
����������
�������

Citation: Rupnik Poklukar, D.;

Žerovnik, J. Double Roman

Domination in Generalized Petersen

Graphs P(ck, k). Symmetry 2022, 14,

1121. https://doi.org/10.3390/

sym14061121

Academic Editor: Manuel Lafond

Received: 24 April 2022

Accepted: 25 May 2022

Published: 29 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Double Roman Domination in Generalized Petersen
Graphs P(ck, k)

Darja Rupnik Poklukar 1 and Janez Žerovnik 1,2,*

1 Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia;
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Abstract: A double Roman dominating function on a graph G = (V, E) is a function
f : V → {0, 1, 2, 3}, satisfying the condition that every vertex u for which f (u) = 1 is adjacent
to at least one vertex assigned 2 or 3, and every vertex u with f (u) = 0 is adjacent to at least one ver-
tex assigned 3 or at least two vertices assigned 2. The weight of f equals the sum w( f ) = ∑v∈V f (v).
The minimum weight of a double Roman dominating function of G is called the double Roman domi-
nation number γdR(G) of a graph G. We obtain tight bounds and in some cases closed expressions for
the double Roman domination number of generalized Petersen graphs P(ck, k). In short, we prove
that γdR(P(ck, k)) = 3

2 ck + ε, where lim
c→∞,k→∞

ε

ck
= 0.

Keywords: double Roman domination; generalized Petersen graph; graph cover

1. Introduction

Double Roman domination of graphs [1] is motivated by many applications at the
present time and in the past [2]. Initially, modern studies of Roman domination [3,4] were
inspired by a real problem from the 4th century, when the Old Roman Emperor Constantine
was faced with a problem of how to defend his empire with a limited number of armies.
The decision was taken to allocate two types of military units to the empire provinces.
Some units were able to move quickly from one province to another to respond to any
attack. The second type were the local militia. These armies were permanently positioned
in their home province. Emperor Constantine ordered that no legion should ever leave
the province to defend the second, if in this case the first province remains undefended.
Consequently, there were two armies at some provinces, and at some other provinces
only local militia units were stationed. Some provinces had no permanent presence of
an army, and were guarded by the armies from neighbouring provinces. Although the
classical problem is still of interest in military operations research [5], it also can be used
to model and solve the problems where a time-critical service needs to be provided with
some reserve. For example, a first aid emergency station should never send all its crew to
answer an emergency call.

Following the reasoning above, understanding the double Roman domination problem
and its variants may be crucial for positioning the fire stations, first aid stations, etc. at
optimal positions. This may greatly improve the public services at no extra cost. A natural
generalization of double Roman domination is the k-Roman domination [6]. In case of
emergency services, k teams are planned to be quickly available in case of severe emergency
calls. The special case, k = 2, is called double Roman domination.

The decision version of the double Roman domination problem (MIN-DOUBLE-RDF)
is known to be NP-complete, also in cases when we are restricted to some special classes of
graphs, for example, to planar graphs, bipartite graphs, chordal (bipartite) graphs, circle
graphs, and to undirected path graphs [7–9]. Due to the intractability of the problem,
several avenues of research are of interest. For example, studies of the complexity of the
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problem for special families of graphs has been performed in the past. The results include
linear time algorithms for interval graphs and block graphs [8], for trees [10], for proper
interval graphs [11], and for unicyclic graphs [9]. Another popular way to explore are
attempts to find closed expressions for the double Roman domination number of some
graph families. Among popular examples are generalized Petersen graphs and some of
their subfamilies that have been extensively studied recently. The published results include
(see the subsection on related previous work) closed expressions for the double Roman
domination number of some, and tight bounds for other subfamilies [12–15]. For more
related work, we refer to [16–19] and the references there.

