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Abstract: Remote sensing (RS) image change detection (CD) is the procedure of detecting the change
regions that occur in the same area in different time periods. A lot of research has extracted deep
features and fused multi-scale features by convolutional neural networks and attention mechanisms
to achieve better CD performance, but these methods do not result in well-fused feature pairs of the
same scale and features of different layers. To solve this problem, a novel CD network with symmetric
structure called the channel-level hierarchical feature fusion network (CLHF-Net) is proposed. First,
a channel-split feature fusion module (CSFM) with symmetric structure is proposed, which consists
of three branches. The CSFM integrates feature information of the same scale feature pairs more
adequately and effectively solves the problem of insufficient communication between feature pairs.
Second, an interaction guidance fusion module (IGFM) is designed to fuse the feature information of
different layers more effectively. IGFM introduces the detailed information from shallow features
into deep features and deep semantic information into shallow features, and the fused features have
more complete feature information of change regions and clearer edge information. Compared with
other methods, CLHF-Net improves the F1 scores by 1.03%, 2.50%, and 3.03% on the three publicly
available benchmark datasets: season-varying, WHU-CD, and LEVIR-CD datasets, respectively.
Experimental results show that the performance of the proposed CLHF-Net is better than other
comparative methods.

Keywords: change detection; remote sensing images; channel-split feature fusion; interaction
guidance fusion

1. Introduction

Change detection (CD) is the detection of changes that occur in the same area at
different times [1], and it has important practical applications for the development of
satellite technology. CD plays a crucial role in urban resource management, land-use
planning, disaster assessment, and analysis of military or civilian activities [2–4]. In recent
years, with the rapid development of various computer vision techniques [5–7], CD is
becoming an active research topic [8–10].

CD methods usually need to achieve two objectives: reducing or eliminating the
interference of semantic noise and accurately detecting the localized change regions. In
recent years, convolutional neural networks (CNNs), especially fully convolutional neural
networks (FCNs) [11], have successfully broken through the bottlenecks of traditional man-
ual feature methods and driving CD tasks, achieving significant improvements in [11–15].
Since CD tasks have dual/multiple inputs, convolutional networks for image CD can be
divided into pre-fusion networks and post-fusion networks according to the input fusion
strategy [10]. The pre-fusion methods can capture more information about the foreground
region, corresponding to the deeper features of the network, while post-fusion methods can
express more detailed information, corresponding to the shallow features of the network [8].
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However, most of the existing methods based on pre-fusion or post-fusion strategies ad-
dress one of these aspects. This may lead to various inaccurate detection phenomena.

To solve the feature fusion problem of bi-temporal images and to achieve a more
effective feature fusion method for bi-temporal images, a CD method based on a channel-
level hierarchical feature fusion network (CLHF-Net) is proposed in this paper. The
proposed method better focuses on the channel communication between two bi-temporal
feature maps at the same scale and tries to explore the importance of different channels
of a feature map in the feature representation. In the decoding stage, the effective fusion
of multi-scale features is achieved by using progressive fusion to further improve the
detection accuracy.

In summary, the main contributions of this article are as follows:

1. We propose a novel CD network with symmetric structure, called the channel-level
hierarchical feature fusion network (CLHF-Net). It aims to solve the problems of
insufficient communication between bi-temporal feature pairs and inadequate feature
fusion in channel groups.

2. A channel-split feature fusion module (CSFM) with symmetric structure is proposed,
which consists of three parts, namely the channel splitting branch (CSB), interaction
fusion unit (IFU), and feature aggregation branch (FAB). The CSB splits the feature
map into multiple channel-group features. The IFU is designed to enable effective
communication and adequate fusion of channel multi-group feature pairs. The FAB
integrates the input feature pairs and the fused features, resulting in a higher quality
change feature map.

3. To fuse the semantic features of different levels more effectively, an interaction guid-
ance fusion module (IGFM) is proposed. First, the IGFM introduces high-level seman-
tic information into low-level features, which can eliminate the redundant semantic
information in shallow features. The low-level detailed feature information is in-
troduced into the high-level features, which can compensate the detailed semantic
information in the deep features. Then, convolution and attention operations are
implemented to further fuse the two updated features.

The next parts of this paper are laid out as follows: Section 2 reviews the literature on
CD methods. Section 3 is the detailed description part of the proposed method. Section 4 is
a series of experimental parts to verify the performance of the proposed method. Section 5
is the ablation study part that further verifies the effectiveness of each innovative module
of the proposed method. Section 6 concludes the work of this paper.

2. Related Work

The existing CD methods can be roughly classified into traditional methods [16]
and deep learning (DL)-based methods [4], and each will be briefly introduced in the
following sections.

2.1. Traditional Methods

According to the different analysis units, the traditional CD methods can be divided
into pixel-based CD methods and object-based CD methods [16,17]. In the early stage,
methods such as regression analysis, image ratio, and image difference [18–20] were widely
used, but there were some differences between their detection results and the ground truth,
and there were cases of missed and false detections. To improve the utilization of spectral
information from RS images, CD methods based on image transformation have emerged
one after another, such as the independent component analysis (ICA) method [21] and the
multivariate alteration detection (MAD) method [22]. In 2007, Bovolo and Bruzzone [23]
introduced the concept of multi-classification CD and proposed the change vector analysis
(CVA) method based on a polar coordinate domain for multi-spectral images. However,
the stability of the CVA algorithm cannot be guaranteed because the performance is limited
by the quality of the spectral bands. Therefore, Bovolo et al. [24] proposed an improved
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version of compressed CVA (C2VA) in 2012, which eliminates the blindness of spectral
band selection and reduces the loss of spectral band information, further improving the
performance. Lui et al. [25,26] proposed the hierarchical spectral CVA (HSCVA) method
and the sequential spectral CVA (S2CVA) method in 2015. Combining the extremely
large number of spectral bands of hyperspectral images, the variations are continuously
subdivided down. They successfully applied it to the hyperspectral RS image CD task.
In 2017, Zanetti et al. [27] proposed a theoretical framework for a representation of the
statistical distribution of difference maps as a composite model and extended the traditional
CVA to multi-class situations. In recent years, Ghaderpour and Vujadinovic [28] have
innovatively proposed the jumps upon spectrum and trend (JUST) CD method. JUST
identifies potential jumps by considering the appropriate weights associated with the time
series and can address the instability and uneven sampling intervals of time series RS data
and the challenges posed by atmospheric effects in the RS CD process. JUST can directly
be applied to detecting changes within RS satellite data that may have gaps or missing
values without any need for interpolation [29]. In 2021, Masiliūnas et al. [30] proposed
an unsupervised time series CD algorithm to aid the upscaling of BFAST for global land
cover CD. However, pixel-based CD only uses the feature information of individual pixels,
ignoring the spatial and spectral information of neighboring pixels, which is prone to noise
effects and incomplete representation of the change region.

