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Abstract: Special polynomials play an important role in several subjects of mathematics, engineering,
and theoretical physics. Many problems arising in mathematics, engineering, and mathematical
physics are framed in terms of differential equations. In this paper, we introduce the family of the
Lagrange-based hypergeometric Bernoulli polynomials via the generating function method. We
state some algebraic and differential properties for this family of extensions of the Lagrange-based
Bernoulli polynomials, as well as a matrix-inversion formula involving these polynomials. Moreover,
a generating relation involving the Stirling numbers of the second kind was derived. In fact, future
investigations in this subject could be addressed for the potential applications of these polynomials
in the aforementioned disciplines.
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1. Introduction

As it is well-known, diverse differential equations can only be treated by utilizing
families of special polynomials that provide novel viewpoints of mathematical analysis.
Moreover, these special polynomials yield the derivation of other useful identities in a fairly
straightforward manner and allow the consideration of new families of special polynomials.
In addition, it is important that any polynomial has explicit formulas, symmetric identities,
summation formulas, and relations with other polynomials.

The Lagrange polynomials g(α1,...,αr)
n (x1, . . . , xr) in the variables x1, . . . , xr and complex

parameters αj (j = 1, . . . , r) are defined by means of the following generating function:

r

∏
j=1

(
1− xjz

)−αj =
∞

∑
n=0

g(α1,...,αr)
n (x1, . . . , xr)zn, (1)

where |z| < min{|x1|−1, . . . , |xr|−1} and 1αj := 1 for j = 1, . . . , r. This class of multivari-
ate polynomials (also known as the class of Chan–Chyan–Srivastava polynomials) was
introduced in [1].

It is clear that the Lagrange polynomials g(α1,...,αr)
n (x1, . . . , xr) provide a natural exten-

sion of the class of bivariate Lagrange polynomials:

(1− xz)−α(1− yz)−β =
∞

∑
n=0

g(α,β)
n (x, y)zn, |z| < min

{
|x|−1, |y|−1

}
,

where α and β are complex numbers.
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As is well known, these bivariate polynomials appear in some statistics problems (cf.,
e.g., [2] (p. 267), and (Chs. 1,7,8)) in [3] and can be expressed as follows:

g(α,β)
n (x, y) =

{
(y− x)nP(−α−n,−β−n)

n

(
x+y
x−y

)
, x 6= y,

xnP(α+β−1,−β−n)
n (1), x = y,

(2)

where P(α,β)
n (x) is nth classical Jacobi polynomial given by (cf., (Equation (4.3.2)) in [4]).

P(α,β)
n (x) :=

n

∑
k=0

(
n + α

k

)(
n + β

n− k

)(
x + 1

2

)k( x− 1
2

)n−k
.

The seminal idea underlaying recent studies about special polynomials related to
Lagrange polynomials (1) has been to make appropriate modifications for the generating
functions associated with these polynomials by mixing generating functions that follow
directly from a multiparameter and multivariate extension of Carlitz theorem (cf., (Ch. 7,
Sec. 7.6)) in [5] and obtaining similar algebraic and/or differential properties for them (see,
for instance, [6–9]).

Following the same methodology, one can consider for a fixed natural number m the
hypergeometric Bernoulli polynomials (also called generalized Bernoulli polynomials of
level m) defined by means of the following generating function [5,8,10–13]:

zmexz

ez −∑m−1
l=0

zl

l!

=
∞

∑
n=0

B[m−1]
n (x)

zn

n!
, |z| < 2π, (3)

and define the Lagrange-based hypergeometric Bernoulli polynomials in variables x, x1, . . . , xr,
and complex parameters αj (j = 1, . . . , r) as follows:(

r

∏
j=1

(
1− xjz

)−αj

)(
zmexz

ez −∑m−1
l=0

zl

l!

)
=

∞

∑
n=0
B[m−1,α1,...,αr ]

n (x|x1, . . . , xr)zn, (4)

where |z| < min{2π, |x1|−1, . . . , |xr|−1} and 1αj := 1 for j = 1, . . . , r.

