation of benchmark #2 in Table 2, we found that our new hybrid
algorithm is faster than FRDixon for computing the Dixon matrix. Notice that when the
number of variables increases up to 7 and the terms of polynomials reach 12 or more,
the FRDixon was not successfully terminated after 2000s. There were similar results for
benchmark #1. Successive Sylvester resultant computations cost less than our method in
simple systems S11 and S12. However, for complicated systems, the successive technique
shows its inefficiency.

Table 2. Benchmark #2: degrees = 4.

System Term Variable
Average Time (s)

SylRes FRDixon Hybrid Hybrid (in Parallel)

S11 4 3 0.23 6.391 0.507 0.187
S12 5 3 0.21 5.330 0.847 0.223
S13 6 4 203.74 524.672 89.325 23.492
S14 7 4 219.53 533.013 98.321 26.398
S15 8 5 564.12 760.180 279.945 70.447
S16 9 5 596.09 781.112 299.864 76.106
S17 10 6 1759.25 1265.803 594.381 151.093
S18 11 6 — 1301.021 617.829 155.479
S19 12 7 — — 1359.986 346.983
S20 13 7 — — 1505.042 382.271

Benchmark #3
This set of benchmarks consists of 10 groups of systems of terms = 6 polynomial

equations with varying numbers of variables and degrees. See Table 3. As analysis of the
complexity of the hybrid algorithm, the number of arithmetic operations is mainly affected
by variables and degrees. With the increase in these two parameters, three algorithms need
more computation time for completion. Facing intractable systems S27–S30, SylRes and
FRDixon are both powerless.

In all experiments listed in Tables 1–3, our hybrid algorithm always takes advantage
of the sparsity of a given system and combines successive Sylvester resultant computations
with improved FRDixon. The average running time is never more than the original FRDixon.
Except for some “simple” instances, the new algorithm has a better performance compared
to successive Sylvester resultant computations.

Symmetry 2022, 14, 1174 14 of 18

Table 3. Benchmark #3: terms = 6.

System Degree Variable
Average Time (s)

SylRes FRDixon Hybrid Hybrid (in Parallel)

S21 2 3 0.02 2.640 0.207 0.072
S22 3 3 0.12 5.639 0.440 0.134
S23 3 4 11.01 223.527 34.568 9.007
S24 4 4 125.03 516.969 87.380 22.043
S25 4 5 532.52 727.617 271.239 69.971
S26 5 5 844.64 1106.289 478.947 122.307
S27 5 6 — — 851.086 215.152
S28 6 6 — — 987.602 249.005
S29 6 7 — — 1823.056 460.764
S30 7 7 — — 1909.443 483.125

4.2.2. Matrix Dimension

According to the definition of the resultant (determinant of resultant matrix), one can
notice that the dimension of resultant matrix is the key factor affecting the computational
complexity on the target resultant. In order to compare the matrix dimension generated by
FRDixon and the hybrid algorithm, we record the matrix sizes of systems S1–S30, as shown
in Tables 4–6.

Table 4. Matrix dimensions corresponding to systems in Table 1.

Algorithm
Matrix Dimension

S1 S2 S3 S4 S5

Hybrid 48× 48 48× 48 480× 480 720× 720 1008× 1008
FRDixon 192× 192 192× 192 864× 864 864× 864 1944× 1944

S6 S7 S8 S9 S10

Hybrid 1440× 1440 1260× 1260 1296× 1296 2592× 2592 3402× 3402
FRDixon 2304× 2304 2800× 2800 2800× 2800 — —

Table 5. Matrix dimensions corresponding to systems in Table 2.

Algorithm
Matrix Dimension

S11 S12 S13 S14 S15

Hybrid 72× 72 96× 96 864× 864 1008× 1008 1296× 1296
FRDixon 144× 144 144× 144 1944× 1944 1944× 1944 5760× 5760

S16 S17 S18 S19 S20

Hybrid 1944× 1944 2970× 2970 3168× 3168 6336× 6336 7128× 7128
FRDixon 5760× 5760 8640× 8640 8640× 8640 — —

Table 6. Matrix dimensions corresponding to systems in Table 3.

