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Abstract: This paper presents an online perturbed and directed neural-evolutionary (Online-PDNE)
decoding algorithm for polar codes, in which the perturbation noise and online directed neuro-
evolutionary noise sequences are sequentially added to the received sequence for re-decoding if
the standard polar decoding fails. The new decoding algorithm converts uncorrectable received
sequences into error-correcting regions of their decoding space for correct decoding by adding
specific noises. To reduce the decoding complexity and delay, the PDNE decoding algorithm and
sole neural-evolutionary (SNE) decoding algorithm for polar codes are further proposed, which
provide a considerable tradeoff between the decoding performance and complexity by acquiring
the neural-evolutionary noise in an offline manner. Numerical results suggest that our proposed
decoding algorithms outperform the other conventional decoding algorithms. At high signal-to-noise
ratio (SNR) region, the Online-PDNE decoding algorithm improves bit error rate (BER) performance
by more than four orders of magnitude compared with the conventional simplified successive
cancellation (SSC) decoding algorithm. Furthermore, in the mid-high SNR region, the average
normalized complexity of the proposed algorithm is almost the same as that of the SSC decoding
algorithm, while preserving the decoding performance gain.
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1. Introduction

The development of fifth generation (5G) communication technology is driven not
only by the requirements of faster and higher-capacity extreme mobile broadband (eMBB)
applications, but also by the rapidly evolving area of Internet of Things (IoT) that needs
a massive connectivity of devices with ultra-reliable and ultra-low-latency connectivity
over Internet Protocol [1-4]. Channel coding is an integral part of any communication
system, which plays an important role in meeting the system reliability requirements [5-7].
A prominent feature of 5G new radio (NR) is the adoption of a new class of error correction
codes, i.e., polar codes, for control channels [8,9]. Future wireless communication technolo-
gies are proliferating in the connection between people and things, and their scenarios will
place new requirements on the channel coding performances [10].

Polar codes were proposed by Arikan [11] in 2009, who also originally indicated the
symmetry of polar codes for binary-input discrete memoryless channels (B-DMCs). With
the symmetry, the output vector can be divided into equivalence classes in terms of their
transition probabilities. Based on the channel polarization theory that entails channel
combining and channel splitting, this new coding scheme is capacity achieving as opposed
to just capacity approaching in symmetric B-DMCs with efficient construction and low
complexity [12,13]. Several decoding algorithms have recently been developed for polar
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codes in the literature [14-21]. The successive cancellation (SC) algorithm proposed by
Arikan [11] is an effective method for decoding polar codes. To reduce the decoding latency
and algorithmic complexity of the SC decoder, a simplified successive cancellation (SSC)
decoder was proposed in [14]. In [15], Tal and Vardy proposed the successive cancellation
list (SCL) decoder to tackle the problem that only one decoding path was reserved for
SC decoding, which may lead to the loss of the correct path. CRC (cyclic redundancy
check)-aided decoding schemes were proposed to improve the performance of polar codes
in [16]. In addition, the recent development of deep learning methods provides a new
insight into the decoding of linear codes [22-27]. However, deep-learning-based channel
decoding is doomed by the curse of dimensionality, in which the learning process is limited
by the complexity as the number of information bits increases.

In the signal processing area, it can be shown that the performance of a suboptimal
detector may be improved by adding noise to the received data under certain condi-
tions [28,29]. Inspired by this method, some researchers have investigated how to improve
the decoding performance of a (suboptimal) decoder by adding noise. In [30], a belief
propagation list (BPL) decoding algorithm was proposed, in which adding a small amount
of noise enables the decoder to handle non-convergent errors. A dynamic perturbation
decoding method for Polar-CRC concatenation codes through dynamically controlling the
interference noise was proposed in [31]. In [32], a generalized framework for multi-round
BP decoding with input perturbation for short low-density parity-check (LDPC) codes
was proposed, where the perturbation is done iteratively on a few symbols to widen the
search space.