It is clear that this new class of special polynomials generalizes to the families of
Lagrange-based Bernoulli polynomials (cf., (Equation (7))) in [9] and the hypergeomet-
ric Bernoulli polynomials and, hence, to the classical Bernoulli polynomials. Further-
more, if T (α1,...,αr ;α)

n,λ,k (x1 . . . , xr; x, y) and T (α1,...,αr)
n,β,k (x|x1, . . . , xr; a, b) denote, respectively, the

Lagrange-based Apostol type Hermite (cf., (Equation (2.1))) in [14] and the Lagrange-based
unified Apostol-type polynomials (cf., (Equation (2.1)), in [15] given by the following:

r

∏
j=1

(
1− xjz

)−αj

(
2kz

λez + (−1)k+1

)α

ext+yt2
=

∞

∑
n=0
T (α1,...,αr ;α)

n,λ,k (x1 . . . , xr; x, y)zn, and

(
21−kzk

βbez − ab

)
exz

r

∏
j=1

(
1− xjzj

)−αj
=

∞

∑
n=0

T(α1,...,αr)
n,β,k (x|x1, . . . xr; a, b)zn.

then it is not difficult to see from (4) that the following is the case.

B[0,α1,...,αr ]
n (x|x1, . . . , xr) = T (α1,...,αr ;1)

n,1,0 (x1 . . . xr; x, 0),

and
B[0,α1,α2]

n (x|x1, x2) = T
(α1,α2)

n,β,1 (x|x1, x2; a, 0).
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Inspired by the recent articles [13–17,20] in which the authors introduce the (p, q)-
Hermite and (p, q)-Bernstein polynomials, the generalized Lagrange-based Apostol-type
polynomials, the generalized Lagrange-based Apostol type Hermite polynomials, and
Laguerre-based Hermite-Bernoulli polynomials associated with bilateral series and studied
several analytic/numerical aspects of generalized Bernoulli polynomials of level m and the
generalized mixed type Bernoulli–Gegenbauer polynomials, respectively, in the present
article, we focus our attention on some algebraic and differential properties of polynomials
B[m−1,α1,...,αr ]

n (x|x1, . . . , xr) and its corresponding matrix-inversion formula.
Moreover, it is worthy to mention that the use of the Cauchy product of a power

series is the technique behind these formulations. This approach is not a novelty; however,
it has been useful for generating new families of special polynomials (satisfying or not
Appell-type conditions), even those explored very recently. In this regard, we refer the
interested reader to [17,18] and the references cited therein for a detailed exposition about
some very recent trends in this broad field.

The paper is organized as follows. Section 2 contains the basic background about
the Lagrange polynomials and the hypergeometric Bernoulli polynomials and some other
auxiliary results that will be used throughout the paper. In Section 3, we prove some rele-
vant algebraic and differential properties of the Lagrange-based hypergeometric Bernoulli
polynomials (4) (Theorem 1), as well as their relation with the Stirling numbers of second
kind (Theorem 2). Finally, we derive matrix-representation formulas for these polynomials
(Theorems 3 and 4)

2. Background and Previous Results

Throughout this paper, let N, N0, R+, and C denote, respectively, the set of all natural
numbers, the set of all nonnegative integers, the set of all positive real numbers, and the
set of all complex numbers, and Pn denotes the linear space of polynomials with real
coefficients and a degree less than or equal to n. For λ ∈ C and k ∈ N0, we use notations
(λ)k and λ(n) for the rising and falling factorials, respectively:

(λ)0 = 1, (λ)k = λ(λ + 1) · · · (λ + k− 1),

and the following.

λ(0) = 1, λ(k) = λ(λ− 1) · · · (λ− k + 1).

Moreover, as usual, the numbers given by the following:

B[m−1]
n := B[m−1]

n (0), for all n ≥ 0.

denote the hypergeometric Bernoulli numbers (or generalized Bernoulli numbers of level
m ∈ N). It is clear that if m = 1 in (3) then we recover the definition of the classical Bernoulli
polynomials Bn(x), and classical Bernoulli numbers, respectively, i.e., Bn(x) = B[0]

n (x), and
Bn = B[0]

n , respectively, for all n ≥ 0.
It is worth noticing here that there exist many families of special polynomials (both

univariate and multivariate) generalizing the classical Bernoulli polynomials: for instance,
those one drawing on the formalism and techniques of exponential operators or unified
versions ((usually including Apostol-type generalizations and their further reductions), we
refer the interested reader to [19,21,22] for more details).