Algorithm
Matrix Dimension

S21 S22 S23 S24 S25

Hybrid 12× 12 18× 18 480× 480 840× 840 1440× 1440
FRDixon 24× 24 48× 48 864× 864 1944× 1944 5760× 5760

S26 S27 S28 S29 S30

Hybrid 2160× 2160 5760× 5760 7128× 7128 8640× 8640 9072× 9072
FRDixon 6480× 6480 — — — —

Symmetry 2022, 14, 1174 15 of 18

From Tables 4–6, we can see that the size of the Dixon matrix produced by hybrid
algorithm is much smaller than FRDixon for any system.

4.3. Real Problems

In order to measure the comprehensive performance of the hybrid algorithm in the
real problems, we implement our new algorithm on an open optimization problem in
combinatorial geometry.

Given a spherical triangle4ABC whose length of sides are a, b and c, respectively, the
problem is to find a point P on the sphere such that the sum of distances L between the
point P and the vertexes of4ABC reaches the minimum.

As illustrated in Figure 1, let AB = c, BC = a, AC = b, PA = u, PB = v, PC = w
and L = u + v + w. All distances are measured by an Euclidean metric. If we can find the
relationship between a, b, c and L, the original minimum problem is solved.

P

C O

A

B

u

a

b

c

w

v

Figure 1. A triangle ABC on the sphere and their Fermat–Torricelli point P.

By applying the Lemma 42.1 in [36] and the compactness of the sphere, we can prove
that a point P on sphere is such that the Cayley–Menger determinant equals to zero. That
is, the distances between the center point O of the sphere and A, B, C, P should satisfy

V(a, b, c, u, v, w) =

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1 1
1 0 u2 v2 w2 1
1 u2 0 c2 b2 1
1 v2 c2 0 a2 1
1 w2 b2 a2 0 1
1 1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (17)

Now, we transform the relationship between a, b, c and L into an optimization problem
of the following form

min L = u + v + w
s.t. V(a, b, c, u, v, w) = 0.

(18)

Consequently, the Fermat–Torricelli point P on the sphere is such that the polynomial
system {

L− u− v− w = 0
∂G
∂λ = 0, ∂G

∂u = 0, ∂G
∂v = 0, ∂G

∂w = 0.
(19)

where
G=u + v + w + λ ·V(a, b, c, u, v, w). (20)

From (17)–(20), we obtain the polynomial system
f1(u, v, w, λ) = L− u− v− w
f2(u, v, w, λ) = −a4u4 + 2a2b2u2v2 + · · · − 4c2v2w2 + 4c2w4 (28 terms)
f3(u, v, w, λ) =

(
−4a4u3 + 4a2b2uv2 + · · ·+ 8c2uv2 − 8c2uw2)λ + 1 (14 terms)

f4(u, v, w, λ) =
(
4a2b2u2v− 4b4v3 + · · ·+ 8c2u2v− 8c2vw2)λ + 1 (14 terms)

f5(u, v, w, λ) =
(
4a2c2u2w + 4b2c2v2w + · · · − 8c2v2w + 16c2w3)λ + 1 (14 terms).

(21)

Symmetry 2022, 14, 1174 16 of 18

It is easy to know that this geometry problem is equivalent to solving the polynomial
system (21) with five equations and four variables.

We first report the result that (21) solved by successive Sylvester resultant computation
techniques. The order of elimination is λ, u, v and w. Starting with computing res(f3, f5, λ)
and res(f4, f5, λ), the variable λ is eliminated from (21),

f1(u, v, w) = L− u− v− w
f2(u, v, w) = −a4u4 + 2a2b2u2v2 + · · · − 4c2v2w2 + 4c2w4 (28 terms)
f3,5(u, v, w) = −4a4u3 − 4a2b2u2v + · · · − 8c2uw2 + 8c2vw2 (26 terms)
f4,5(u, v, w) = −4a4u3 + 4a2b2uv2 + · · ·+ 8c2v2w− 16c2w3 (26 terms).

(22)

This is followed by computing

p1 = res(f1, f2, u), p2 = res(f1, f3,5, u), p3 = res(f1, f4,5, u); (23)

and
p4 = res(p1, p2, v), p5 = res(p1, p3, v);

to eliminate u and v, respectively. Finally, w is eliminated by computing

p6 = res(p4, p5, w).

It was found that the elimination process of res(p4, p5, w) could not be completed due
to the memory overflows after 7961.3 s.

