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Abstract: Particle swarm optimization (PSO) is a promising method for feature selection. When using
PSO to solve the feature selection problem, the probability of each feature being selected and not being
selected is the same in the beginning and is optimized during the evolutionary process. That is, the
feature selection probability is optimized from symmetry (i.e., 50% vs. 50%) to asymmetry (i.e., some
are selected with a higher probability, and some with a lower probability) to help particles obtain the
optimal feature subset. However, when dealing with large-scale features, PSO still faces the challenges
of a poor search performance and a long running time. In addition, a suitable representation for
particles to deal with the discrete binary optimization problem of feature selection is still in great need.
This paper proposes a compressed-encoding PSO with fuzzy learning (CEPSO-FL) for the large-scale
feature selection problem. It uses the N-base encoding method for the representation of particles and
designs a particle update mechanism based on the Hamming distance and a fuzzy learning strategy,
which can be performed in the discrete space. It also proposes a local search strategy to dynamically
skip some dimensions when updating particles, thus reducing the search space and reducing the
running time. The experimental results show that CEPSO-FL performs well for large-scale feature
selection problems. The solutions obtained by CEPSO-FL contain small feature subsets and have an
excellent performance in classification problems.

Keywords: particle swarm optimization; large-scale feature selection; evolutionary computation;
fuzzy learning; compressed encoding; classification

1. Introduction

Feature selection is to select an optimal feature subset related to the problem from
the whole feature set [1]. It can not only reduce the number of large-scale features and
shorten the processing time of data, but also reduces the interference of redundant features
on the results [2]. With the rapid development of big data and deep learning technology,
the number of features contained in the data have also increased dramatically. Since the
number of feature combinations increases exponentially as the number of features increases,
feature selection faces the difficulties brought by the massive combination search space and
is still a very challenging problem.

There are three main methods of feature selection: the filter method, the wrapper
method, and the embedded method [3]. The filter method has a wide range of applications
and a high calculation speed but generally achieves a worse performance than the wrapper
method in classification problems [4]. The embedded method embeds the feature selection
into a specific machine learning training process, so it is more restricted than the wrapper
method when used.
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Evolutionary computation (EC) techniques have been widely used in solving feature
selection problems as one kind of the wrapper methods [5]. Many EC methods have
shown their global search capability for the optimal feature subset in the search space [6–9].
Among the EC techniques, particle swarm optimization (PSO) has the advantage of simple
implementation and a fast convergence [10–13]. Therefore, PSO is a promising EC method
to solve feature selection problems [14–21]. When using PSO, the feature selection problem
can be treated as a discrete binary optimization problem, whose dimensions represent all the
features and the value of each dimension is 1 or 0, indicating that this feature is selected or
is not selected, respectively. In the initial swarm of PSO, a feature has a 50% chance of being
selected and a 50% chance of being not selected, i.e., the probability distribution of being
selected and of not being selected is symmetric. However, in the late stage of PSO, features
in the theoretically optimal feature subset should have a higher probability to be selected,
i.e., the probability distribution of being selected and being not selected is asymmetric.
Therefore, the searching of PSO for the optimal solution is the process of changing the
selection probability of each feature from symmetric distribution to asymmetric distribution
with the feedback information of the swarm.

There still exist the following problems when using PSO for feature selection. First, in
the existing PSO algorithms, a suitable representation and an effective evolution mechanism
are still in great need to handle discrete binary optimization problems [22]. Second, when
dealing with large-scale features, it is easy for particles to fall into local optima and lead to
a poor search performance due to the huge search space, i.e., PSO faces the challenge of
“the curse of dimensionality” [5].

Focusing on the challenges faced by PSO in large-scale feature selection problems, this
paper proposes a compressed-encoding PSO with fuzzy learning (CEPSO-FL) for efficiently
solving the large-scale feature selection problems. The main contributions of this paper can
be summarized as follows:

(1) Proposing a compressed-encoding representation for particles. The compressed-
encoding method adopts the N-base encoding instead of the traditional binary en-
coding for representation. It divides all features into small neighborhoods. The
feature selection process then can be performed comprehensively on each neighbor-
hood instead of on every single feature, which provides more information for the
search process.

(2) Developing an update mechanism of velocity and position for particles based on
the Hamming distance and a fuzzy learning strategy. The update mechanism has
a good explanation in the discrete space, overcoming the difficulty that traditional
PSO update mechanisms often work in real-value space but is hard to be explained in
discrete space.

(3) Proposing a local search mechanism based on the compressed-encoding representation
for large-scale features. The local search mechanism can skip some dimensions
dynamically when updating particles, which decreases the search space and reduces
the difficulty of searching for a better solution, so as to reduce running time.

The rest of this paper is organized as follows. In Section 2, the related work of applying
PSO to feature selection is introduced. The proposed PSO for large-scale feature selection
problems is introduced in detail in Section 3. In Section 4, the experimental results and
analysis compared with other state-of-the-art algorithms are given. Finally, the work of this
paper is summarized in Section 5.