Clearly, (1) yields the following explicit representation (cf., ( [1], Equation (6))).

g(α1,...,αr)
n (x1, . . . , xr) = ∑

k1+···+kr=n

(
α1 + k1 − 1

k1

)
· · ·
(

αr + kr − 1
kr

)
xk1

1 · · · x
kr
r .
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Hence, using
(

αj + k j − 1
k j

)
=

(αj)kj

k j!
, for j = 1, . . . , r, we obtain the following equiva-

lent identity.

g(α1,...,αr)
n (x1, . . . , xr) = ∑

k1+···+kr=n
(α1)k1 · · · (αr)kr

xk1
1

k1!
· · · xkr

r
kr!

, (5)

g(0,...,0)
n (x1, . . . , xr) = ∑

k1+···+kr=n

xk1
1

k1!
· · · xkr

r
kr!

. (6)

Moreover, from (4), it is clear that the following is the case.

B[m−1,α1,...,αr ]
n (x|x1, . . . , xr) =

n

∑
k=0

B[m−1]
k (x)

k!
g(α1,...,αr)

n−k (x1, . . . , xr) (7)

=
n

∑
k=0

g(α1,...,αr)
k (x1, . . . , xr)

B[m−1]
n−k (x)
(n− k)!

.

Thus, if we take α1 = · · · = αr = 0 and combine (4), (3), and (6), we have the following:

B[m−1,0,...,0]
n (x|x1, . . . , xr) =

B[m−1]
n (x)

n!

=
n

∑
k=0

g(0,...,0)
k (x1, . . . , xr)

B[m−1]
n−k (x)
(n− k)!

=
n

∑
k=0

∑
k1+···+kr=n

xk1
1

k1!
· · · xkr

r
kr!

B[m−1]
n−k (x)
(n− k)!

,

for any n ≥ 0.

Moreover, from (5) and (7), we obtain that if x = 0, then (4) induces the following
multivariate polynomials.

B[m−1,α1,...,αr ]
n (x1, . . . , xr) := B[m−1,α1,...,αr ]

n (0|x1, . . . , xr), n ≥ 0. (8)

Thus, the substitution x1 = · · · = xr = y, with y 6= 0 into (8) yields the following
univariate polynomials.

B[m−1,α1,...,αr ]
n (y) := B[m−1,α1,...,αr ]

n (y, . . . , y), n ≥ 0. (9)

In this case,
r

∏
j=1

(1− xjz)
−αj =

r

∏
j=1

(1− yz)−αj = (1− yz)−(α1+···+αr), and from (4), we

can deduce the following (see also [1] (Equation (36))).

g(α1,...,αr)
n (y, . . . , y) =


(α1+···+αr)n

n! yn, α1 + · · ·+ αr 6= 0, n ≥ 0,
0, α1 + · · ·+ αr = 0, n ≥ 1,
1, α1 + · · ·+ αr = 0, n = 0.

(10)

Notice the following.

g(α1,...,αr)
n (0, . . . , 0) = lim

y→0
g(α1,...,αr)

n (y, . . . , y) = lim
y→0

(α1 + · · ·+ αr)n

n!
yn =

{
1, if n = 0,
0, if n ≥ 1.

Consequently, (9) takes the following form:
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B[m−1,α1,...,αr ]
n (y) =

n

∑
k=0

(α1 + · · ·+ αr)k
k!

B[m−1]
n−k

(n− k)!
yk, (11)

whenever n ≥ 0 and α1 + · · ·+ αr 6= 0.

On the other hand, for x1 = · · · = xr = y, with y 6= 0, the polynomials B[m−1,α1,...,αr ]
n (y)

can be described by means of the following generating function:

(1− yz)−(α1+···+αr)

(
zm

ez −∑m−1
l=0

zl

l!

)
=

∞

∑
n=0
B[m−1,α1,...,αr ]

n (y)zn, (12)

where |z| < min{2π, |y|−1} and 1αj := 1 for j = 1, . . . , r. Now, if we assume that α1 + · · ·+
αr = 0, then (12) becomes the following:

zm

ez −∑m−1
l=0

zl

l!

=
∞

∑
n=0
B[m−1,α1,...,αr ]

n (y)zn,

and from this last equality, it is easily deducible that the following is the case.

B[m−1,α1,...,αr ]
n (y) =

B[m−1]
n
n!

, n ≥ 0, y 6= 0. (13)

Then, the following is the case.

B[m−1,α1,...,αr ]
n (0) = lim

y→0
B[m−1,α1,...,αr ]

n (y) =
B[m−1]

n
n!