In [33], a CRC-assisted perturbation decoding algorithm for polar codes was proposed,
which is called the PB-SSC decoding algorithm in this paper. When the CRC check of the
SSC decoder fails, the PB-SSC decoding algorithm can provide multiple possible candidate
vectors for re-decoding by adding disturbance noises. However, the performance gain
achieved by the PB-SSC decoding algorithm is limited. A decoding algorithm for polar
codes based on the perturbation with a convolution neural network (CNN) was proposed
in [34]. In [35], a post-processing technique was proposed to improve the performance of
the SSC polar decoder in the 2D intersymbol interference (ISI) data storage system, namely
the post-processing SSC (PP-SSC) decoding algorithm, in which the perturbation algorithm
and the genetic algorithm (GA) successively generate perturbation vectors that accelerate
the convergence of the decoder. Unfortunately, the secondary generation of perturbation
noise by the GA is performed online, which greatly increases the delay and complexity of
the decoder.

In order to address these issues, this paper proposes several decoding algorithms for
polar codes by applying the idea of adding noise, which generalizes the methods in our
previous work [36]. However, more effective operations in the GA training process are
used in this work. We first propose an online perturbed and directed neural-evolutionary
(Online-PDNE) decoding algorithm. Then, a simplified version of Online-PDNE decoding
algorithm, called the PDNE decoding algorithm, is proposed by using the genetic process
in an offline manner. Finally, to further reduce the decoding complexity, we further propose
a sole neural-evolutionary (SNE) decoding algorithm, which only invokes the pre-trained
offline directed neuro-evolutionary noise and provides a considerable balance between
the decoding performance and complexity. Simulation results suggest that our proposed
decoding algorithms outperform the other conventional algorithms for decoding polar
codes. In addition, the algorithms in this paper have more generality compared with the
algorithm in [36].
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The main contributions of this paper are summarized as follows:

1.  An online perturbed and directed neural-evolutionary (Online-PDNE) decoding algo-
rithm is proposed, which makes polar codes have enhanced error correction ability.

2. To avoid the online training process, the PDNE decoding algorithm is proposed, in
which perturbation noise and pre-trained offline directed neuro-evolutionary noise
sequences are sequentially employed for re-decoding.

3. In order to further reduce the decoding complexity, the SNE decoding algorithm
is further proposed, where only the pre-trained offline directed neuro-evolutionary
noise by the GA algorithms is employed to improve the decoding performance.

4. The decoding algorithms proposed in this paper are more suitable for the scenarios
where the channel quality gradually degrades, such as the storage channel. A good
balance can be achieved in terms of the performance and complexity.

The rest of the paper is organized as follows. Section 2 reviews the related work on
polar decoding algorithms. In Section 3, the proposed decoding algorithms of polar codes
are presented. Simulation results are provided in Section 4. Finally, Section 5 concludes
the paper.

2. Related Works

In this paper, the error correction performance of polar codes is improved by adding
specific noises. In this section, we briefly review the related works.

2.1. Conventional Perturbation Based Decoding Algorithms

The concept of stochastic perturbation opens a new perspective where systems can
benefit from adding artificial noise. In 1981, Benzi [37] found that the addition of suitable
noise under certain conditions leads to an increase in a measure of the quality of signal
transmission performance, which could be explained by the phenomenon of stochastic
resonance [38,39]. It can be shown that the performance of certain suboptimal detector may
be improved by adding some white Gaussian noise [28], where the loss of detectability
caused by lowering the signal-to-noise ratio (SNR) is offset by the increased sensitivity of
the new noise.

Based on the similar concept, a perturbed decoding algorithm (PA) was proposed for a
concatenated CRC and convolutional code system [40]. The original signal is first decoded
by the conventional Viterbi algorithm. If the CRC check fails, a perturbed received signal is
created and then decoded by the inner Viterbi decoder. The perturbation by artificial noise
injection is expected to increase the possibility that the transmitted codeword is obtained.

In [30], a theoretical analysis was presented to gain further insight into stochastic
resonance phenomenon, where the performance of a stochastic resonance enhanced detector
was derived in terms of the probability of detection and the probability of false alarm. The
theory behind PA was elaborated in [41]. The distribution of the numbers of perturbed
decoding was derived for independent Gaussian perturbations. The dominant terms of
the distribution indicate that the complexity of PA is highly dependent on the geometric
structure of the error control code. If an ML decoder is employed as the inner decoder, the
distribution for the numbers of perturbed decoding can be well approximated by a function
of SNR, signal-to-perturbation-noise ratio (SPNR), and the two-centroid code spectrum,
which provides theoretical support for related works.