The object-based CD method integrates the spectral information of image elements
and the spatial information of image element neighbors, which helps to reduce the false
alarm rate and missed alarm rate in the difference map. Su et al. [31] presented a CD
algorithm that combines object-level and pixel-level representations to extract change
regions containing artificial objects. Wang et al. [32] proposed a new unsupervised CD
technique for color satellite multi-temporal images. A computationally simple method for
singular value decomposition (SVD) is adopted to perform principal component analysis
(PCA) on the pure quaternion image. Benedek et al. [33] introduced a conditional mixed
Markov model, which compares the segmented images for differences. Inglada et al. [34]
proposed a new similarity for automatic CD of a multi-temporal synthetic aperture radar
images metric. The method uses Kullback–Leibler divergence to measure local change
information. Wang et al. [35] presented a CD method based on a triple Markov field (TMF)
model. The adaptive weight parameter from the previous energy is introduced to cope with
the detection trade-off problem to obtain an automatic estimation of parameters with low
complexity. Wang et al. [36] proposed a robust objective-level CD method by combining
multi-feature extraction with integration learning. In 2018, Zhang et al. [37] optimized
the performance of CD by introducing the idea of multi-scale uncertainty analysis and
using support vector machine (SVM) classifiers to iteratively analyze uncertain change
regions. Based on this, Tan et al. [38] further improved the CD by using multiple classifiers
involved in uncertain region change analysis and fusing these classification results for
decision making. While the object-based CD method integrates the spatial and spectral
information from the original image, it is sensitive to both alignment errors and object
shadows, which may limit the detection accuracy.

2.2. Deep-Learning-Based Methods

With the success of DL techniques in computer vision (CV), DL-based CD methods are
gradually becoming a research trend. From the fusion stage of bi-temporal RS images, DL-
based CD methods can be roughly divided into two types: pre-fusion CD and post-fusion
CD [39].

The input to a network using a pre-fusion strategy is the result of concatenation of
image pairs or a difference map of image pairs. The late fusion CD method refers to
first inputting two bi-temporal images into the network separately, obtaining the features
of the two images separately, and then fusing the two sets of features obtained. For ex-
ample, Daudt et al. [10] proposed three models, namely fully convolutional early fusion
(FC-EF), fully convolutional Siamese-concatenation (FC-Siam-Conc), and fully convolu-
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tional Siamese-difference (FC-Siam-Diff). The FC-EF structure concatenates two images
and takes the concatenated images as the input to the network. The Siamese structure
takes two images as input to the network, respectively, where the parameter weights of
the network are shared, and then uses a convolutional layer to merge the two outputs.
The deeply supervised image fusion network (DSIFN) designed by Zhang et al. [8] also
employs a late fusion strategy. The DSIFN fuses the deep features extracted by the Siamese
network on a dual-stream architecture and feeds them into the difference inference network
for CD. To overcome the heterogeneity problem, they introduce a convolutional block
attention module (CBAM) in the decoding process [40]. To explore the effectiveness of
multi-level feature fusion, Lei et al. [41] used a concatenated CNN to extract features.
Fang et al. [42] presented a densely connected Siamese network (SNUNet-CD) based on the
Siamese network and UNet++, in which the ensemble channel attention module (ECAM)
was applied to aggregate and refine features at multiple semantic levels. As the research
progressed, it was noticed that neither early fusion nor late fusion strategies could make the
network achieve the best performance. Therefore, Wang et al. [43] proposed an attention
mechanism-based deep supervision network (ADS-Net), which uses a mid-layer fusion
approach for feature fusion.

In addition, cross-domain research often yields unexpected results. Researchers have
tried to introduce new results from other fields into the CD task. For example, Zhang
et al. [44] presented a hierarchical dynamic fusion network (HDFNet), which introduces a
dynamic convolution module in the decoding stage to enhance feature fusion and further
refine the feature representation. Similarly, Hou et al. [45] designed a CD network with
three branches. To utilize the temporal information embedded in the images, a dynamic
inception module was designed in this network. As the research progresses, the design
of the network structure shows the fantastic conceptions of the researchers. For example,
Zheng et al. [46] presented a U-Net-based cross-layer convolutional neural network (CLNet),
which designed cross-layer blocks (CLBs) to fuse contextual semantic information from
different layers. To better extract to deep and shallow features in images, Yang et al. [47]
designed a new asymmetric Siamese network that achieves better CD performance. Many
works such as these give us inspiration and thoughts to explore more effective CD methods.

In recent years, the introduction of attentional mechanisms has made a significant
impact on the performance of CD tasks. Chen et al. [48] proposed a dual-attention fully
convolutional Siamese network (DASNet) to extract features of image pairs, and the result-
ing features were used to modify the contrast loss and thus improve the performance of
the model. To generate more discriminative features, Chen et al. [49] proposed a spatial–
temporal attention neural network (STANet). The STANet uses Siamese FCNs to extract
diachronic images and proposes two attention modules. Song et al. [50] proposed an
attention-based end-to-end CD network called AGCDetNet, which uses spatial attention
to enhance the feature representation of change information and channel attention to im-
prove accuracy. The number of parameters of the attention mechanism is very small and
the improvement in network performance is significant, and this advantage has led to a
preference for using attention to help improve the performance of the network.