, n ≥ 0. (14)

Finally, from (11), (13), and (14), we conclude that for each n ≥ 0, we have the
following.

B[m−1,α1,...,αr ]
n (y) =

n

∑
k=0

(α1 + · · ·+ αr)k
k!

B[m−1]
n−k

(n− k)!
yk. (15)

It is clear that for n ∈ N, the univariate polynomials in (9) are different from the
hypergeometric Bernoulli polynomials (3) (cf., e.g., [7,8,11–13]). Furthermore, it is not
difficult to see from summation Formula (11) that it is possible to find explicit expressions
for polynomials B[m−1,α1,...,αr ]

n (y) when α1 + · · ·+ αr 6= 0. Indeed, the first ones are given
by the following.

B[m−1,α1,...,αr ]
0 (y) = m!,

B[m−1,α1,...,αr ]
1 (y) = m!

(
(α1 + · · ·+ αr)y−

1
m + 1

)
= B[m−1]

1 ((α1 + · · ·+ αr)y),

B[m−1,α1,...,αr ]
2 (y) = m!

(
(α1 + · · ·+ αr)(1 + α1 + · · ·+ αr)

2
y2 − (α1 + · · ·+ αr)

m + 1
y

+
2

(m + 1)2(m + 2)

)
.

3. The Polynomials B[m−1,α1,...,αr ]
n (x|x1, . . . , XR) and Their Properties

Now, we can proceed to investigate some relevant properties of the Lagrange-based
hypergeometric Bernoulli polynomials.
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Theorem 1. For a fixed m ∈ N, let B[m−1,α1,...,αr ]
n (x|x1, . . . , xr) be the Lagrange-based hypergeo-

metric Bernoulli polynomials in the variables x, x1, . . . , xr, and parameters αj ∈ C (j = 1, . . . , r).
Then, the following statements hold:

(a) Summation formulas. For every n ≥ 0, we have the following.

B[m−1,α1,...,αr ]
n (x + y|x1, . . . , xr) =

n

∑
k=0
B[m−1,α1,...,αr ]

n−k (x|x1, . . . , xr)
yk

k!

=
n

∑
k=0
B[m−1,α1,...,αr ]

k (y|x1, . . . , xr)
xn−k

(n− k)!
.

In particular, the following obtains.

B[m−1,α1,...,αr ]
n (x|x1, . . . , xr) =

n

∑
k=0
B[m−1,α1,...,αr ]

k (x1, . . . , xr)
xn−k

(n− k)!
.

(b) Differential relations (Appell-type polynomial sequences). For n, j ≥ 0 with
0 ≤ j ≤ n and any nonzero x1, . . . , xr, we have the following.

∂j

∂xjB
[m−1,α1,...,αr ]
n (x|x1, . . . , xr) = B[m−1,α1,...,αr ]

n−j (x|x1, . . . , xr). (16)

(c) Representation formulas. If at least an αj is nonzero, j = 1 . . . , r, then the Lagrange

polynomials g(α1,...,αr)
n (x1, . . . , xr) can be expressed in terms of multivariate polynomials (8)

as follows.

g(α1,...,αr)
n (x1, . . . , xr) =

n

∑
k=0

B[m−1,α1,...,αr ]
n−k (x1, . . . , xr)

(n− k)!(m + k)!
. (17)

(d) Inversion formula. If α1 + · · ·+ αr 6= 0, then the following is the case.

(α1 + · · ·+ αr)n

n!
yn =

n

∑
k=0

B[m−1,α1,...,αr ]
n−k (y)

(n− k)!(m + k)!
, n ≥ 0. (18)

(e) Integral formulas. For any nonzero x1, . . . , xr, we have the following.

∫ y1

y0

B[m−1,α1,...,αr ]
n (x|x1, . . . , xr) dx = B[m−1,α1,...,αr ]

n+1 (y1|x1, . . . , xr)−B[m−1,α1,...,αr ]
n+1 (y0|x1, . . . , xr)

=
n+1

∑
k=0

B[m−1]
k (y1)− B[m−1]

k (y0)

k!

g(α1,...,αr)
n+1−k (x1, . . . , xr).

In particular, we have the following.