2. Related Work

In this section, we first give a brief introduction to the basic PSO applied to feature
selection. Then, the two main design schemes for applying PSO to feature selection
are discussed. Finally, we introduce some representative PSO algorithms for large-scale
feature selection.
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2.1. Discrete Binary PSO

The feature selection optimization problem is a discrete binary optimization problem.
Therefore, the original PSO algorithm [23] proposed for continuous space cannot be used
directly to solve feature selection problems. The discrete binary PSO (BPSO) that can be
used for feature selection was first proposed by Kennedy and Eberhart [24]. In BPSO, each
particle has a position vector and a velocity vector. Each dimension of the position vector
can only be 0 or 1, i.e., the value of the position is discrete. However, the value of the
velocity is still continuous. For the optimization process in the discrete space, BPSO defines
velocity vi that can be transformed to indicate the probability of its corresponding position
value being one, which is updated during the evolutionary process as

vi = vi + c1r1(pbesti − xi) + c2r2(gbest− xi), (1)

where xi is the current position of the i-th particle, pbesti is the best position found by the
particle so far and represents the personal historical experience, gbest is the best position
found by all particles and represents the historical experience from other particles, c1 and
c2 are acceleration constants and always set to two, r1 and r2 are random values uniformly
sampled from (0, 1) independently for each dimension.

Then, BPSO updates the position with Equation (2), where rand is a random value
uniformly sampled from (0, 1) and d is the dimension index of the position vector. The
Sigmoid function is used to map vd

i into the (0, 1) interval. If the value of vd
i is large, then

its corresponding position xd
i is likely to be one.

xd
i =

{
0, if rand > Sigmoid(vd

i )
1, otherwise

(2)

2.2. Two Main Design Schemes for Applying PSO to Feature Selection

At present, most discrete PSOs for feature selection are mainly designed in two
schemes. In the first design scheme, the PSOs follow the idea of BPSO and define the
velocity v as the probability that position x takes a certain discrete value, such as BPSO
and bi-velocity discrete PSO (BVDPSO) [25]. Although the value of the position vector is
discrete, the value of the velocity vector is continuous and is limited to the interval (0, 1).

The second design scheme is to discretize the existing PSOs. Since feature selection is
described as a 0/1 optimization problem, binarizing the continuous value of x can represent
the solution to the feature selection problem. Decoding x from continuous space to discrete
space usually uses Equation (3):

xd
i =

{
1, if xd

i > λ
0, otherwise

, (3)

where λ ∈ (0, 1) is a user-defined threshold and is commonly set to be 0.5. If fewer features
are expected in the final solution, the value of λ can be set greater than 0.5, otherwise, the
value of λ can be set less than 0.5. In the search process of the particle swarm, each particle
still searches in continuous space, and its values of position and velocity are continuous.
Only when evaluating the particle, its position x will be decoded into a discrete value
according to the given threshold λ. It is worth noting that the continuous information is
not discarded in discretization and can be utilized in future generations. Most existing
PSOs used for feature selection adopt the second design scheme [26–29].

It is not complicated to convert the continuous PSO into the discrete PSO and it
only needs to perform the decoding step on x before evaluating the particles. However,
the meanings of the position and velocity in continuous PSOs are different from those
in discrete PSOs, which makes the update process of position and velocity hard to be
explained. The PSOs implemented by the first design scheme are more reasonable and
suitable to solve feature selection problems. However, the performance of the BPSO is
usually worse than the PSOs designed by the second scheme [22]. Therefore, how to find
a more reasonable design scheme for PSO to handle feature selection problems remains to
be solved [5,22].
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2.3. PSO for Large-Scale Feature Selection

With the rapid increment of the feature number contained in the data, PSO faces
the challenge of the “dimensional curse” when it is used for feature selection. Proposing
a new PSO for large-scale feature selection problems has become a new research focus.
Gu et al. [27] discretized the competitive swarm optimizer (CSO) that performs well on
large-scale continuous optimization problems for the large-scale feature selection problems.
Tran et al. [28] proposed the variable-length PSO (VLPSO) to assign different lengths to
particles in different subswarms and dynamically change the lengths of particles according
to fitness values, which prevented particles from being trapped in local optima for a long
time. Song et al. [29] adopted the co-evolution mechanism in PSO and proposed the
variable-size cooperative coevolutionary PSO, which divided the feature search space
based on the importance of features and adaptively adjusted the sizes of subswarms to
search important feature subspaces adequately. Chen et al. [30] proposed an evolutionary
multitasking-based PSO algorithm for high-dimensional feature selection problems, which
can automatically calculate a suitable threshold for important features and improve the
algorithm performance with the variable-range strategy and subset updating mechanism.
Since considering the correlation between features and classification labels can provide
prior knowledge for feature selection, Song et al. [31] proposed a hybrid feature selection
algorithm based on correlation-guided clustering and PSO (HFS-C-P). The HFS-C-P first
discards irrelevant features with the filter method, then clusters features based on their
correlation values, and finally applies PSO to search for solutions. However, due to the huge
search space, many challenges such as premature convergence and huge time consumption
remain to be solved when using PSO for feature selection on high-dimension data.