Here, in Section 2.4, we summarize the previously known results on double Roman
domination of generalized Petersen graphs P(ck, k) for c = 3, 4, 5 and provide improved
new general bounds for arbitrary c. The rest of the paper is organized as follows. In
Section 2 we summarize some basic definitions and previous results which are used in the
following sections. In particular, our main result is outlined in Section 2.5. The constructions
and proofs are in Sections 3–6. In the last section, we discuss the asymptotics and compare
the new bounds to the best previously known.

2. Preliminaries

The definitions in the following subsections are recalled from [20].

2.1. Graphs and Double Roman Domination

Assume G = (V, E) is a graph without loops and multiple edges. Let V = V(G) be
the vertex set of G and E = E(G) its edge set. A set D ⊆ V(G) is called a dominating
set of G if every vertex in V(G) \ D has at least one neighbour in D. The cardinality of a
minimum dominating set of G is called the domination number γ(G). A double Roman
dominating function (DRDF) on a graph G = (V, E) is a function f : V → {0, 1, 2, 3} with
the properties that

(1) every vertex u with f (u) = 0 is adjacent to at least one vertex assigned 3 or at least
two vertices assigned 2, and

(2) every vertex u with f (u) = 1 is adjacent to at least one vertex assigned 2 or 3.

For an arbitrary subset U ⊆ V(G) define the weight of f on U as w( f (U)) =

∑u∈U f (u). Then, the weight of f equals w( f ) = w( f (G)) = ∑v∈V(G) f (v). The dou-
ble Roman domination number γdR(G) of a graph G is the minimum weight of a double
Roman dominating function of G. A DRD function f is called a γdR-function of G if
w( f ) = γdR(G).

Let f be a double Roman dominating function on G. We define the corresponding
double Roman dominating partition (D0, D1, D2, D3) of the vertex set V = D0 ∪ D1 ∪ D2 ∪
D3, where Di = D f

i = {u | f (u) = i}.
The study of the double Roman domination in graphs was initiated by Beeler et al. [1].

It was proved that 2γ(G) ≤ γdR(G) ≤ 3γ(G), and observed that in a double Roman
dominating function f of weight γdR(G), no vertex needs to be assigned the value 1.

2.2. Generalized Petersen Graphs

The generalized Petersen graph P(n, k) is a graph with vertex set U ∪V and edge set
E1 ∪ E2 ∪ E3, where U = {u0, u1, . . . , un−1}, V = {v0, v1, · · · , vn−1}, E1 = {uiui+1 | i =
0, 1, . . . , n − 1}, E2 = {uivi | i = 0, 1, . . . , n − 1}, E3 = {vivi+k | i = 0, 1, . . . , n − 1}. All
subscripts are reduced modulo n (see Figure 1). Thus we identify integers i and j iff
i ≡ j mod n.
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Figure 1. Standard drawing of generalized Petersen graph P(n, k) (left) and an alternative drawing
of P(ck, k) (right).

It is well known that the graphs P(n, k) are 3-regular unless k = n
2 and that P(n, k) are

highly symmetric [21,22]. As P(n, k) and P(n, n− k) are isomorphic, it is natural to restrict
attention to P(n, k) with n ≥ 3 and k, 1 ≤ k < n

2 .
In this paper, we study generalized Petersen graphs for which n = ck. In this case,

the graph P(ck, k) has, in addition to the long outer cycle, k shorter cycles of length c, called
the inner cycles (see Figure 1, right). For graphs P(ck, k), we will also use the following
notation. We denote

Vi = {vik, vik+1, vik+2, . . . , vik+k−1}, i = 0, 1, . . . , c− 1,

Ui = {uik, uik+1, uik+2, . . . , uik+k−1}, i = 0, 1, . . . , c− 1,

V =
c−1⋃
i=0

Vi, U =
c−1⋃
i=0

Ui, V(P(ck, k)) = V ∪U.

Observe that each of the sets Vi meets all the inner cycles, and vertices of Ui are exactly
the neighbors of Vi on the outer cycle.

Petersen graphs are among the most interesting examples when considering nontrivial
graph invariants [23]. In particular, the domination and its variations, such as Roman
domination and double Roman domination have been extensively studied in the last years.