B[m−1,α1,...,αr ]
n (x|x1, . . . , xr) =

∫ x

0
B[m−1,α1,...,αr ]

n−1 (t|x1, . . . , xr) dt + B[m−1,α1,...,αr ]
n (x1, . . . , xr).

Proof. Since (a), (b), and (e) are straightforward consequences of (4) and a suitable use of
the Fundamental Theorem of Calculus, respectively, we shall omit their proof. Thus, we
focus our efforts on the proof of (c) and (d).
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Assume that at least an αj is nonzero, j = 1 . . . , r. By (4), (8), and direct calculations,
we have the following.

zm
r

∏
j=1

(
1− xjz

)−αj =

[
ez −

m−1

∑
l=0

zl

l!

][
∞

∑
n=0
B[m−1,α1,...,αr ]

n−k (x1, . . . , xr)zn

]
,

=

[
∞

∑
n=0

zn+m

(n + m)!

][
∞

∑
n=0
B[m−1,α1,...,αr ]

n−k (x1, . . . , xr)zn

]
.

Or equivalently, we also have the following.

zm
r

∏
j=1

(
1− xjz

)−αj =
∞

∑
n=0

 n

∑
k=0

B[m−1,α1,...,αr ]
n−k (x1, . . . , xr)

(n− k)!(m + k)!

zn+m. (19)

Now, from (1), we have the following.

zm
r

∏
j=1

(
1− xjz

)−αj =
∞

∑
n=0

g(α1,...,αr)
n (x1, . . . , xr)zn+m. (20)

Hence, comparing the coefficients of zn+m on the right hand side of (19) and (20), we
obtain (17).

Finally, assume that α1 + · · · + αr 6= 0 and take x1 = · · · = xr = y. Then, the
substitution of (10) into (17) and the use of (9) yield (18).

The combination of (2) and (17) provides the following connection formula between
Lagrange-based hypergeometric Bernoulli polynomials and Jacobi polynomials:

n

∑
k=0

B[m−1,α,β]
n−k (x, y)

(n− k)!(m + k)!
=

{
(y− x)nP(−α−n,−β−n)

n

(
x+y
x−y

)
, x 6= y,

xnP(α+β−1,−β−n)
n (1), x = y,

where P(α,β)
n (x) is nth classical Jacobi polynomial.

Moreover, notice that the inversion formula (18) immediately implies the following.

Proposition 1. If α1 + · · · + αr 6= 0, then for a fixed m ∈ N and each n ≥ 0, the set{
B[m−1,α1,...,αr ]

0 (y),B[m−1,α1,...,αr ]
1 (y), . . . ,B[m−1,α1,...,αr ]

n (y)
}

is a basis for Pn.

With respect to the study of zeros of the nth Lagrange-based hypergeometric Bernoulli
polynomial B[m−1,α1,...,αr ]

n (x|x1, . . . , xr) when x1, . . . , xr are fixed, relatively little is known.
For instance, it is possible to use the Hurwitz theorem (see (Chapter I, p. 22)) in [4]
for obtaining the fact that the complex zeros of B[m−1,α1,...,αr ]

n (x|x1, . . . , xr) must move
further away from the origin as n proceeds to infinity, because the functions to which they
converge only have real zeros. In Figure 1, the plots for the zeros of B[m−1,α1,...,αr ]

11 (y) and

B[m−1,α1,...,αr ]
50 (y) are shown for prescribed values of m and α1, . . . , αr.
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(a)

(b)

Figure 1. Plot for the zeros of B[m−1,α1,α2,α3,α4]
11 (y) (a) and plot for the zeros of B[m−1,α1,...,αr ]

50 (y) (b),
when m = 6 and α1 = −1/4, α2 = 1, α3 = 2, α4 = 3.

There is another relation of Lagrange-based hypergeometric Bernoulli polynomials
with Lagrange polynomials and hypergeometric Bernoulli numbers in terms of Stirling
numbers of the second kind S(n, k), for which its generating function is given by the
following.

(ez − 1)k

k!
=

∞

∑
n=k

S(n, k)
zn

n!
.

Theorem 2. For a fixed m ∈ N and n ≥ 0, we have the following.

B[m−1,α1,...,αr ]
n (x|x1, . . . , xr) =

n

∑
j=0

n−j

∑
s=0

s

∑
k=0

g(α1,...,αr)
j (x1, . . . , xr)S(n, k)

x(k)

s!