3. Proposed CEPSO-FL Method

In this section, the compressed-encoding representation for particles is first proposed.
Then, based on the proposed representation, a discrete update mechanism via a fuzzy
learning strategy for particles is designed. Especially for the large-scale feature selection
problems, a local search strategy is also proposed. Finally, the overall framework of the
proposed CEPSO-FL is given.

3.1. Compressed-Encoding Representation of Particle Position

The traditional representation of the particle position for feature selection problems
is to use a binary bit to represent the selection of a feature. Therefore, in an optimization
problem with D features, the encoding length of a particle is D. If there are thousands of or
more features contained, the encoding length also needs to be thousands or longer, which
increases the difficulty of encoding and searching for the optimal solution. To shorten the
encoding length of particles, the compressed-encoding representation uses N-base (N > 2)
encoding method and each bit can represent a segment of 0/1 string. The value N should
satisfy N = 2n, where n = 2, 3, 4, and so on.

The process of compressing a 0/1 string with the N-base representation is shown in
Figure 1. When N = 8, every three bits under the binary representation are compressed
into one 8-base bit. If the original binary bits are not sufficient, the remaining bits will
be randomly filled in. During the search process of the swarm, all particles adopt the
compressed-encoding representation method. Only when evaluating particles, the N-base
representations will be decoded into binary representations to represent solutions to feature
selection problems for evaluation. With the compressed-encoding representation, multiple
features in the same neighborhood can be selected as a whole. In other words, not only
the selection state of the feature itself but also the selection state of the features in its
neighborhood can be learned from the representation. Therefore, the information used in
the search process for the optimal solution has increased.
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3.2. Definitions Based on Compressed-Encoding Representation

Based on the compressed-encoding representation of particle position, the following
definitions are given to help design the update mechanism for CEPSO-FL.

3.2.1. Difference between the Positions of Two Particles

The difference ∆(x1, x2) between the positions of two particles p1 and p2 is defined
as the Hamming distance between their corresponding binary 0/1 strings, as shown in
Equation (4), where x1 and x2 are the positions of the two particles, xd is the value of the
d-th dimension of x, function h(x d) is to get the binary strings represented by xd.

xd
1 − xd

2 = ∆(xd
1 , xd

2) = HammingDistance(h(xd
1), h(xd

2)) (4)

3.2.2. Velocity of the Particle

The velocity of a particle is defined as the difference between two positions, as shown
in Equation (5). Since the value of Hamming distance is discrete, the value of the velocity
vd is also discrete. Hence, vd can only take the value {0, 1, . . . , log 2 N} under N-base
compressed-encoding method.

vd = ∆(xd
1 , xd

2) (5)

3.2.3. Addition Operation between the Position and the Velocity

The addition operation between the position value and the velocity value is ran-
domly selecting a position x′ to replace the original position x, as shown in Equation (6),
where each dimensional value of the position vector x

′d should satisfy the equation
HammingDistance (h(x d), h(x

′d)) = vd.

x
′d = xd + vd (6)

3.3. Update Mechanism with Fuzzy Learning

Based on the above definitions, the velocity of the i-th particle pi is updated as
Equation (7), where wi is the inertia weight sampled randomly between 0.4 and 0.7,
c1 = c2 = 1, r1 and r2 are a random number between 0 and 1 for each dimension, cbesti is
the chosen local optimal position for pi, gbest is the global optimal position obtained by
the swarm, and [·] is the rounding function. In addition, if the value of vi is out of range
[0, log2 N], it should be modified to 0 or log2 N accordingly.

vi = [wivi + c1r1(cbesti − xi) + c2r2(gbest− xi)] (7)

The traditional update mechanism of the position vector can only rely on the velocity
vector because the result of adding two real numbers is unique. However, based on the
above definitions, the result of adding the same x and the same v in the discrete space
is uncertain. In other words, depending on the value of velocity to update the position
vector is not appropriate when using the compressed-encoding representation. Therefore,
each particle pi updates its position xd with Equation (8). In most cases, the particle jumps
directly to cbesti, which can speed up the convergence rate. In the rest of the cases, the
particle moves in the direction of the learned optimal position that is subject to the cbesti
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and the gbest and can increase the diversity of direction to help the particle search in a more
promising space.

xd
i =

{
xd

i + vd
i , if rand < 0.1

cbestd
i , otherwise

(8)

In the proposed update mechanism, the update of position relies more on the cbesti,
so the choice of cbesti is critical. To increase the diversity of learning sources, the cbesti
chosen by pi can be the pbest of itself, the pbest of another particle, or the pbest that has
been eliminated.