Now, we discuss the trace of our algorithm on this system. First, λ was eliminated
by computing res(f3, f5, λ) and res(f4, f5, λ). This took 0.85 s. This was followed by the
construction of a Dixon matrix of system (22), which turned out to be 384× 384, and this
took 40.127 s. The total computational cost took 40.977 s. Another scheme was to eliminate
two variables λ and u by proceeding with (22) and (23). This took 1.48 s. Then, FRDixon
was used to compute the target Dixon matrix. After 1.626 s, a 32× 32 Dixon matrix was
obtained. The total computations took 3.106 s. The second scheme, in contrast, works better
than the first.

Lastly, let us look at the FRDixon. It took 895.013 s to compute the Dixon matrix of
1536× 1536. The results of these methods are summarized in Table 7.

Table 7. Comparing the timings and the dimensions of Fermat–Torricelli problem on sphere with
Euclidean metric.

SylRes FRDixon
Hybrid

Scheme 1 Scheme 2

Timings >7961.3 895.013 40.977 3.106
Dimension of matrix — 1536× 1536 384× 384 32× 32

5. Conclusions

In this paper, we proposed a hybrid algorithm which combines the Sylvester resultant
elimination based on heuristic strategy and the improved fast recursive Dixon matrix
construction algorithm. Our hybrid algorithm can construct a Dixon matrix efficiently,
and the dimension is smaller than other existing algorithms. Moreover, we can achieve
reasonable robustness through randomization cases over different sizes of systems and a
real problem.

To conclude, we point out that the polynomial systems are sparse in many applications.
Our hybrid method seems to be very suitable for such a scenario. We have demonstrated
some prospects of our approach through a great example. These preliminary findings are
very encouraging and suggest that further studies are needed to examine methods based on
hybrid algorithms. We are therefore planning to explore different and specific applications.

Symmetry 2022, 14, 1174 17 of 18

For instance, we are planning to apply a Dixon resultant as an algebraic attack method to
solve multivariate polynomial quadratic systems over finite fields.

Author Contributions: G.D. contributed to conceptualization, methodology and writing—original
draft preparation. N.Q. contributed to formal analysis, resources, software and writing—review and
editing. M.T. contributed to validation and writing—review and editing. X.D. contributed to project
administration, supervision and writing—review and editing. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported by the Guangxi Science and Technology project under Grant (No.
Guike AD18281024), the Guangxi Key Laboratory of Cryptography and Information Security under
Grant (No. GCIS201821), the Guilin University of Electronic Technology Graduate Student Excellent
Degree Thesis Cultivation Project under Grant (No. 2020YJSPYB02), and Innovation Project of GUET
Graduate Education (No. 2022YCXS144).

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors wish to thank the referee for his or her very helpful comments and
useful suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mohammadi, A.; Horn, J.; Gregg, R.D. Removing phase variables from biped robot parametric gaits. In Proceedings of the IEEE

Conference on Control Technology and Applications—CCTA 2017, Waimea, HI, USA, 27–30 August 2017; pp. 834–840.
2. Jaubert, O.; Cruz, G.; Bustin, A.; Schneider, T.; Lavin, B.; Koken, P.; Hajhosseiny, R.; Doneva, M.; Rueckert, D.; René, M.B. Water-fat

Dixon cardiac magnetic resonance fingerprinting. Magn. Reson. Med. 2020, 83, 2107–2123. [CrossRef] [PubMed]
3. Winkler, J.R.; Halawani, H. The Sylvester and Bézout Resultant Matrices for Blind Image Deconvolution. J. Math. Imaging Vis.

2018, 60, 1284–1305. [CrossRef]
4. Lewis, R.H.; Paláncz, B.; Awange, J.L. Solving geoinformatics parametric polynomial systems using the improved Dixon resultant.

Earth Sci. Inform. 2019, 12, 229–239. [CrossRef]
5. Paláncz, B. Application of Dixon resultant to satellite trajectory control by pole placement. J. Symb. Comput. 2013, 50, 79–99.

[CrossRef]
6. Tang, X.J.; Feng, Y. Applying Dixon Resultants in Cryptography. J. Softw. 2007, 18, 1738–1745. [CrossRef]
7. Gao, Q.; Olgac, N. Dixon Resultant for Cluster Treatment of LTI Systems with Multiple Delays. IFAC-PapersOnLine 2015, 48, 21–26.