A BPL decoder that relied on artificial noise as a frame error rate (FER) or bit error rate
(BER) performance booster in a subject of coding theory was presented in [30]. Artificially
generated noises with different intensities are added to the received signal to avoid false
convergence in a BP-based decoder. A dynamic perturbation decoding method for polar-
CRC cascaded codes was proposed in [31]. Dynamic perturbation decoding can adjust the
variance of the added perturbation noise according to the currently decoded codeword,
so that the sequences obtained after each perturbation are as different as possible. Based
on the analysis of FER and BER, a noise-assisted decoding algorithm for polar codes was
proposed to improve the decoding performance [42]. The algorithm is realized by adding
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the human-made noise, which is a post-compensation processing method for the existing
algorithms. The disadvantage of the algorithm is that the noise power needs to be set
artificially, and a large number of decoding attempts are performed without any direction,
which greatly increases the decoding complexity.

2.2. GA Based Decoding Algortithms

Since the overall search strategy in the optimization process of the GA does not depend
on gradient information or other auxiliary knowledge [43], it provides a general framework
for solving complex system problems in various areas, such as combinatorial optimization,
machine learning, signal processing, and adaptive control.

The GA has been used in LDPC decoding [43,44]. However, its application in polar
decoding is still in the early stages. The authors in [33,35] employed the GA to generate
perturbation noise, so as to perturb the received signal that failed to decode. Inspired by
the GA of Al technology, the authors in [45] used the mean of the log-likelihood ratio (LLR)
distribution as the fitness function of each individual to update the successive cancellation
flip (SCF) decoding algorithm of the population. Simulation results verified that the
improved SCF decoding algorithm based on new constructed candidate flipping positions
sets can achieve competitive decoding performance compared with some state-of-the-art
SCF decoding algorithms.

In addition, the GA has also achieved good results in polar code constructions [46—49].
In [46], the authors proposed a GA-based framework to construct polar codes using the BER
as the fitness function of the GA, thereby reducing the size of the SCL list and the number
of iterations. In [47], the authors proposed a scheme for constructing polar codes based on
a hash table update population, which reduced the computational complexity of repeated
candidates. Aiming at the joint detector and decoder over the resistive random-access
memory (ReRAM) channel model, effective polar codes were constructed using the GA
in [48].

3. Conventional Schemes

In this section, we first provide the perturbation decoding principle. Then, we briefly
summarize the recent related works, including the PB-SSC decoding algorithm [33] and the
PP-SSC decoding algorithm [35].

3.1. Perturbation Decoding Principle

The perturbation of the received signal can make each received signal have multiple
decoding outputs, which can improve the reliability of the transmission process and avoid
retransmission of erroneously decoded information [34]. The perturbation of the received
signal can be interpreted as adding independent random noise to improve the performance
of suboptimal decoders.

As shown in Figure 1, for each valid codeword c(c € {c1,¢cp,...,cs}), an error correc-
tion region a(a € {aj,ay,...,as}) in the decoding space is specified, where S is the total
number of valid codewords. When the received signal yN falls into the error correction
region, the decoder succeeds in decoding, where N is the code length. However, if the
received signal yN falls outside the error correction region, the decoder fails in decoding.
At this point, adding a random noise n to the received signal may convert the perturbed
signal yN+n into the error correction region, resulting in a successful decoding.
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Decoding space

Figure 1. Schematic diagram of perturbation decoding principle.

3.2. PB-SSC Decoding Algorithm

According to the perturbation decoding principle in Section 3.1, the PB-SSC decoding
algorithm has been proposed to improve the performance of the SSC decoder in [33].

When the SSC decoding fails, the PB-SSC decoding algorithm is activated. The
perturbed noise is added to the received signal yN to help the received signal to approach
the error correction domain. The perturbed received signal y} can be expressed by

yll\I = yN + Qp -randn(1,N), 1)

where Q,, is the variance of the perturbed noise, and randn generates random numbers
from the standard normal distribution. The decoding is an iterative process that continues
until a valid codeword is obtained or the prescribed maximum number of iterations, Ty, is
reached. We refer the readers to [33] for further details on the PB-SSC decoding algorithm.

3.3. PP-SSC Decoding Algorithm

The PP-S5C decoding algorithm [35] has been proposed to improve the performance
of polar codes in data storage systems, where the GA procedure is employed to enhance
the iteration process by producing perturbation vectors that are inherently better than the
directed perturbed ones.

The fitness function of an individual is evaluated as

Fe=1/1/ e [dk)—dp(k)?/|A], @)

where d and dy, are the decoded sequences of the received signal and the perturbed signal,
respectively, and A is the information set of the polar code.