Here, a fuzzy learning strategy is adopted to help make the decision. First, factor F is
introduced to evaluate the performance of the current position of a particle, which can be
calculated by

F =
cur_ f itness

pbest_ f itness
, (9)

where cur_fitness is the fitness of the current position and pbest_fitness is the fitness of the
historical optimal position. The feature selection for classification is a maximization opti-
mization problem because the classification accuracy is adopted as the fitness of a solution.
Therefore, a small value of F means that the particle is in a bad position so it can choose its
historical optimal position for learning. However, a large value of F means that the current
position has a similar performance to the historical optimal position and the particle is
difficult to improve itself by continuing to choose its personal optimal position for learning.
Turning to other local optimal positions for learning is a better choice when the value of F
is large. Therefore, according to the value of F, the membership grade for the three search
states of a particle is defined in Figure 2.
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The design philosophy of the fuzzy membership functions is to guide the particle to
learn from itself when it performs well and learns from other particles when it performs
poorly and needs to be improved. In the first state S1, the value of F is small, so the particle
pi chooses its pbest as cbesti. The fuzzy membership function µ of S1 is defined as

µS1(F) =


1, 0 ≤ F < 0.80
−20× F + 17, 0.80 ≤ F < 0.85
0, 0.85 ≤ F ≤ 1

. (10)

In the second state S2, the value of F becomes larger, and the learning scope of pi is
extended to the whole swarm. It randomly chooses two particles from the swarm and
selects the pbest that performs better from the two particles as cbesti. Since pi is not
excluded from the random selection, it is still possible that pi uses its pbest as cbesti. The
fuzzy membership function µ of S2 is defined as



Symmetry 2022, 14, 1142 7 of 16

µS2(F) =


0, 0 ≤ F < 0.80
20× F− 16, 0.80 ≤ F < 0.85
1, 0.85 ≤ F < 0.97
−100× F + 98, 0.97 ≤ F < 0.98
0, 0.98 ≤ F ≤ 1

. (11)

In the third state S3, the value of F is very close to 1, which means that the particle
is at, or very close to, the historical optimal position. To make full use of the historical
information, all the eliminated pbest are stored in an archive. Note that the archive is set as
empty in the beginning and when any particle updates its pbest with its current position,
the pbest is stored into the archive. Moreover, the archive has a size limitation, so that
when a new pbest comes, a random pbest in the archive is removed. Then particles in the
state S3 randomly pick one position from the archive as their cbesti. The fuzzy membership
function µ of S3 can be described as

µS3(F) =


0, 0 ≤ F < 0.97
100× F− 97, 0.97 ≤ F < 0.98
1, 0.98 ≤ F ≤ 1

. (12)

After calculating the membership functions of the three states, if the membership
grade of F is 1 it belongs to only one state, then pi chooses this state as its current state.
However, there exists a special case since the fuzzy logic of the state transition sequence is
S1 ⇒ S2 ⇒ S3 . If a particle is in a transition zone between two states (i.e., the membership
grade of both states is not 0) and the state that comes first in the sequence S1 ⇒ S2 ⇒ S3
is the same as its previous state, the particle will keep its previous state unchanged to
maintain logical stability. For example, if a particle is in the transition zone between S1 and
S2, and its previous state is S1, then it will remain in S1. Otherwise, it will shift to S1 or S2
according to the value of F.

3.4. Local Search Strategy

For large-scale feature selection problems, a local search strategy based on the compressed-
encoding representation is proposed to reduce the search space and improve computational
efficiency. The process of the local search strategy is described in Algorithm 1. The value
of the position xd

i updates only when its corresponding pbestd
i is not zero. Otherwise, the

value of xd
i is set to 0, which is the same as the pbestd

i .

Algorithm 1: Local Search Strategy

Input: The position xi of particle pi, the encoding length D′ after compression, the index of the
particle i.
Output: The xi updated by the local search strategy.

1. begin
2. for d = 1 to D′ do

3. if
(

pbestd
i 6= 0

)
then

4. Update xd
i with Equation (8);

5. else
6. xd

i ← 0;
7. end
8. end
9. return xi;
10. end

With the local search strategy, some bits of the position are dynamically set to 0 and no
longer updated, as shown in Figure 3. In the process of searching for an optimal solution,
each particle pi only handles the features represented by the bits whose values are not set to
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0 in the pbesti instead of all features. Thus, the actual length of the position is shortened and
the search space for the particle is reduced. In addition, since the ignored bits in different
particles are different, each particle can search in different feature subsets and the diversity
of the swarm is retained.
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The particle may miss the global optimal solution because parts of the search space are
discarded by the local search strategy. However, under the N-base compressed-encoding
representation, a value of 0 in pbesti means that all features in the same neighborhood
represented by pbestd

i are not selected at the same time. Therefore, the probability of
skipping a bit of xi is reduced to 1/N, which reduces the probability of blindly reducing
the search space by the local search strategy.