B[m−1]
n−s−j

(n− s− j)!
. (21)
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Proof. Using (1), (4), and the Abel binomial theorem, we obtain the following.

∞

∑
n=0
B[m−1,α1,...,αr ]

n (x|x1, . . . , xr)zn =

 r

∏
j=1

(
1− xjz

)−αj

( ∞

∑
n=0

B[m−1]
n

zn

n!

)
((ez − 1) + 1)x

=

 r

∏
j=1

(
1− xjz

)−αj

( ∞

∑
n=0

B[m−1]
n

zn

n!

)(
∞

∑
n=0

(
x
n

)
n!

∞

∑
n=k

S(n, k)
zn

n!

)

=

 r

∏
j=1

(
1− xjz

)−αj

( ∞

∑
n=0

B[m−1]
n

zn

n!

)(
∞

∑
n=0

n

∑
k=0

S(n, k)x(k)
zn

n!

)

=

 ∞

∑
n=0

n

∑
j=0

n−j

∑
s=0

s

∑
k=0

g(α1,...,αr)
j (x1, . . . , xr)S(n, k)

x(k)

s!

B[m−1]
n−s−j

(n− s− j)!


Therefore, comparing the coefficients on both sides, we obtain (21).

When α1 = · · · = αr = 0, expression (21) reduces to a relation of hypergeometric
Bernoulli polynomials with their numbers in terms of Stirling numbers of the second kind
(see, e.g., (Proposition 5)) in [10].

The results in [13,17] allow us to obtain a matrix form of B[m−1,α1,...,αr ]
s (x|x1, . . . , xr),

s = 0, 1, . . . , n, as follows.

Part (a) of Theorem 1 yields the following:

B[m−1,α1,...,αr ]
s (x|x1, . . . , xr) = G[m−1,α1,...,αr ]

r (x1, . . . , xr)B[m−1](x), (22)

where the following is the case:

G[m−1,α1,...,αr ]
s (x1, . . . , xr) =

[
g[m−1,α1,...,αr ]

s (x1, . . . , xr) · · · g[m−1,α1,...,αr ]
0 (x1, . . . , xr) · · · 0

]
,

and the null entries of matrix G[m−1,α1,...,αr ]
s (x1, . . . , xr) appear (n− r)-times, and the matrix

B[m−1](x) is given by B[m−1](x) =
(

B[m−1]
0 (x) B[m−1]

1 (x) · · · B[m−1]
r (x)

r! · · · B[m−1]
n (x)

n!

)T
.

Then, by (22), the matrix of the following:

B[m−1,α1,...,αr ](x|x1, . . . , xr) =
(
B[m−1,α1,...,αr ]

0 (x|x1, . . . , xr) · · · B[m−1,α1,...,αr ]
n (x|x1, . . . , xr)

)T
,

can be expressed as follows:

B[m−1,α1,...,αr ](x|x1, . . . , xr) = G[m−1,α1,...,αr ](x1, . . . , xr)B[m−1](x), (23)

where G[m−1,α1,...,αr ](x1, . . . , xr) is the following (n + 1)× (n + 1) matrix.

G[m−1,α1,...,αr ](x1, . . . , xr) =



g[m−1,α1,...,αr ]
0 (x1, . . . , xr) 0 · · · 0

g[m−1,α1,...,αr ]
1 (x1, . . . , xr) g[m−1,α1,...,αr ]

0 (x1, . . . , xr) · · · 0

g[m−1,α1,...,αr ]
2 (x1, . . . , xr) g[m−1,α1,...,αr ]

1 (x1, . . . , xr) · · · 0
...

...
. . .

...
g[m−1,α1,...,αr ]

n (x1, . . . , xr) g[m−1,α1,...,αr ]
n−1 (x1, . . . , xr) · · · g[m−1,α1,...,αr ]

0 (x1, . . . , xr)

.

The following theorem summarizes the ideas described above.
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Theorem 3. For a fixed m ∈ N, let
{
B[m−1,α1,...,αr ]

n (x|x1, . . . , xr)
}

n≥0
be the sequence of Lagrange-

based hypergeometric Bernoulli polynomials in variables x, x1, . . . , xr and parameters α1, . . . , αr ∈
C. Then, matrix B[m−1,α1,...,αr ](x|x1, . . . , xr) has the following matrix form.

B[m−1,α1,...,αr ](x|x1, . . . , xr) = G[m−1,α1,...,αr ](x1, . . . , xr)B[m−1](x).