3. Proposed Method

In this section, we will first introduce the overall structure and workflow of CLHF-Net.
Then, the detailed structure of each innovation module is presented.

3.1. The Proposed CLHF-Net Network

With the progress of RS satellite technology, the RS images obtained by people contain
richer and more complex feature information, which increases the difficulty of image
feature extraction. As with most binary CD methods, the network input consists of two
bi-temporal images, denoted as T1 and T2, with dimensions C× H ×W, where C is the
number of channels, and eventually produces a change map with a channel number of 1,
whose width and height are the same as the input image. For each pixel of the change map,
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1 represents change and 0 represents no change. In this paper, a channel-level hierarchical
feature fusion network (CLHF-Net) with symmetric structure is proposed to deal with the
CD task. The overall architecture of CLHF-Net is shown in Figure 1, and the whole network
architecture adopts an encoder–decoder structure. In addition, inspired by a previous
study [51,52], a channel-split feature fusion module (CSFM) is proposed to adequately
fuse the bi-temporal feature maps. In the decoding phase, an interaction guidance fusion
module (IGFM) is proposed to fuse high- and low-level features.
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As with many previous works [53–55], we use two ResNet18 [56] with shared weights
as the backbone of our network, which extracts features from the original image pairs,
where RB1-4 denotes the residual convolution block of the ResNet18 backbone layer.
Structurally, the backbone network is symmetrical. The multi-level feature pairs extracted
by the backbone network are forwarded to CSFM separately, and then the fused features
updated by CSFM are further processed. As shown in Figure 1, a feature pyramid-like
structure is used to fuse the CSFM updated features progressively from higher to lower
levels. In this step, the proposed IGFM uses an interactive fusion strategy to make the
features at the higher and lower levels perform sufficient communication. It can be noticed
that throughout the decoding process, there is a Convs-N (N denotes 1, 2, 3, 4) branch,
and each Convs consists of two convolution blocks (Conv+BN+ReLU). Its main role is to
change the number of channels of the feature map at each stage and to use the up-sampling
operation so that the size of the feature map is the same as the original image. Finally, the
four sets of Convs output feature maps are sent to a pixel classifier to produce the final
prediction maps.

3.2. Channel-Split Feature Fusion Module

The proposed CSFM with symmetric structure is shown in Figure 2, which consists of
a channel splitting branch (CSB), an interaction fusion unit (IFU), and a feature aggregation
branch (FAB). The CSB splits the input features with the number of channels C into multi-
group features with the number of channels c. According to a series of experimental results,
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the network performance is best when c is 16. This work adopts the channel splitting strat-
egy for the following considerations: (1) Directly connecting two feature maps for feature
fusion will weaken the between channel group feature pairs communication interaction.
(2) Different channel group features have different importance for the representation of
semantic information. It is meaningful to study which is more effective: direct fusion of
two input feature maps or separate weighted fusion of channel group feature pairs.
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Next, multi-group feature pairs of bi-temporal features output from the CSB are fed
to the IFU, respectively. The IFU is used to capture local and global contextual semantic
information. As can be seen from Figure 2, the IFU mainly consists of channel attention
(CA) and spatial attention (SA) [40], which are defined as Equations (1) and (2):

CA(F) = σ(MLP(Avg(F)) + MLP(Max(F))) (1)

SA
(

F′
)
= σ

(
f 3×3[Avg

(
F′
)
, Max

(
F′
)])

(2)

where MLP denotes the multi-layer perceptron module with two 1 × 1 convolutional
layers. Avg and Max represent the average pooling layer and the max pooling layer,
respectively. f 3×3 represents the 3 × 3 convolutional layer. σ represents the sigmoid
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function. [.,.] denotes the concatenation operation. We found experimentally that the use
of channel attention-multiplication interaction can filter out some distracting factors in non-
changing regions, improve the feature fusion effect, and enhance the feature representation
of changing regions.

Specifically, first, in IFU, we apply CA operations to the two input features separately.
The CA maps AC1

a ∈ Rc×1×1 and AC1
b ∈ Rc×1×1 are obtained, respectively. Next, we

adopt a deep interaction fusion strategy to enhance the feature fusion effect. The specific
implementation is shown in Equations (3) and (4):

f 1,c
a,b = CA

(
f 1
a

)
� f 1

b + f 1
a (3)

f 1,c
b,a = CA

(
f 1
b

)
� f 1

a + f 1
b (4)

where � is the channel-wise multiplication, and ⊕ is the element-wise summation. As
can be seen from Equation (3) and (4), we also add the original input features to the
features obtained after interaction fusion to retain some important information of the
original and enhance the feature representation. Then, we apply SA operations to the
two interaction fused features f 1,c

a,b ∈ Rc×H1×W1 and f 1,c
b,a ∈ Rc×H1×W1 , respectively. The

SA maps AS1
a ∈ R1×H1×W1 and AS1

b ∈ R1×H1×W1 are obtained, respectively. We apply the
product operation on f 1,c

a,b and f 1,c
b,a with their respective SA maps. The following equations

are shown:
f 1,s
a,b = SA

(
f 1,c
a,b

)
⊗ f 1,c

a,b (5)

f 1,s
b,a = SA

(
f 1,c
b,a

)
⊗ f 1,c

b,a (6)

where ⊗ is the element-wise multiplication. The SA operation further filters out the
background factors and highlights the representation of the change regions. Finally, the
element-wise summation operation is performed on f 1,s

a,b and f 1,s
b,a to obtain the output

features of IFU:
f 1
ab = f 1,s

a,b ⊕ f 1,s
b,a (7)

where ⊕ is the element-wise summation. Next, the feature aggregation branch performs
two main tasks. First, we perform a concatenation operation on the output feature map
of IFU to obtain a feature map Fab ∈ RC1×H1×W1 with the same size as the input features.
Second, we concatenate Fab with the two inputs Fa ∈ RC1×H1×W1 and Fb ∈ RC1×H1×W1 of
CSFM, followed by a 3× 3 convolution layer to obtain the final output features of CSFM.