3.5. Overall Framework

The overall framework of the proposed CEPSO-FL is described in Algorithm 2. Before
the initialization, the value of symmetric uncertainty (SU) between each feature and the
classification label is obtained and all features are sorted in descending order according
to the SU values. SU is an information measure to describe the symmetry correlation
relationship between features and labels and can be used as a filter method for feature
selection [32]. After the feature sorting, each feature and the features near it, i.e., features in
the neighborhood, have a similar effect on the classification result, which is conducive to
the search process because CEPSO-FL also uses the information from the neighborhood
for searching. Then, the length of particle representation D′ after compression can be
calculated according to the number of features D and the given N. To reduce the cost of
computing the Hamming distance, an N × N table is constructed in advance, which stores
the Hamming distance between any two binary strings represented by the N-base numbers.

Before evaluation, the particle needs to be decoded into a binary string to represent a
solution of feature selection, in which the value 1 means that the corresponding feature is
selected and the value 0 means that it is not selected. Then, the process of particles being
updated and evaluated repeats until the terminal conditions are met.

In the worst case, the time complexity of CEPSO-FL is O(MAX_FE × P × D). How-
ever, because CEPSO-FL uses the local search strategy to shorten the encoding length, the
actual time consumption of CEPSO-FL is always less than that of the traditional PSOs, as
shown in Section 4.

In addition, although CEPSO-FL is proposed for large-scale feature selection problems,
it can also solve other binary discrete optimization problems by simply removing the local
search strategy and the feature sorting step designed especially for feature selection.
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Algorithm 2: CEPSO-FL

Input: The maximum number of fitness evaluations MAX_FE, the size of the swarm P, the
number of the features D, the base for encoding compression N.
Output: The global optimal position gbest.

1. begin
2. Calculate the SU value between each feature and label;
3. Sort features according to the SU values;

4. D’←
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5. Construct the N × N Hamming distance table;
6. FE ← 0 ;
7. Randomly initialize x and v of each particle;
8. for i = 1 to P do
9. Decode and evaluate xi;
10. Update pbesti;
11. FE ← FE + 1
12. end
13. Update gbest;
14. while FE < MAX_FE do
15. for i = 1 to P do
16. Update vi with Equation (7);
17. Update xi with Algorithm 1;
18. end
19. for i = 1 to P do
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23. end
24. Update gbest;
25. end
26. return gbest
27. end

4. Experiments and Analysis

In this section, experiments for CEPSO-FL and other PSO-based feature selection
algorithms on data containing large-scale features are carried out to verify the effectiveness
of the proposed CEPSO-FL.

4.1. Datasets

The experiments use 12 open-access classification datasets for feature selection, which can
be downloaded from https://ckzixf.github.io/dataset.html, accessed on 11 April 2022, [30]
and https://jundongl.github.io/scikit-feature/datasets.html, accessed on 11 April 2022, [33].
Table 1 lists the detailed information of the 12 datasets. All the considered datasets contain
large-scale features but many of them only have small samples. Besides, the distribution of
some used datasets is unbalanced such as Leukemia_2 and GLIOMA.

4.2. Algorithms for Comparison and Parameter Settings

There are six PSO-based feature selection algorithms for comparison with CEPSO-FL.
The parameter settings of each algorithm are listed in Table 2. BPSO, BBPSO-ACJ, BVDPSO,
and CSO are all discrete binary PSOs that are suitable for solving feature selection problems.
However, they are not optimized especially for large-scale features. VLPSO and HFS-
C-P are algorithms proposed for large-scale feature selection. They both use correlation
measurement methods such as SU to analyze features.

https://ckzixf.github.io/dataset.html
https://jundongl.github.io/scikit-feature/datasets.html
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Table 1. Detailed information of 12 datasets.

Index Dataset Samples Features Categories

1 Madelon 500 500 2
2 Isolet 500 617 26
3 COIL20 500 1024 20
4 Yale 165 1024 15
5 ORL 400 1024 40
6 WarpAR10P 130 2400 10
7 Lung 203 3312 5
8 Lymphoma 96 4026 9
9 GLIOMA 50 4434 4
10 Brain_Tumor_1 90 5920 5
11 Prostate_GE 102 5966 2
12 Leukemia_2 72 7129 4

Table 2. Parameter settings of algorithms.

Algorithm Parameter Settings

BPSO [24] P = 20, the range of velocity: [−6, 6], c1 = c2 = 2.01, w = 1.

BVDPSO [25] P = 20, the range of w: [0.4, 0.9], c1 = c2 = 2, selected threshold α = 0.5.