[CrossRef]
8. Han, P.K.; Horng, D.E.; Gong, K.; Petibon, Y.; Kim, K.; Li, Q.; Johnson, K.A.; Georges, E.F.; Ouyang, J.; Ma, C. MR-Based PET

Attenuation Correction using a Combined Ultrashort Echo Time/Multi-Echo Dixon Acquisition. Math. Phys. 2020, 47, 3064–3077.
[CrossRef] [PubMed]

9. Yang, L.; Zhang, J.; Hou, X. Nonlinear Algebric Equation System and Automated Theorem Proving; Shanghai Scientific and Technologi-
cal Education Publishing House: Shanghai, China, 1996; ISBN 7-5428-1379-X.

10. Tang, M.; Yang, Z.; Zeng, Z. Resultant elimination via implicit equation interpolation. J. Syst. Sci. Complex. 2016, 29, 1411–1435.
[CrossRef]

11. Fu, H.; Zhao, S. Fast algorithm for constructing general Dixon resultant matrix. Sci. China Math. 2005, 35, 1–14. (In Chinese)
[CrossRef]

12. Zhao, S. Dixon Resultant Research and New Algorithms. Ph.D. Thesis, Graduate School of Chinese Academy of Sciences,
Chengdu Institute of Computer Applications, Chengdu, China, 2006.

13. Zhao, S.; Fu, H. An extended fast algorithm for constructing the Dixon resultant matrix. Sci. China Math. 2005, 48, 131–143.
[CrossRef]

14. Zhao, S.; Fu, H. Three kinds of extraneous factors in Dixon resultants. Sci. China Math. 2009, 52, 160–172. [CrossRef]
15. Fu, H.; Wang, Y.; Zhao, S.; Wang, Q. A recursive algorithm for constructing complicated Dixon matrices. Appl. Math. Comput.

2010, 217, 2595–2601. [CrossRef]
16. Qin, X.; Wu, D.; Tang, L.; Ji, Z. Complexity of constructing Dixon resultant matrix. Int. J. Comput. Math. 2017, 94, 2074–2088.

[CrossRef]
17. Lewis, R.H. Heuristics to accelerate the Dixon resultant. Math. Comput. Simul. 2008, 77, 400–407. [CrossRef]
18. Guo, X.; Leng, T.; Zeng, Z. The Fermat-Torricelli problem on sphere with euclidean metric. J. Syst. Sci. Math. Sci. 2018,

38, 1376–1392. [CrossRef]

http://doi.org/10.1002/mrm.28070
http://www.ncbi.nlm.nih.gov/pubmed/31736146
http://dx.doi.org/10.1007/s10851-018-0812-2
http://dx.doi.org/10.1007/s12145-018-0366-2
http://dx.doi.org/10.1016/j.jsc.2012.05.007
http://dx.doi.org/10.1360/jos181738
http://dx.doi.org/10.1016/j.ifacol.2015.09.347
http://dx.doi.org/10.1002/mp.14180
http://www.ncbi.nlm.nih.gov/pubmed/32279317
http://dx.doi.org/10.1007/s11424-016-4159-8
http://dx.doi.org/10.3321/j.issn:1006-9232.2005.01.001
http://dx.doi.org/10.1360/04YS0166
http://dx.doi.org/10.1007/s11425-008-0094-z
http://dx.doi.org/10.1016/j.amc.2010.07.072
http://dx.doi.org/10.1080/00207160.2016.1276572
http://dx.doi.org/10.1016/j.matcom.2007.04.007
http://dx.doi.org/CNKI:SUN:STYS.0.2018-12-003

Symmetry 2022, 14, 1174 18 of 18

19. Kotsireas, I.S.; Karamanos, K. Exact Computation of the bifurcation Point B4 of the logistic Map and the Bailey-broadhurst
Conjectures. Int. J. Bifurc. Chaos 2004, 14, 2417–2423. [CrossRef]

20. Lewis, R.H. Comparing acceleration techniques for the Dixon and Macaulay resultants. Math. Comput. Simul. 2010, 80, 1146–1152.
[CrossRef]

21. Candes, E.J. Mathematics of sparsity (and a few other things). In Proceedings of the International Congress of Mathematicians
2017, Seoul, Korea, 13–21 August 2014; pp. 1–27.

22. Hu, J.; Monagan, M.B. A Fast Parallel Sparse Polynomial GCD Algorithm. In Proceedings of the ACM on International
Symposium on Symbolic and Algebraic Computation—ISSAC 2016, Waterloo, ON, Canada, 19–22 July 2016; Abramov, S.A.,
Zima, E.V., Gao, X., Eds.; ACM: New York, NY, USA, 2016; pp. 271–278.