3.3. Interaction Guidance Fusion Module

The interaction guidance fusion module (IGFM) introduces high-level semantic in-
formation into the low-level features. With the guidance of the high-level features, the
redundant spatial information in the low-level features can be eliminated. Different from
the low-level features, some detailed semantic information (such as boundary features)
may be lost in the high-level features due to the deepening of the network layers. The
detailed semantic information of low-level is introduced into the high-level features to
make up for the lack of detailed features in the high-level features. The structure of the
IGFM is shown in Figure 3.

Specifically, in IGFM, first, a bilinear up-sampling operation is applied to the high-level
features Fh ∈ RC1×H1×W1 to obtain the feature map Fh ∈ RC1×H2×W2 . Then, a 1× 1 convo-
lution block (1× 1 Conv+BN) is applied to each of the two input features Fh ∈ RC1×H2×W2

and Fl ∈ RC2×H2×W2 (low-level features), swapping the number of channels of Fh and Fl and
obtaining the updated features F′h ∈ RC2×H2×W2 and F′l ∈ RC1×H2×W2 . To further refine the
features and obtain a better feature representation, we use a 1× 1 convolutional layer and
a 3× 3 convolutional layer for F′h and F′l . Next, feature F1 and feature F2 are concatenated
for the final multi-scale feature fusion. Then, a 1× 1 convolutional layer is applied that
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can integrate the semantic features. It is worth noting that we do not change the number
of channels of the concatenated features after the convolutional layer. This is because we
found through experiments that changing the number of channels of the concatenated
features could affect the final network performance. We guess that this is because changing
the number of channels in advance would affect the next feature reweighting operation
and diminish the effectiveness of semantic feature fusion. Finally, the aggregated features
are fed into a CA module to achieve effective multi-scale feature fusion.
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Figure 3. Interaction guidance fusion module (IGFM).

3.4. Convs-N and Pixelwise Classifier

In Figure 1, the decoding stage has a Convs-N (N denotes 1, 2, 3, 4) branch. The main
role of Convs-N is to change the number of channels and the size of the features. First,
Convs-N applies a bilinear up-sampling operation to change the size of the features to the
same size as the original image. Then, two 3× 3 convolutional layers (Conv+BN+ReLU)
are used to refine the feature boundaries while changing the number of channels of the
features to 64.

In addition, the feature maps output from the Convs-N branch are sent to a pixel
classifier to produce the final change map. The structure of the classifier is shown in
Figure 4. The pixel classifier consists of three 3× 3 convolutional layers (Conv+BN+ReLU)
and one 1× 1 convolutional layer (Conv+BN+ReLU). First, the feature maps output from
the Convs-N branch are concatenated along the channel dimension, and then the aggregated
feature maps are sent to the first two 3× 3 convolutional layers, which use the same residual
structure as ResNet, which can integrate the fused features, refine the feature representation,
and change the channel number of feature. A dropout layer [55] with probabilities of 0.5 is
implemented in the third 3× 3 convolutional layer, and the final 1× 1 convolutional layer
changes the number of channels of the feature map to 1 to obtain the final change map.
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4. Experiments and Results

In the experiments, we evaluate the effectiveness of the proposed CLHF-Net using
three publicly available datasets. We first introduce the three datasets used in this paper,
followed by the detailed setup of the experiments, loss functions, and evaluation metrics.
Finally, the experiment is analyzed in detail.

4.1. Datasets

In this paper, three publicly available RS image datasets, the season-varying dataset [57],
the WHU-CD dataset [58], and the LEVIR-CD dataset [49], are utilized, and the detailed
information of these three datasets is shown as follows:

The season-varying dataset, provided by Lebedev et al. [57], is a dataset with seasonal
variation for RS image CD, for which images were obtained from Google Earth (Digital
Globe). The dataset consists of seven pairs of images with a size of 4725× 2700 and four
pairs of images with a size of 1900× 1000. After processing, the size of each pair of images
is cut to 256× 256 pixels, and the spatial resolution range of these images is 3–100 cm/pixel.
Finally, the number of training set, validation set, and test set of the season-varying dataset
is 10,000 pairs, 3000 pairs, and 3000 pairs, respectively.

The WHU-CD dataset is derived from satellites (Quick Bird, Worldview series, IKONOS,
and ZY-3). The WHU-CD dataset is composed of an image pair with a resolution of 0.2 m
with a size of 32, 507× 15, 354. After processing, the size of each image of the dataset is
set to 224× 224 pixels, where the number of training set, validation set, and test set are
7918 pairs, 987 pairs, and 955 pairs, respectively.

The LEVIR-CD dataset contains 637 pairs of high-resolution images acquired by
Google Earth, with a size of 1024× 1024. We cut each original image into 16 small patches
of size 256× 256 image blocks. Finally, the obtained training set, verification set, and test
set are 7120 pairs, 1024 pairs, and 2048 pairs, respectively.

Table 1 shows a general description of the three datasets so that the number of images
and the image sizes in each subset of the three datasets can be visually described.

Table 1. Description of three datasets.

Datasets Spatial Resolution
Number of Samples

Size of Samples
Training Set Validation Set Test Set

Season-Varying 3–100 cm/pixel 10,000 3000 3000 256 × 256
WHU-CD 0.2 m/pixel 7918 987 955 224 × 224
LEVIR-CD 0.5 m/pixel 7120 1024 2048 256 × 256

4.2. Implementation Details

We implemented our proposed CLHF-Net with PyTorch, supported by an NVIDIA
CUDA with a GeForce GTX 2080Ti GPU. In the experiment, we used the Adam optimizer
(β1 = 0.5, β2 = 0.9), and the training period is set to 200 epochs. The initial learning rate
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is 0.001 in the first 100 epochs, and in the next 100 epochs the value of the learning rate
decays linearly to zero. Considering the size of the GPU, we set the batch size to 24.