BBPSO-ACJ [26] P = 20, chaotic factor z0 = 0.13, selected threshold λ = 0.5.

CSO [27] P = 100, control factor φ = 0.1, selected threshold λ = 0.5.

VLPSO [28] P = min{features/20,300}, c = 1.49445, the range of w: [0.4, 0.9], selected threshold λ = 0.6, max
iterations to renew exemplar: 7, number of divisions: 12, max iterations for length changing: 9.

HFS-C-P [31] P = 20.

CEPSO-FL P = 20, archive size: 100, c1 = c2 = 1, the range of w: [0.4, 0.7], N = 8.

The maximum number of fitness evaluations is set to 5000 for all algorithms. On
each dataset, the 10-fold cross-validation method is used to divide samples into a feature
selection dataset and a test dataset. The whole feature selection dataset is used as the
training dataset when testing the selected features on the test dataset. Then, each algorithm
runs 10 times on 10 groups of feature selection data and test data and adopts the average
results as the final results. In the feature selection phase, particles use the leave-one-
out cross-validation method on the feature selection dataset to obtain fitness values for
evaluation. The k-nearest neighbor (k-NN) method is chosen as the classifier to calculate
the classification accuracy values of the selected features in the experiments and k is set to
be five. When the accuracy values are the same, the particle with fewer features is regarded
to perform better.

In addition, the Wilcoxon signed-rank test is employed to verify a significant difference
between CEPSO-FL and other compared algorithms, with a significance level of α = 0.05.
In the experimental statistical results, symbol “+” indicates that CEPSO-FL is significantly
superior to the compared algorithm, symbol “−” indicates that CEPSO-FL is significantly
inferior to the compared algorithm, and symbol “=” indicates that there is no significant
difference between CEPSO-FL and the compared algorithm at the current significant level.
All algorithms are implemented in C++ and are run on a PC with an Intel Core i7-10700F
CPU @ 2.90GHz and a total memory of 8 GB.

4.3. Experimental Results and Discussion

The average classification accuracy values on the test dataset (Test Acc) of each algo-
rithm on 12 datasets are shown in Table 3. The Test Acc of CEPSO-FL performs better than
BPSO, BVDPSO, and CSO, with a significant advantage on two datasets and a disadvantage
on one dataset, respectively. CEPSO-FL also performs better than HFS-C-P with a higher
Test Acc on the dataset Lung and a similar Test Acc on other datasets. Compared with
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BBPSO-ACJ and VLPSO, CEPSO-FL has a similar Test Acc performance. On most datasets,
there is no significant difference between the Test Acc of CEPSO-FL and the Test Acc of
other algorithms.

Table 3. The Test Acc of algorithms on the 12 datasets.

Data BPSO BVDPSO CSO BBPSO-ACJ VLPSO HFS-C-P CEPSO-FL

Madelon 0.690(+) 0.694(+) 0.720(+) 0.706(+) 0.720(+) 0.748(=) 0.780
Isolet 0.878(−) 0.882(−) 0.874(−) 0.890(−) 0.878(−) 0.828(=) 0.834

COIL20 0.906(=) 0.914(=) 0.910(=) 0.922(−) 0.890(=) 0.898(=) 0.892
Yale 0.535(=) 0.541(=) 0.535(=) 0.541(=) 0.518(=) 0.547(=) 0.582
ORL 0.903(=) 0.883(=) 0.900(=) 0.898(=) 0.873(=) 0.903(=) 0.878

WarpAR10P 0.531(+) 0.538(+) 0.600(=) 0.600(=) 0.569(=) 0.654(=) 0.669
Lung 0.914(=) 0.919(=) 0.910(=) 0.919(=) 0.895(=) 0.867(+) 0.910

Lymphoma 0.810(=) 0.810(=) 0.800(=) 0.830(=) 0.820(=) 0.810(=) 0.790
GLIOMA 0.760(=) 0.800(=) 0.740(=) 0.800(=) 0.740(=) 0.700(=) 0.740

Brain_Tumor_1 0.856(=) 0.822(=) 0.844(=) 0.844(=) 0.856(=) 0.867(=) 0.822
Prostate_GE 0.773(=) 0.782(=) 0.755(+) 0.736(+) 0.764(=) 0.818(=) 0.809
Leukemia_2 0.750(=) 0.750(=) 0.750(=) 0.738(=) 0.738(=) 0.763(=) 0.775

+/=/− 2/9/1 2/9/1 2/9/1 2/8/2 1/10/1 1/11/0 NA

The bold represents the best value among all algorithms.