23. Qiu, W.; Skafidas, E. Robust estimation of GCD with sparse coefficients. Signal Process. 2010, 90, 972–976. [CrossRef]
24. Cuyt, A.A.M.; Lee, W. Sparse interpolation of multivariate rational functions. Theor. Comput. Sci. 2011, 412, 1445–1456. [CrossRef]
25. Dixon, A. The eliminant of three quantics in two independent variables. Proc. Lond. Math. Soc. 1909, s2-7, 49–69. [CrossRef]
26. Li, B.; Liu, Z.; Zhi, L. A structured rank-revealing method for Sylvester matrix. J. Comput. Appl. Math. 2008, 213, 212–223.

[CrossRef]
27. Zhao, S.; Fu, H. Multivariate Sylvester resultant and extraneous factors. Sci. China Math. 2010, 40, 649–660. [CrossRef]
28. Minimair, M. Computing the Dixon Resultant with the Maple Package DR. In Proceedings of the Applications of Com-

puter Algebra (ACA), Kalamata, Greece, 20–23 July 2015; Kotsireas, I., MartinezMoro, E., Eds.; ACA: Kalamata, Greece, 2017;
pp. 273–287.

29. Kapur, D.; Saxena, T.; Yang, L. Algebraic and Geometric Reasoning Using Dixon Resultants. In Proceedings of the International
Symposium on Symbolic and Algebraic Computation, ISSAC ’94, Oxford, UK, 20–22 July 1994; MacCallum, M.A.H., Ed.; ACM:
New York, NY, USA, 1994; pp. 99–107.

30. Lu, Z. The Software of Gather2and2sift Based on Dixon Resultant. Ph.D. Thesis, Graduate School of Chinese Academy of
Sciences, Beijing, China, 2003.

31. Chionh, E.; Zhang, M.; Goldman, R.N. Fast Computation of the Bézout and Dixon Resultant Matrices. J. Symb. Comput. 2002,
33, 13–29. [CrossRef]

32. Foo, M.; Chionh, E. Corner edge cutting and Dixon A-resultant quotients. J. Symb. Comput. 2004, 37, 101–119. [CrossRef]
33. Qin, X.; Feng, Y.; Chen, J.; Zhang, J. Parallel computation of real solving bivariate polynomial systems by zero-matching method.

Appl. Math. Comput. 2013, 219, 7533–7541. [CrossRef]
34. Qin, X.; Yang, L.; Feng, Y.; Bachmann, B.; Fritzson, P. Index reduction of differential algebraic equations by differential Dixon

resultant. Appl. Math. Comput. 2018, 328, 189–202. [CrossRef]
35. Lay, D.C. Linear Algebric and Its Applications; Addison-Wesley: Boston, MA, USA, 2013; ISBN 0321385178.
36. Blumenthal, L.M. Theory and Applications of Distance Geometry, 2nd ed.; Chelsea House Pub: New York, NY, USA, 1970;

ISBN 978-0828402422.

http://dx.doi.org/10.1142/S0218127404010709
http://dx.doi.org/10.1016/j.matcom.2008.04.020
http://dx.doi.org/10.1016/j.sigpro.2009.09.024
http://dx.doi.org/10.1016/j.tcs.2010.11.050
http://dx.doi.org/10.1112/plms/s2-7.1.49
http://dx.doi.org/10.1016/j.cam.2007.01.032
http://dx.doi.org/10.1360/za2010-40-7-649
http://dx.doi.org/10.1006/jsco.2001.0462
http://dx.doi.org/10.1016/j.jsc.2003.06.001
http://dx.doi.org/10.1016/j.amc.2013.01.039
http://dx.doi.org/10.1016/j.amc.2017.12.029

	Introduction
	Contributions
	Related Work
	Organization

	Review of Elimination Techniques
	Elimination via Sylvester Resultant
	Fast Recursive Algorithm of the Dixon Matrix (FRDixon)

	A Hybrid Algorithm for Constructing a Dixon Matrix
	Sylvester Elimination by Heuristic Strategy
	 Construction of Dixon Matrix by Improved FRDixon
	The Parallel Hybrid Algorithm

	Analysis and Evaluation
	Time Complexity Analysis
	 Random Systems
	Timings
	Matrix Dimension

	Real Problems

	Conclusions
	References