4.2.1. Loss Function

Considering issues such as pixel imbalance, which can be biased in the training
network, we used the loss function (BCL) proposed by Chen et al. [49] to optimize the
network parameters in this experiment. The distance map output by the network represents
a batch of binary label maps, where zero represents unchanged pixels and one represents
changed pixels. The loss function is shown in Equation (8) [49].

L(CM∗, GT∗) = λ× 1
nu

∑
b,i,j

(
1− GT∗b,i,j

)
CM∗b,i,j + (1− λ)× 1

nc
∑
b,i,j

GT∗b,i,j Max
(

0, m− CM∗b,i,j

)
(8)

In Equation (8), CM and GT represent the change map and the ground truth, re-
spectively. b, i, and j represent batch, height, and width, and m is the margin set to two.
Considering the ratio of change pixels to unchanged pixels, in this paper we set λ to 0.7. nc
and nu are the number of unchanged pixels and the number of changed pixels, respectively.

4.2.2. Evaluation Metrics

In the experimental part, we apply precision (P), recall (R), F1-score (F1), overall accu-
racy (OA), and kappa coefficient (Kappa) as the evaluation metrics. The specific explanation
in the equation is shown in Table 2. These five indices can be calculated as follows:

P = TP
TP+FP (9)

R = TP
TP+FN (10)

F1 = 2
P−1+R−1 (11)

OA = TP+TN
TP+FP+TN+FN (12)

PRE = (TP+FN)×(TP+FP)+(TN+FP)×(TN+FN)
(TP+TN+FP+FN)2 (13)

Kappa = OA −PRE
1−PRE (14)

where PRE denotes the expected accuracy.

Table 2. The detailed explanation of TN, TP, FN, and FP.

True Value
Predicted Value

Positive Negative

Positive TP FN
Negative FP TN

4.3. Comparison Methods

In order to verify the effectiveness and superiority of our method, we compare the
proposed CLHF-Net with eight representative methods in the CD field, and some important
information about these methods is shown in Table 3. It should be noted that, in this chapter,
we choose the SNUNet-CD/48 method with a channel number of 48 for comparison,
because among all SNUNet-CD networks SNUNet-CD/48 has the best performance.

4.4. Experiment Results

We quantitatively and qualitatively analyze the proposed CLHF-Net and other SOTA
comparison methods on three public benchmark datasets to prove the effectiveness of the
proposed method.
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Table 3. The main elements of the contrastive methods.

Methods Architecture Loss Function Published Year

CD-Net [59] FCN Weighted cross-entropy loss 2018
FC-EF [10] FCN Weighted negative log likelihood loss 2018

FC-Siam-Conc [10] Siamese, FCN Weighted negative log likelihood loss 2018
FC-Siam-Diff [10] Siamese, FCN Weighted negative log likelihood loss 2018

DASNet [48] Siamese, VGG16/ResNet50 Weighted double-margin contrastive loss 2021
DSIFN [8] Siamese, VGG16 Sigmoid binary cross-entropy, dice loss 2020

STANet [49] Siamese, ResNet18 Batch-balanced contrastive loss 2020
SNUNet-CD/48 [42] Siamese, UNet++ Weighted cross-entropy loss, dice loss 2021

4.4.1. Evaluation for the Season-Varying Dataset

As can be seen from the data in Table 4, the proposed CLHF-Net has the best overall
performance. The highest scores were obtained for OA, recall, F1, and Kappa with 99.33%,
98.90%, 97.19%, and 96.80%, respectively. Compared with other methods, CLHF-Net
achieved significant improvements of at least 0.24%, 3.0%, 1.03%, and 1.15% on OA, recall,
F1, and Kappa, respectively.

Table 4. Comparison results on season-varying dataset. The bolded data represent the best results.

Method OA (%) P (%) R (%) F1 (%) Kappa (%)

CD-Net 95.85 94.04 72.51 81.89 79.59
FC-EF 96.02 92.31 75.50 83.07 80.84

FC-Siam-Conc 96.25 94.05 75.84 83.96 81.87
FC-Siam-Diff 96.39 93.11 77.86 84.80 82.78

DASNet 97.50 92.26 88.09 90.12 88.69
DSIFN 97.69 94.96 86.08 90.30 89.21
STANet 97.95 88.97 94.31 91.56 90.40

SNUNet-CD/48 99.09 96.33 95.99 96.16 95.65
CLHF-Net 99.33 95.54 98.90 97.19 96.80

Specifically, CD-Net performs relatively poorly in the four metrics, scoring 15.3%
and 3.48% lower than CLHF-Net in F1 and OA scores, respectively. Compared to FC-EF,
FC-Siam-Conc and FC-Siam-Diff achieved better performance. Among these three base-
lines, FC-Siam-diff has the best performance, scoring 0.84% and 0.14% higher than FC-
Siam-conc on F1 and OA, respectively. STANet achieves F1 and Kappa scores of 91.56%
and 90.40%, respectively, which are 1.26% and 1.19% higher than DSIFN, respectively.
SNUNet-CD/48 ranked second among all evaluated metrics. On the whole, the proposed
CLHF-Net reached the highest level.