However, in terms of the average number of features included in the found optimal
solution (Feature Num), CEPSO-FL is significantly smaller than other algorithms on most
datasets. The experimental results are shown in Table 4. The Feature Num of CEPSO-FL is
smaller than the Feature Num of BPSO, BVDPSO, CSO, and BBPSO-ACJ on all datasets and
is smaller than the Feature Num of VLPSO on 11 datasets. On datasets Lung, GLIOMA, and
Prostate_GE, the Feature Num of CEPSO-FL is larger than HFS-C-P but still smaller than
other algorithms. On other datasets, CEPSO-FL can obtain a smaller Feature Num than HFS-
C-P. HFS-C-P is a three-phase algorithm, its Feature Num depends on correlation-guided
clustering results given by the first two stages. Therefore, the Feature Num performance of
HFS-C-P can vary greatly on different datasets. For example, on datasets Lung, GLIOMA,
and Prostate_GE, HFS-C-P can find the smallest feature subset. However, on datasets
Yale and ORL, the Feature Num obtained by HFS-C-P is larger than most of the compared
algorithms. In contrast, CEPSO-FL always finds a small feature subset on different datasets.

Table 4. The Feature Num of algorithms on the 12 datasets.

Data BPSO BVDPSO CSO BBPSO-ACJ VLPSO HFS-C-P CEPSO-FL

Madelon 309.5(+) 321.8(+) 157.9(+) 197.8(+) 87.8(+) 83.8(+) 8.3
Isolet 377.2(+) 385.8(+) 356.7(+) 273.0(+) 187.5(+) 238.2(+) 78.3

COIL20 620.3(+) 595.5(+) 260.8(+) 288.1(+) 287.8(+) 394.4(+) 78.7
Yale 626.5(+) 602.9(+) 412.5(+) 376.7(+) 330.4(+) 625.4(+) 90.2
ORL 629.4(+) 649.9(+) 713.2(+) 505.5(+) 390.0(+) 874.2(+) 100.6

WarpAR10P 1485.2(+) 1431.4(+) 442.1(+) 126.1(+) 478.8(+) 565.9(+) 19.5
Lung 2048.7(+) 1829.0(+) 1401.4(+) 1086.1(+) 743.1(=) 19.1(−) 373.8

Lymphoma 2356.7(+) 2219.4(+) 1402.8(+) 1382.1(+) 1135.5(+) 508.9(+) 187.5
GLIOMA 2611.1(+) 2402.5(+) 1566.6(+) 1932.5(+) 389.1(+) 9.5(−) 86.1

Brain_Tumor_1 3547.0(+) 3403.1(+) 3009.3(+) 1348.6(+) 1375.8(+) 1452.8(+) 191.2
Prostate_GE 3667.2(+) 3392.2(+) 2186.7(+) 1043.9(+) 1474.4(+) 12.1(−) 63.0
Leukemia_2 4399.9(+) 4234.6(+) 3219.4(+) 2523.4(+) 2150.6(+) 607.0(+) 221.7

+/=/− 12/0/0 12/0/0 12/0/0 12/0/0 11/1/0 9/0/3 NA

The bold represents the best value among all algorithms.

The running time for each algorithm on the 12 datasets (Time) is listed in Table 5.
The Time of CEPSO-FL is less than algorithms that are not proposed especially for the
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large-scale features, i.e., BPSO, CSO, BVDPSO, and BBPSO-ACJ on most datasets. CEPSO-
FL also performs better than the three-phase HFS-C-P on nine datasets. CEPSO-FL can
reduce the search time for two reasons. One reason is that the local search strategy can
skip the calculation of some dimensions when updating particles. Another reason is that
the adopted k-NN classifier needs to calculate the Euclidean distance of two samples for
evaluation. The fewer the features they contain, the less time the calculation will spend.
Because the local search strategy can lead particles to search for solutions with fewer
features, the running time of CEPSO-FL is less than other algorithms except for VLPSO.
Though CEPSO-FL spends more time searching than VLPSO on eight datasets, it can
achieve a better Test Acc and Feature Num on most datasets.

Table 5. The Time (min) of algorithms.

Data BPSO BVDPSO CSO BBPSO-ACJ VLPSO HFS-C-P CEPSO-FL

Madelon 64.4 64.5 62.9 50.9 26.6 53.5 52.2
Isolet 78.7 79.9 145.9 65.6 40.1 148.1 72.7

COIL20 136.8 127.9 143.0 112.1 51.9 178.2 112.6
Yale 15.2 14.7 16.2 12.1 7.2 23.6 13.2
ORL 83.8 87.3 102.5 73.4 47.8 195.8 80.0

WarpAR10P 39.0 57.7 29.8 27.6 10.4 23.3 15.8
Lung 210.3 183.2 160.6 104.9 51.2 50.1 61.7

Lymphoma 65.0 62.6 50.4 36.8 13.9 33.3 16.2
GLIOMA 20.1 20.5 15.4 11.2 6.1 4.0 4.2

Brain_Tumor_1 84.6 96.4 66.8 51.9 28.6 66.8 19.4
Prostate_GE 113.4 113.5 88.5 64.9 37.8 21.7 24.1
Leukemia_2 70.9 68.1 44.7 38.8 28.5 28.9 16.1

The bold represents the best value among all algorithms.