Selection operations in the GA are used to select the parents of the next offspring at
each evolution stage, where fitter individuals are forwarded as parents for the upcoming
offspring. Then, the surviving individuals will then encounter evolutionary transforma-
tions, namely, mutations and crossovers, to generate offspring which would represent
the new population. The perturbed vector generated by the GA process in the PP-SSC
decoding algorithm will be added to the received signal yN again for decoding, until a valid
codeword is obtained or the prescribed maximum number of generations T is reached. We
refer the readers to [31] for further details on the PP-SSC decoding algorithm.

4. Proposed Decoding Algorithms

In this section, three decoding algorithms for polar codes are proposed by adding
noise based on the perturbation decoding principle. The computational complexities are
then analyzed.
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4.1. Online-PDNE Decoding Algorithm

For the GA, the choice of the fitness function plays an important role in the quality of
the final solution and the speed of convergence. The evolutionary search process of the GA
is only based on the fitness of each individual in the population. Therefore, the selection
of the fitness function directly affects the convergence speed of the GA and whether the
optimal solution can be found.

In Equation (2), d is the failed decoding sequence output by the decoder, and dy, is the
corresponding perturbed decoded sequence. There is no guarantee that their difference
can converge effectively unless d is the correct decoding result. However, in the PP-SSC
decoder, the GA-based decoding is performed only if the previous perturbed decoding
fails. Therefore, we need better fitness function to carry out the genetic process to find the
optimal solution.

Similar to the PP-SSC decoder, we propose an online perturbed and directed neural-
evolutionary (Online-PDNE) decoding algorithm for polar codes, which adopts the same
decoding structure, but with a new fitness function:

F. =1/(1+)_CRC_Calc(dp)), (3)

where CRC_Calc(:) is the CRC check operation [50].

Fitness function is used to measure whether an individual is the optimal solution in
the GA process, which requires the individual’s fitness value to be as high as possible.
Depending on the fitness function and the selection algorithm, the population can con-
tinuously evolve towards the local optimal solution. In this paper, we take the sum of
the CRC check remainders as the fitness function. When using Equation (3), it is ensured
that the more number of zeros in the CRC remainder, the larger the value of F., which
meets the requirements of the fitness function. To ensure the evolution direction of the
GA population, the roulette wheel selection strategy is used to select the offspring, which
is selected according to the cumulative probability. The fitness score of an individual is
calculated by

Fo=Fe(j) /L2 Fe()- @

As shown in Figure 2, when the maximum number of decoding attempts T; in the sec-

(k)

ond round is exceeded, the directed neural-evolutionary noise (NE) nye’ will be generated
online by the NE noise generator and added to the received signal yN as

yy =yN+nfl. 5)

Success

N
;’e Polar-Decoder CRC-Check Output Correct
Codeword
Perturbation
Noise Generator
NE Noise
Generator

No
Qutput Error
Codeword

Figure 2. Block diagram of the Online-PDNE decoding algorithm.
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In this paper, the GA is employed to realize neuro-evolution to obtain the required

directed neural-evolutionary noise. The genetic process NE(-) is as follows:

1.

Initialization: Unlike the initialization method in [31], which adopts the perturbation
noise when the second round of decoding fails as the initial value. In this paper, the
initial population Sr(lo) = {nr(lle) li=1,2, ...,T}is randomly generated, where T is the
number of individuals in the population.

Selection: According to Equations (3) and (4), the individuals which have high fitness
scores with roulette wheel selection from the initial population are forwarded as
parents for the upcoming offspring.

Population reproduction: This step includes the crossover and mutation. The evolu-
tion of GA towards the (sub)optimal solution is mainly due to the crossover operation.
The mutation operation guarantees more diversity and reduces the occurrence of a
famous phenomenon called premature convergence.

Termination criterion: The new directed neural-evolutionary noise generated in the
above steps is added to the input of the decoder, and if the CRC checking is successful,
the decoding result is output. Otherwise, the GA is continued until the decoding is
successful or the maximum number of generations T, is reached. The details of the
Online-PDNE decoding algorithm are given in Algorithm 1.

Algorithm 1: Online-PDNE Decoding algorithm

Input: yN / / Received signal
Qp // Variance of the perturbed noise
T // Maximum number of the perturbed attempts
T, // Maximum number of generations
T // Number of individuals in the population
Output: ﬁll\l // Estimated codeword

1: Initialization: G <~ 0, i+ 1, k + 1.