Remark 1. Note that according to (22), the rows of matrix G[m−1,α1,...,αr ](x1, . . . , xr) are precisely the
matrices G[m−1,α1,...,αr ]

s (x1, . . . , xr) for s = 0, . . . , n. Furthermore, matrix G[m−1,α1,...,αr ](x1, . . . , xr)
is an (n + 1)× (n + 1) lower triangular matrix for eachx1, . . . , xr ∈ R \ {0} such that the following
is the case.

det
(

G[m−1,α1,...,αr ](x1, . . . , xr)
)
=
(

g[m−1,α1,...,αr ]
0 (x1, . . . , xr)

)n+1
= 1.

Therefore, G[m−1,α1,...,αr ](x1, . . . , xr) is an invertible matrix for each x1, . . . , xr ∈ R \ {0}.

Remark 2. Using (Equation (8)) in [13], we can deduce the following:

B[m−1](x) = M[m−1]T(x)

=



B[m−1]
0
n! 0 0 0 · · · 0

B[m−1]
1

(n−1)!
B[m−1]

0
n! 0 0 · · · 0

B[m−1]
2

2!(n−2)!
B[m−1]

1
(n−1)!

B[m−1]
0
n! 0 · · · 0

B[m−1]
3

3!(n−3)!
B[m−1]

2
2!(n−2)!

B[m−1]
1

(n−1)!
B[m−1]

0
n! · · · 0

...
...

...
...

. . .
...

B[m−1]
n
n!

B[m−1]
n−1

(n−1)!
B[m−1]

n−2
2!(n−2)!

B[m−1]
n−3

3!(n−3)! · · · B[m−1]
0
n!


T(x), (24)

where T(x) =
(
1 x · · · xr · · · xn)T . Again, matrix M[m−1] is an (n + 1)× (n + 1) has

a lower triangular matrix satisfying the following.

det
(

M[m−1]
)
=

(
B[m−1]

0
n!

)n+1

=
1

(n!)n+1 .

Hence, M[m−1] is an invertible matrix.

Finally, on the account of Theorem 3 and Remark 2, we can deduce the following
result.

Theorem 4. For fixed m ∈ N and x1, . . . , xr ∈ R \ {0}, let
{
B[m−1,α1,...,αr ]

n (x|x1, . . . , xr)
}

n≥0
be

the sequence of Lagrange-based hypergeometric Bernoulli polynomials in the variable x, parameters
α1, . . . , αr ∈ C. Then, the following matrix-inversion formula holds:

T(x) = N[m−1]Q[m−1]B[m−1,α1,...,αr ](x|x1, . . . , xr),

where Q[m−1] and N[m−1] are the inverse matrices of G[m−1,α1,...,αr ](x1, . . . , xr) and M[m−1],
respectively.

4. Concluding Remarks

The main goal of our research has been to introduce Lagrange-based hypergeometric
Bernoulli polynomials and to investigate some algebraic and analytic properties of these
polynomials. We derived summation formulas, differential relations, and integral formulas
for them. In addition, an interesting matrix-inversion formula (cf. Theorems 3 and 4) and a
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generating relation involving the Stirling numbers of the second kind have been derived
for these polynomials (see Theorem 2).

In our study, we have obtained some formulas for some classical special numbers and
recovered some well-known identities in the literature (Theorems 1 and 2). We have used
the techniques of the theory of generating functions, mainly variants of Bernoulli generating
functions into our investigation of some new identities for some special numbers. However,
there is a different approach for the study of generating functions based on the use of the
theory of zeta functions, which provides a new description of special polynomials and
special numbers in terms of special values of certain zeta functions such as the Riemann
zeta function (cf. [23–25] where this approach is adopted). To the best of our knowledge, a
unified approach to the study of special numbers remains a work in progress (cf., e.g., [21]
or more recently, [22], and references thereof).

We would also like to mention that if we consider the following broad class of genera-
ting functions:

G(x1, x2, . . . , xm, z) := θ(z) exp

(
−

m

∑
k=1

xkzk

)
, (25)

where θ(z) is a function having an explicit Laurent expansion near z = 0, then (4) becomes
a special case of (25).

Hence, some generalizations of this research might be considered probably in the
future. Finally, the results of this article might potentially be used in mathematics, in
mathematical physics, and/or in engineering.
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