The average classification accuracy value on the feature selection dataset (Train Acc)
can show the learning ability of each algorithm on different datasets. Therefore, the Train
Acc of each algorithm after each evaluation on all datasets is plotted in Figure 4 to further
analyze the performance of the algorithms. The proposed CEPSO-FL performs well and
achieves a high Train Acc on most datasets. On datasets Isolet, COIL20, and ORL, the Train
Acc of CEPSO-FL is lower than the Train Acc of CSO and BVDPSO. However, on datasets
with more features, CEPSO-FL is superior to CSO and BVDPSO on Train Acc. On datasets
Brain_Tumor_1, Prostate_GE, and Leukemia_2, CEPSO-FL obtains a lower Train Acc than
HFS-C-P but is still superior to other algorithms for comparison, while on datasets with
fewer features, CEPSO-FL has a better performance than HFS-C-P. In general, CEPSO-FL
has a better learning ability for different datasets compared to other algorithms, so it can
adapt to datasets with different feature numbers.

The effects of the parameter N are also studied because N determines the compression
ratio of the representation. If N is large, the compressed representation of the particle
is much shorter, and the probability of features being skipped when applying the local
search strategy is much smaller than that with a small N. Since N needs to be an integer
power of two, the value of N is set to be 2 (21), 8 (23), and 32 (25), and the comparison
results are listed in Table 6. In general, when the value of N increases, the feature subset
obtained by CEPSO-FL has a higher Test Acc but contains more features and needs more
time for searching. CEPSO-FL with N = 8 can achieve a higher Test Acc than that with
N = 2 on all datasets. In some cases, the Test Acc consistently improves when the value of N
increases. For example, on datasets Madelon, Isolet, COIL20, WarpAR10P, and Lymphoma,
CEPSO-FL can get the highest Test Acc with N = 32. However, sometimes the Test Acc
decreases when the value of N becomes larger, e.g., on datasets Yale, ORL, Lung, and
Prostate_GE. Therefore, it is recommended that N be set to eight in most cases, but a larger
N can be tried to further improve the value of Test Acc.
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Figure 4. The Train Acc of algorithms on 12 datasets with the increasement of evaluation
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Leukemia_2, respectively.
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Table 6. Comparison among CEPSO-FL with different N.

Data
Test Acc Feature Num Time (min)

N = 2 N = 8 N = 32 N = 2 N = 8 N = 32 N = 2 N = 8 N = 32

Madelon 0.788 0.780 0.802 7.7 8.3 19.6 49.8 52.2 70.6
Isolet 0.838 0.834 0.844 90.6 78.3 67.4 70.9 72.7 75.4

COIL20 0.874 0.892 0.902 45.0 78.7 75.2 111.5 112.6 114.3
Yale 0.547 0.582 0.535 99.4 90.2 127.0 14.0 13.2 13.4
ORL 0.868 0.878 0.838 115.6 100.6 100.4 81.6 80.0 76.5

WarpAR10P 0.592 0.669 0.692 22.9 19.5 43.7 15.7 15.8 16.3
Lung 0.895 0.910 0.895 359.7 373.8 286.7 57.8 61.7 69.3

Lymphoma 0.790 0.790 0.840 266.4 187.5 349.6 16.1 16.2 16.3
GLIOMA 0.680 0.740 0.700 136.2 86.1 74.8 4.6 4.2 4.6
Brain_Tumor_1 0.778 0.822 0.822 204.4 191.2 145.6 19.7 19.4 20.5
Prostate_GE 0.782 0.809 0.800 17.7 63.0 99.7 23.9 24.1 26.0
Leukemia_2 0.713 0.775 0.775 219.9 221.7 305.3 15.9 16.1 15.7

Rank Sum 31 19 20 24 23 25 20 22 30

The bold represents the best value among all the CEPSO-FL variants with different N.

5. Conclusions

This paper proposes a discrete PSO algorithm named CEPSO-FL for large-scale feature
selection problems. CEPSO-FL adopts the N-base encoding method and treats the features
compressed in the same neighborhood as a whole for selection. Then, CEPSO-FL designs
the update mechanism for particles based on the Hamming distance and the fuzzy learning
strategy, which has a logical explanation in the discrete space. For the large-scale features,
CEPSO-FL proposes a local search strategy to help particles search in a smaller feature
space and improve computational efficiency. Experimental results show that CEPSO-FL is
promising in large-scale feature selection. It can always select a feature subset that contains
a small number of features but performs well on classification problems. The running time
of CEPSO-FL is also less than most compared algorithms.

For future work, some promising methods can be tried to reduce the computational
cost of evaluations [34,35] and further improve the performance of the proposed algorithm
on more complex feature selection problems [36].
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