2: G < Polar_decoder(yN)

3: if CRC(ﬁll\T) == success

4: break

5: else

6: whilei < T; do

7: yN=yN+ Qp - randn(1,N)
8: o Polar_decoder(yN)
9: i+—i+1

10: if CRC(ﬁll\I) == success

11: break

12: end if

13:  end while )

14: Initial population Sr(10>: {ngg i=12 ..., T}
15: forj=1,...,Todo

16: sy = NE(sI )

17: while k < T do

18: Choose nr(llé) € Sg)

19: yN = yN + nr(llé)

20: ) + Polar_decoder(y)')
21: k+k+1

22: if CRC(ﬁll\I) == success
23: break

24: end if

25: end while

26: end for

27: end if

28: Return ﬁll\T
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4.2. PDNE Decoding Algorithm

On account of the iterative genetic evolution, the proposed online-PDNE decoding
algorithm needs to seek the optimal solution in an online manner. Although the error
correction performance of the polar code is greatly improved, it is achieved at the expense
of increasing the complexity and delay of the decoder. To this end, a perturbed and
directed neural-evolutionary (PDNE) decoding algorithm for polar codes is proposed, in
which the perturbation noise and pre-trained offline directed neuro-evolutionary noise
sequences are sequentially added to the received sequence for re-decoding, as given in
Equations (1) and (5).

In the PDNE decoding algorithm, ny is chosen from a set S, of noise patterns that
is generated offline according to the method described in the following. This perturbed
decoding process is performed until the cardinality Ts of the set S, is reached.

)

In the offline training, population sﬁf at generationt (t=0,1, ..., T — 1) are con-

structed in an iterative process, where the initial population 81(10) is the first generation
randomly created. The new population noise produced by each generation is sequentially
and independently added to the decoding failed channel output sequence. The fitness
function is defined as the same as Equation (5) in the proposed online-PDNE decoding algo-
rithm. As shown in Figure 3, if the decoding is successful, the current neural-evolutionary
noise npe will be stored in a set Sj;. Otherwise, the genetic process is continued on the
population noise until the correct directed individual is obtained or the maximum number
of generations T is reached to reinitialize the population for the next round of evolution.
The details of the PDNE decoding algorithm are given in Algorithm 2.

—b[ Channel received signal ]—

A 4

[ Polar-Decoder ]

No

> Initialization (t=0)

. v
l [ Output the set S, ]

»| Genetic Operations

v

Polar-Decoder

Table Size <
T,?

Recording the noise ]

Figure 3. Block diagram of training a directed neural evolutionary noise in an offline manner.
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Compared with the algorithm in [36], the proposed PDNE decoding algorithm in this
paper has the following advantages:

1.  The proposed PDNE decoding algorithm adopts the fitness function shown in Equa-
tion (3) instead of the bit error rate (BER)-based one in [36].

2. The mutation operations in this paper judge whether the individual needs to be
mutated bit by bit, thereby increasing the variation diversity, while the operations
in [36] only mutate one of the first [N - p_ | positions of each individual, where p_ is
the mutation probability.

3.  Different from the optimization of the set S}, for each SNR value in [36], the proposed
PDNE decoding algorithm in this paper only needs to optimize one set S};, which
greatly shortens the optimization process and reduces the spaces for storing the noises
from the perspective of implementation. This indicates the algorithm in the paper has
better generality.

Algorithm 2: PDNE Decoding algorithm

Input: yN // Received signal
Qp // Variance of the perturbed noise
Ty // Maximum number of the perturbed attempts
Ts // Cardinality of the set Sy,
Sh // Set of the noise patterns

Output: )Y // Estimated codeword
1: Initialization: G - 0, i+ 1,j+« 1.
2: &)Y < Polar_decoder(yN)

3:if CRC(ﬁll\T) == success

4: break

5: else

6:  whilei < T; do

7: yIl\I =yN+ Qp - randn(1,N)
8: @)Y + Polar_decoder(y})
9: i—i+1

10: if CRC(ﬁll\I) == success

11: break

12: end if

13: end while
14: whilej < Ts do

15: Choose nr(llg €Ss;