The season-varying dataset has multiple types of changes, mainly related to building
changes, road changes, vehicle changes, and land changes. To directly compare the per-
formance of the different methods, we visualized the test results. Figure 5 shows several
typical results from the qualitative analysis. The detection results of CD-Net are similar to
those of FC-EF, with many missed and false detection regions and poor CD performance.
The detection results of FC-Siam-Conc and FC-Siam-diff are better than those of FC-EF, but
there are still many missed and false detection cases, and the overall performance is not
satisfactory. It can be seen from Figure 5 that the above four methods can obtain better
detection results only when the change area is larger (Figure 5a,c). However, they do not
perform well for smaller change regions and more complex scenes (Figure 5b,d,e). The
DASNet, DSIFN, and STANet are better at detecting small change regions and obtain more
complete and accurate change regions for the detection results. However, they still have
false positives and false negatives in detecting some very small target regions or edges, as
shown in the red and blue regions in Figure 5b,d,e. The proposed CLHF-Net can better
label the change region and accurately detect the edges of the change region. It can be seen
that the change maps produced by CLHF-Net retain the real shape of changing objects with
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more complete boundaries and successfully filter out some irrelevant factors compared to
other models. CLHF-Net can correctly detect not only large changing regions (Figure 5a,c)
but also distinguish small changing regions shown in Figure 5b,e,d (narrow roads, vehicles).
Compared with other methods, the CLHF-Net has only a small number of red and blue
areas in the test result samples, which also indicates that the change map of the proposed
network is more in line with the ground reality.
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4.4.2. Evaluation for the WHU-CD Dataset

According to the data in Table 5, there is little difference in performance between the
methods with FCN as the baseline. The dual-attention-based DASNet performs slightly
better than DSIFN and STANet. This may be because the weighted double-margin con-
trastive loss (WDMC) used by DASNet can address the sample imbalance. The proposed
CLHF-Net achieves the best score in all evaluation metrics compared to other comparison
methods. Compared with the second-best SNUNet-CD/48, the proposed method obtained
0.28%, 2.24%, 2.5%, and 2.91% gains in OA, R, F1, and Kappa, respectively. This gain is
attributed to our channel multigroup feature fusion strategy, which fully considers the
different importance of channel group features and reduces the excessive attention to
irrelevant information and the neglect of important information. It also effectively takes
advantage of the attention and greatly improves the network performance. In addition, the
use of a guidance fusion strategy to fuse different layers of features in the decoding stage
further improves the network performance.

For a visual comparison, Figure 6 shows some typical CD results for the test samples of
the WHU-CD dataset. As shown in Figure 6a–e, there are many missed and false detection
regions in the test results of CD-Net and FC series methods. The performance of DASNet
is improved after the introduction of dual attention, and there are fewer missed and false
detections compared to FC series methods. However, as shown in Figure 6a–c, DASNet
is not effective in integrity detection of change regions and CD of small targets. The
performance of STANet and DSIFN is similar, but there are still missed and false detection
regions in their test results. In addition, as shown in Figure 6d,e, STANet and DSIFN still
have significant shortcomings in terms of consistency with GT. In terms of consistency
with GT, SNUNet-CD/48 and the proposed CLHF-Net obtain better visual performance.
However, as shown in Figure 6d, CLHF-Net can detect smaller change regions compared
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to the SNUNet-CD/48 method. It produces change maps with clearer and more accurate
boundaries. It is worth noting that the detection of very small change regions in Figure 6b
is still deficient for all methods. This also indicates that it is important to improve the
network’s ability to detect very small object regions in future work.

Table 5. Comparison results on WHU-CD dataset. The bolded data represent the best results.

Method OA (%) P (%) R (%) F1 (%) Kappa (%)

CD-Net 98.02 77.18 84.00 80.45 79.40
FC-EF 98.24 80.34 84.39 82.31 81.38

FC-Siam-Conc 98.17 79.16 87.08 82.93 81.97
FC-Siam-Diff 98.37 82.77 83.93 83.35 82.49

DASNet 97.50 92.26 88.09 90.12 88.69
DSIFN 98.86 88.94 87.29 88.11 87.51
STANet 99.05 93.37 86.50 89.80 89.30

SNUNet-CD/48 99.13 88.42 90.39 89.39 88.94
CLHF-Net 99.41 92.56 92.63 92.62 92.21
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4.4.3. Evaluation for the LEVIR-CD Dataset

As shown in Table 6, the performance difference between FC-EF, FC-Siam-Conc, and
FC-Siam-Diff is not significant, and the best performance is in FC-Siam-Diff, which has
OA, P, R, F1, and Kappa scores of 98.33%, 83.31%, 84.15%, 83.73%, and 82.85%, respec-
tively. Based on the dual attention DASNet, the F1 and OA scores improved by about
0.4% and 0.87% compared to the three baselines of FCN. The performance of STANet is
better than the methods mentioned above. This may be because STANet improves the
network performance by introducing attention while paying more attention to multi-scale
information. The OA, R, F1, and Kappa scores of the proposed CLHF-Net improved 0.22%,
6.39%, 3.03%, and 3.14%, respectively, over the second-best SNUNet-CD/48, and only the
score of P (89.15%) was slightly lower than its score (89.46%).

Figure 7 shows five selected sets of images of the test results. Among these detection
results, there are still significant false and missed regions in the detection results of the
CD-Net and FC-EF methods (Figure 7b–e). The buildings in the samples in Figure 7c,
and e are compactly adjacent to each other without clearer boundaries, which poses a
challenge to the CD task, so the detection results of the other methods in these two samples
are not satisfactory except for SNUNet-CD/48 and the proposed CLHF-Net. Although
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SNUNet-CD/48 can locate the change regions, the detection of the edge information is not
completely correct. In the visualization map, CLHF-Net has fewer red labeled regions, so
the proposed CLHF-Net is more accurate than other methods. For the densely distributed
change regions with small targets in Figure 7e, the CLHF-Net has less error and can
accurately detect and distinguish multiple densely distributed change regions. CLHF-Net
shows a better detection effect for the region with complex edges in Figure 7c.

Table 6. Comparison results on LEVIR-CD dataset. The bolded data represent the best results.