16: yN = yN +ngl

17: Gl + Polar_decoder(y)')
18: j—ij+1

19: if CRC(ﬁll\T) == success

20: break

21: end if

22: end while

23: end if

24: Return ﬁll\I

4.3. SNE Decoding Algorithm

In order to further simplify the PDNE decoder structure and reduce the processing
delay of the decoder, a sole neural-evolutionary (SNE) decoding algorithm of polar codes
is proposed, in which only pre-trained offline directed neuro-evolutionary noise sequences
are added to the received sequence for re-decoding. When the SSC decoding fails, the
pre-trained neural-evolutionary noise is directly called, which greatly reduces the decoding
delay. The details of the SNE decoding algorithm are given in Algorithm 3.
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Algorithm 3: SNE Decoding algorithm

Input: yN / /Received signal
Ts // Cardinality of the set S};
Si // Set of the noise patterns

Output: G // Estimated codeword
1: Initialization: G} - 0, j < 1.
2: AN « Polar_decoder(yY)

3: if CRC(0Y) == success

4:  break

5: else

6: whilej < Tsdo

7: Choose ngg €S}

8: yY = yN+nl

9: ol Polar_decoder(y)')
10: j<j+1

11: if CRC(ﬁll\I ) == success
12: break

13: end if

14: end while

15: end if

16: Return ﬁll\I

4.4. Complexity Analysis

The additional complexities required by the proposed three decoding algorithms for
polar codes are discussed in this sub-section. Note that the complexity required for CRC
check is ignored in the following analysis. Table 1 compares the computational complexity
of the proposed algorithms and other decoding schemes, where C;, and Cg are the unit
calculations required in the perturbation operation and genetic operation, as shown in

Table 2.

Table 1. Computational complexity of different decoding algorithms.

Decoding Algorithms Computational Complexity
SSC [14] O(NlogN)
PB-SSC [33] O(Cp NlogN)
PP-SSC [35] O(CpNlogN) + O(Cg NlogN)
Proposed Online-PDNE O(CpNlogN) + O(Cg NlogN)
Proposed PDNE O(Cp NlogN)
Proposed SNE O(C; NlogN)

Table 2. Unit calculations in GA process.

Perturbation Operation Calculations (Cp)

Genetic Operation Calculations (Cg)

Multiplication CJ
(generation of perturbation noise)
Addition C;

(perturbing the received signal)

Division, square root
(fitness value evaluation)
Summation, division
(fitness score evaluation)
Comparison (selection)
Comparison, addition (crossover)

Comparison, addition (mutation)
Addition (perturbing the received signal)

When the standard polar decoding fails, the Online-PDNE or PDNE decoding algo-
rithm is activated, in which multiple perturbation noises are generated for the first T;
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attempts. Given the code length N, the number of computations required to generate
multiple candidate codewords by perturbing the output signal in the worst case is C, T{N.
The number of computations required for the worst-case genetic operation process can be
estimated as CgToN. Therefore, the overall additional complexity brought by the proposed
Online-PDNE decoder is C, T{N+CgT>N, which is the same as the PP-SSC decoder.

In the PDNE decoding algorithm, the genetic process runs in an offline manner, so the
extra complexity required is only C, TN, which is due to perturbation operations.

As for the SNE decoding algorithm, the pre-trained noise set S, is directly called for
secondary decoding when the SSC decoding fails. Compared with the PDNE decoding
algorithm, the SNE decoding algorithm only needs to perform the addition operation C;,r
in the perturbation operation.

5. Simulation Results

In this section, the performance of the proposed decoding algorithms is evaluated
on a BPSK-modulated additive white Gaussian noise (AWGN) channel, in which the SSC
decoder is employed for the standard polar decoding. However, it can easily be extended
for other decoding algorithms. In the simulations, we use the same polar codes from [10]
with code rates 1/2 and 3/4, and both codes have length N = 1024. The parameters and
related values used in the training process are shown in Table 3.

Table 3. Parameters of the training process.