Method OA (%) P (%) R (%) F1 (%) Kappa (%)

CD-Net 97.80 79.59 76.53 78.03 76.88
FC-EF 98.03 80.46 81.03 80.74 79.70

FC-Siam-Conc 98.08 78.00 86.79 82.17 81.15
FC-Siam-Diff 98.33 83.31 84.15 83.73 82.85

DASNet 98.37 81.49 87.95 84.60 83.74
DSIFN 98.65 91.73 80.82 85.93 85.22
STANet 98.91 89.96 82.62 86.54 85.97

SNUNet-CD/48 99.03 89.46 86.36 87.88 87.38
CLHF-Net 99.25 89.15 92.75 90.91 90.52
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5. Discussion

In order to verify the efficiency of the different innovation modules, further experi-
ments are developed in this section to discuss the validity and effectiveness of each module
in the proposed approach.

5.1. Ablation Study

To verify the effectiveness of our proposed method and the individual modules, we
performed an ablation study. First, we added each module separately to the baseline and
finally incorporated all modules, including CSFM and IGFM. The structure of the baseline
is shown in Figure 8, including three parts of the Siamese ResNet18 backbone, feature
aggregation, and pixel classifier. The Convs-N (N denotes 1, 2, 3, 4) and the pixel classifier
in Figure 8 are the same as in the proposed CLHF-Net. It should be noted that the number
of channels of input features for each Convs-N in the baseline is not the same as that of
each Convs-N in CLHF-Net. The results of the quantitative analysis are shown in Table 7.
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Table 7. Ablation study with different model performance. The bolded data represent the best results.

Model Season-Varying WHU-CD LEVIR-CD

Baseline CSFM IGFM F1 (%) OA (%) F1 (%) OA (%) F1 (%) OA (%)
√ × × 95.11 98.93 88.64 98.92 87.42 98.79√ √ × 96.09 99.08 92.06 99.24 88.95 98.81√ × √

96.50 99.16 91.47 99.16 89.37 98.87√ √ √
97.19 99.33 92.62 99.41 90.91 99.25

Compared with other methods, the baseline method proposed in this paper has shown
better performance. On the season-varying dataset, the F1 value of the baseline method is
3.55% higher than the third ranked STANet in terms of performance and 1.05% lower than
the second ranked SNUNet-CD/48. The baseline method also performs well on the other
two datasets. This indicates that the baseline method designed in this paper outperforms
most of the comparison methods.

CSFM brings 1.39%, 3.42%, and 1.53% improvement in F1 for the baseline on the
season-varying, WHU-CD, and LEVIR-CD datasets, respectively. In addition, there were
also significant improvements in other metric values for CSFM. These results demonstrate
the effectiveness of the channel-split feature fusion strategy. The IGFM brings 0.98%, 2.83%,
and 1.95% improvement in F1 for the baseline on the three datasets, respectively. The
gains of IGFM on the season-varying and LEVIR-CD datasets were higher than those of
CSFM. This shows that the feature fusion approach and feature interaction guidance fusion
strategy we have designed are effective.

The qualitative analysis of this ablation study is shown in Figure 9. It can be seen that
all models performed well on the season-varying dataset (samples (1–3)). The proposed
CLHF-Net correctly distinguishes and detects the changed regions, and there are almost
no missed and false detections. In samples (4–6) (WHU-CD dataset), the baseline method
performs poorly and has more missed regions. The Base+CSFM method improves the
performance significantly, has few missed and false regions in these three samples, and
essentially detects the changed regions correctly. The Base+IGFM method also performs
well but has false detection. The performance of the Base+IGFM method is also good, but
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there are false detections. The performance of the CLHF-Net is better than the comparison
methods, except for a small area that was missed detection in the sample (4). In samples
(7–9) (LEVIR-CD dataset), the change scenes are more complex, which challenged these
methods. The Base and Base+CSFM methods do not perform well. The Base+IGFM method
performs second only to the CLHF-Net method. However, the Base+IGFM method still has
significant missed and false detection regions. The CLHF-Net method still performs well
on the LEVIR-CD dataset, and although there are few false detection regions, the change
regions are detected correctly.
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5.2. Effectiveness of CSFM

The proposed CSFM consists of a channel splitting branch (CSB), IFU, and feature
aggregation branch (FAB). Here, we focus on the CSB and IFU. We verify the effectiveness
of both through experiments.
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5.2.1. Analysis of Channel Splitting Branch (CSB)

The analysis of the channel splitting branch (CSB) consists of two main aspects. In the
first aspect, we analyze how many channel groups it is most efficient to split the feature map
into. In the second aspect, we analyze whether the channel splitting strategy is effective.

For the first aspect, we performed a comparison experiment. We split the feature map
into a different number of channel group features. Specifically, we set c in CSFM (shown in
Figure 2) to 16, 32, and 64, respectively. Table 8 shows the comparison results in the three
datasets. The results in Table 5 show that the network performance is best when c is 16.

Table 8. Ablation study of the value of c.

Method/c
Season-Varying WHU-CD LEVIR-CD

F1 (%) OA (%) F1 (%) OA (%) F1 (%) OA (%)

CLHF-Net /16 97.19 99.33 92.62 99.41 90.91 99.25
CLHF-Net /32 96.39 99.15 91.27 99.29 89.43 99.11
CLHF-Net /64 95.87 99.02 90.69 99.18 88.97 99.03

For the second aspect, to demonstrate the effectiveness of CSB, another experiment
was conducted. In this experiment, two input features were not processed by splitting. The
IFU and FAB operations were used for the two input features. The data in Table 9 record the
results obtained for this experiment and for CLHF-Net with CSB. It can be demonstrated
that the performance of the model without CSB is not as good as the performance of
CLHF-Net. This indicates that our SCB is effective.

Table 9. Ablation study of with/without CSB.