Parameters Value
Maximum number of the perturbed attempts Ty 10
Maximum number of generations T, 100
Number of individuals in the population T 10
Crossover probability p_ 0.8
Mutation probability p,, 0.1
Cardinality Ts of the set S}, 10
Variance of the perturbed noise Qp 0.25

Figures 4 and 5 illustrate the BER and the FER performances of the rate-1/2 polar code
with the proposed decoding algorithms, the SSC algorithm [14], the PB-SSC algorithm [33],
as well as the PP-SSC algorithm [35], respectively. As shown in Figure 4, the performance
of the proposed three decoding algorithms is better than that of the other algorithms. The
performance of the proposed Online-PDNE decoding algorithm is about 1.0 dB, 0.6 dB
and 0.5 dB superior to that of the conventional SSC algorithm, the PB-SSC algorithm, and
the PP-SSC algorithm at the BER of 1075, respectively. When SNR = 3.5 dB, we can see
from the figure that our proposed Online-PDNE decoding algorithm can improve BER
performance by nearly four orders of magnitude compared with the SSC algorithm, nearly
three orders of magnitude compared with the PB-SSC algorithm, and more than two orders
of magnitude compared with the PP-SSC algorithm.

In addition, among the three proposed decoding algorithms, the Online-PDNE de-
coding algorithm has the best performance, followed by the PDNE decoding algorithm.
The reason why the Online-PDNE decoding algorithm has the best performance is that the
directed neural-evolutionary noise is generated online by the GA process for the uncor-
rectable sequence, which converts the received signal into the error correction region of its
decoding space more accurately.

Since the PDNE decoding algorithm and the SNE decoding algorithm use the offline
GA process to generate the directed neural-evolutionary noise, the decoding complexity and
delay are greatly reduced compared with the Online-PDNE decoding algorithm. However,
due to the limitation of the size of the directed noise set and uncorrectable error codewords
not encountered during offline training, their performances suffer slightly. Compared with
the PDNE decoding algorithm, the performance of the SNE decoding algorithm decreases
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slightly, about 0.2 dB, but its decoding complexity and delay are the lowest, and it only
depends on the directed neural-evolutionary noise of offline training to decode correctly.
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Figure 4. BER performance of the (1024, 512) polar code with different decoding algorithms. The SSC
algorithm is in [14], the PB-SSC algorithm is in [33], and the PP-SSC algorithm is in [35].
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Figure 5. FER performance of the (1024, 512) polar code with different decoding algorithms. The SSC
algorithm is in [14], the PB-SSC algorithm is in [33], and the PP-SSC algorithm is in [35].

From Figure 5, it can be seen that our proposed three decoding algorithms achieve
better performance than the others. This conclusion agrees with the results in Figure 4.
When SNR = 3.5 dB, we can see from the figure that our proposed Online-PDNE decoding
algorithm can improve FER performance by three orders of magnitude compared with the
SSC algorithm, more than one order of magnitude compared with the PB-SSC algorithm
and the PP-SSC algorithm.

To further evaluate the error correction performance of the proposed decoding algo-
rithms as described in Section 3, we also simulate the rate-3/4 polar code. In Figures 6
and 7, we compare the BER and FER performances of the designed decoding algorithms
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with other decoding algorithms for the rate-3/4 polar code, respectively. We also see that
the proposed decoding algorithms have better error correction performance than other
decoding algorithms when the code rate increases.
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Figure 6. BER performance of the (1024, 768) polar code with different decoding algorithms. The SSC
algorithm is in [14], the PB-SSC algorithm is in [33], and the PP-SSC algorithm is in [35].
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Figure 7. FER performance of the (1024, 768) polar code with different decoding algorithms. The SSC
algorithm is in [14], the PB-SSC algorithm is in [33], and the PP-SSC algorithm is in [35].

In Figure 6, when SNR = 6.0 dB, we can see from the figure that our proposed Online-
PDNE decoding algorithm can improve the BER performance by more than four orders
of magnitude compared with the SSC algorithm, more than three orders of magnitude
compared with the PB-55C algorithm and the PP-SSC algorithm.

As can be seen from Figure 7 that when SNR = 6.0 dB, the proposed Online-PDNE
decoding algorithm improves the FER performance by more than three orders of magnitude
compared with the SSC algorithm and more than two orders of magnitude compared
with the PB-SSC algorithm and PP-SSC algorithm. Note that compared to the proposed
PDNE decoding algorithm, the SNE decoding algorithm significantly reduces the decoding
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complexity with negligible performance degradation, which coincide with the results in
Figures 4 and 5.

In Figures 8 and 9, we compare the average normalized complexities of the proposed
Online-PDNE decoding algorithm, the proposed PDNE decoding algorithm, the SNE
decoding algorithm and other decoding algorithms for polar codes with two rates, respec-
tively. The average normalized complexity of these algorithms is normalized by the SSC
decoding algorithm.
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Figure 8. The average normalized complexities for the (1024, 512) polar code. The SSC algorithm is
in [14], the PB-SSC algorithm is in [33], and the PP-SSC algorithm is in [35].
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Figure 9. The average normalized complexities for the (1024, 768) polar code. The SSC algorithm is
in [14], the PB-SSC algorithm is in [33], and the PP-SSC algorithm is in [35].