CLHF-Net
Season-Varying WHU-CD LEVIR-CD

F1 (%) OA (%) F1 (%) OA (%) F1 (%) OA (%)

CLHF-Net -w-CSB 97.19 99.33 92.62 99.41 90.91 99.25
CLHF-Net -w/o-CSB 96.26 99.12 91.22 99.22 89.16 99.01

5.2.2. Analysis of IFU

To verify the contribution of IFU to CSB and the whole network, we designed the
structure shown in Figure 10b to compare with our proposed IFU. The structure is shown
in Figure 10b, which we named NIFU. It can be seen, in NIFU, we apply the element-wise
multiplication operation to the CA map and input of CA, which is different from IFU. This
design is to demonstrate that our adoption of the interactive fusion strategy is effective.
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From Table 10, we can see that the F1 and OA scores of CLHF-Net with IFU are
improved compared to CLHF-Net with NIFU. In the season-varying dataset, F1 and OA
are improved by 0.96% and 0.21%, respectively. In the WHU-CD dataset, F1 and OA are
improved by 1.19% and 0.11%, respectively. In the LEVIR-CD dataset, F1 and OA are



Symmetry 2022, 14, 1138 18 of 23

improved by 1.53% and 0.14%, respectively. This demonstrated that the IFU we designed
was effective.

Table 10. Ablation study of with/without IFU.

CLHF-Net
Season-Varying WHU-CD LEVIR-CD

F1 (%) OA (%) F1 (%) OA (%) F1 (%) OA (%)

CLHF-Net -w-IFU 97.19 99.33 92.62 99.41 90.91 99.25
CLHF-Net -w-NIFU 96.23 99.12 91.43 99.30 89.38 99.11

5.3. Effectiveness of IGFM

To evaluate the validity of IGFM, we designed a comparison module. Specifically, the
comparison module is almost as similar in structure to IGFM, the only difference is that
the comparison module no longer uses the interaction guidance strategy. We named the
comparison module FFM. In FFM, we apply the channel-wise multiplication operation to
the map output by the sigmoid function and the original input. Table 11 records the results
of CLHF-Net with IGFM and CLHF-Net with FFM for the three datasets.

Table 11. Ablation study of with/without IGFM.

CLHF-Net
Season-Varying WHU-CD LEVIR-CD

F1 (%) OA (%) F1 (%) OA (%) F1 (%) OA (%)

CLHF-Net -w-IGFM 97.19 99.33 92.62 99.41 90.91 99.25
CLHF-Net -w-FFM 96.46 99.17 91.35 99.29 89.26 99.08

As shown in Table 11, the IGFM we designed has a significant improvement compared
to the FFM in the three datasets. In the season-varying, WHU-CD, and LEVIR-CD datasets,
F1 improved by 0.73%, 1.27%, and 1.65%, respectively. In addition, OA gained 0.16%, 0.12%,
6.92%, and 0.17%, respectively. This interaction guidance strategy is helpful for network
performance improvement in different datasets.

5.4. Efficiency Analysis of the Proposed Network

To analyze the efficiency of the different methods with respect to the number of param-
eters and training speed under the same experimental conditions (hardware computing
power), we compared the proposed method with other methods. The quantitative indica-
tors performed for the evaluation were the number of parameters (take M as the unit) and
the training time for one epoch (take min/epoch as the unit). Figure 11 shows the efficiency
of all methods.

As can be seen in Figure 11, DASNet has the most model parameters and CD-Net
consumes the longest time to complete a training epoch. Although CD-Net has the least
number of parameters, it has a significant disadvantage at the training speed, which makes
it limited in practical applications. FC series methods have fewer parameters, but they
have no significant advantage in training speed. In addition, as we can see in the previous
analysis of the CD results, they are as inefficient as other methods (only better than CD-
Net). DSIFN has only fewer parameters than DASNet, but it is better than STANet and
SNUNet-CD/48 in terms of training speed. From the results in Section 3, it performs well
in the CD task. The number of parameters of STANet and SNUNet-CD/48 is less than the
proposed method, but the training time is more than the proposed approach. The training
speed of the CLHF-Net is the fastest, and the time to train one epoch is reduced by 12.30%
compared to SNUNet-CD/48. The above facts show that the proposed method has a good
trade-off between the best detection results and efficiency.

While the proposed CLHF-Net outperforms other methods and has high efficiency, it
has some potential limitations. As can be seen in Figure 11, the computational complexity
of CLHF-Net is relatively high with a parameter count of 30.24 M. This is undesirable
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when equipment resources are limited and may be discouraging for practical applica-
tions. Therefore, in future work, it is hoped that the size of the network model can be
reduced by employing model compression techniques such as pruning and knowledge
distillation [60,61], making the network lightweight.
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6. Conclusions

In this article, a novel convolutional neural network (CLHF-Net) with symmetric
structure for CD of RS images is proposed. To research the importance of different channel
group features, we designed CSFM, which consists of three parts, namely CSB, IFU, and
FAB. The CSFM weights and fuses channel features of different importance to produce
the higher quality difference feature maps. Considering that shallow and deep features
have different semantic information, a feature interaction guidance fusion strategy is used
in order to fuse features of different layers well. This strategy is to introduce the deep
semantic information into the shallow features and the detailed information of the shallow
features into the deep features. This eliminates the redundant spatial information in the
shallow features, while compensating for the detailed information in the deep features.
Compared with existing SOTA methods, the proposed CLHF-Net achieves superior perfor-
mance on OA, F1, and Kappa scores of three benchmark datasets, which indicates that it
achieves a more comprehensive performance. From the qualitative analysis, more pixels are
accurately detected in the change maps obtained by CLHF-Net, while there are relatively
fewer unpredicted changes and false positives. The experimental results demonstrate the
effectiveness and generalization ability of CLHF-Net. The best performance in detecting
large change regions and small change regions proves the effectiveness and robustness of
CLHF-Net.

However, it should be noted that, as shown in Figure 11, although the proposed
model has an advantage in terms of training speed, it cannot be ignored that the method
proposed in this paper is not superior in terms of number of parameters, which reaches
30.24 M. This has potential limitations for its practical application in the future. Therefore,
in future work, we hope that the network can be made lightweight by using some model
compression techniques.
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