It can be observed that the average normalized complexity of the proposed PDNE
decoding algorithm and SNE decoding algorithm is much lower than that of the PP-SSC
decoding algorithm, which is due to the offline training. Among the proposed decoding
algorithms, the online-PDNE decoding algorithm has the best error correction performance
and the highest complexity, but it is still much less complicated than the PP-SSC decoding
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algorithm. As the SNR increases, the complexity of the proposed decoding algorithms
reduces to the same level as the SSC decoding algorithm. The proposed decoding algo-
rithms can benefit from more reliable channel conditions and require smaller perturbation
attempts to successfully decode, thereby reducing the normalized decoding delay.

It can also be seen from Figures 4 and 8 that the proposed PDNE and SNE decoding
algorithms have slightly higher average normalized complexity compared with the PB-SSC
algorithm at low SNR region. When SNR > 2.5 dB, their complexities are almost the same,
but the performance of the proposed PDNE and SNE algorithms is much better than that
of the PB-SSC algorithm. In Figures 6 and 8, when SNR > 5.5 dB, similar conclusions can
be drawn, which coincides with the results in Figures 4 and 8.

Tables 4 and 5 provide the average normalized complexities corresponding to some
fixed SNR values of polar codes with two rates under different decoding algorithms,
respectively. Taking Table 4 as an example, when the SNR increases from 0.5 dB to 2.5 dB,
the average normalized complexity of the proposed Online-PDNE decoding algorithm
drops sharply from 767.300 to 1.293, which is the same order of magnitude as the SSC
decoding algorithm.

Table 4. The average normalized complexities for the (1024, 512) polar code for certain SNR values.

SNR
0.5dB 1.5dB 2.5dB 3.5dB
Decoding Algorithms
SSC [14] 1 1 1 1
PB-SSC [33] 10.440 3.602 1.004 1.002
PP-SSC [35] 910.800 189.900 2.982 1.042
Proposed Online-PDNE 767.300 60.500 1.293 1.001
Proposed PDNE 19.640 6.195 1.142 1.007
Proposed SNE 15.040 4.902 1.124 1.005

Table 5. The average normalized complexities for the (1024, 768) polar code for certain SNR values.

SNR
3.5dB 4.5dB 5.5 dB 6.0 dB
Decoding Algorithms
SSC [14] 1 1 1 1
PB-SSC [33] 10.475 3.544 1.031 1.002
PP-SSC [35] 951.757 181.610 1.767 1.016
Proposed Online-PDNE 917.032 86.376 1.119 1.007
Proposed PDNE 19.842 5.865 1.075 1.005
Proposed SNE 15.168 4.704 1.052 1.003

6. Conclusions

In this paper, three decoding algorithms were proposed for polar codes by exploiting
the perturbed and directed neural-evolutionary noise, in which uncorrectable received
sequences can be transformed into error-corrected regions of their decoding space. In
addition to the SSC decoding algorithm, the proposed algorithms are also applicable
to other standard polar code decoding algorithms. Simulation results verified that our
proposed Online-PDNE decoding algorithm can achieve better performance than other
algorithms and obtain up to four orders of magnitude compared with the SSC algorithm,
and no error floor is observed down to a BER of 10~7. The performance of the proposed
Online-PDNE decoding algorithm is about 1.0 dB, 0.6 dB and 0.5 dB superior to that of the
conventional SSC algorithm, the PB-SSC algorithm, and the PP-SSC algorithm at the BER
of 10>, respectively. This is due to the directed neural-evolutionary noise is generated
online by the GA process for the uncorrectable sequences, which converts the received
signal into the error correction region of its decoding space more accurately. To further
reduce the decoding complexity and simplify the decoding structure, the PDNE and SNE
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decoding algorithms were proposed. While ensuring the error correction performance, the
complexity is reduced by employing the offline neuro-evolution. In addition, it is worth
mentioning that the proposed decoding algorithms can be extended to other channel codes
in a straightforward manner. As a future work, we plan to apply the proposed decoding
algorithms to the polar codes in the 5G standard.
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