2.3. Graph Covers

Following the approach used in [24], we will summarize the basic definition of a
covering graph. Let G = (V1, E1) and H = (V2, E2) be two graphs, and let p : V2 → V1 be a
surjection. We say p is a covering map from H to G if for each v ∈ V2, the restriction of p to
the neighbourhood of v ∈ V2 is a bijection onto the neighbourhood of p(v) in G. In other
words, p maps edges incidental to v one-to-one onto edges incidental to p(v). If there exists
a covering map from H to G, we will call H a covering graph, or a lift, of G. H is called an
h-lift of G if p has a property that for every vertex v ∈ V(G), its fiber p−1(v) has exactly h
elements. For some more information on covering graphs see [25].

Obviously, a long cycle can be a covering graph of shorter cycles. For example,
the cycle C120 is a 2-lift of C60, using the surjection p(vi) = vi mod 60. Furthermore, C120 is
also a 30-lift of C4, etc.

2.4. Related Previous Work

To ensure better transparency, we have gathered most of the important results of the
previous work in the following Tables 1–3.
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Table 1. Previously known results on domination number of generalized Petersen graphs P(n, k).

Results References

k ≥ 1, c ≥ 3:

γ(P(ck, k)) ≤


c
3

⌈
5k
3

⌉
, c ≡ 0 mod 3,⌈ c

3
⌉ ⌈ 5k

3

⌉
−
⌈

2k
3

⌉
, c ≡ 1 mod 3,⌈ c

3
⌉ ⌈ 5k

3

⌉
−
⌈

2k
3

⌉
+
⌈

k
3

⌉
, c ≡ 2 mod 3.

Zhao et al. [26]

γ(P(4k, k)) =
{

2k; k ≡ 1 mod 2,
2k + 1; k ≡ 0 mod 2

γ(P(5k, k)) = 3k for all k ≥ 1. Wang et al. [27]

Table 2. Previously known results on double Roman domination number of generalized Petersen
graphs P(n, k).

Results References

n ≥ 3:

γdR(P(n, 1)) =


3n
2 , n ≡ 0 mod 4,

3n+3
2 , n ≡ 1, 3 mod 4,

3n+4
2 , n ≡ 2 mod 4

Shao et al. [13]

n ≥ 5:

γdR(P(n, 2)) =


⌈

8n
5

⌉
, n ≡ 0 mod 5,⌈

8n
5

⌉
+ 1, n ≡ 1, 2, 3, 4 mod 5.

Jiang et al. [15]

If G is a graph of maximum degree4 ≥ 1: γdR(G) ≥
⌈

3|V(G)|
4+1

⌉
.

γdR(P(n, k)) ≥ d 3n
2 e. Shao et al. [13]

k ≥ 3: γdR(P(n, k)) = 3n
2 , k ≡ 1 mod 2, n ≡ 0 mod 4.

γdR(P(n, k))≤



3n
2 + 5k+5

4 , k ≡ 1 mod 4, n 6≡ 0 mod 4,

3n
2 + 5k+7

4 , k ≡ 3 mod 4, n 6≡ 0 mod 4,

3n
2

(3k+2)
(3k+1) , k ≡ 0 mod 4,

n ≡ 0 mod (3k+1),

d 3n
2

(3k+2)
(3k+1) e+

5k+4
4 , k ≡ 0 mod 4,

n 6≡ 0 mod (3k+1),
3n
2

(3k)
(3k−1) , k ≡ 2 mod 4,

n ≡ 0 mod (3k−1),

d 3n
2

(3k)
(3k−1) e+

5k+6
4 , k ≡ 2 mod 4,

n 6≡ 0 mod (3k−1).

Gao et al. [12]
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Table 3. Previously known results on double Roman domination number of generalized Petersen
graphs P(ck, k) for small c.

Results References

γdR(P(3k, k)) =

{
5k + 1, k ∈ {1, 2, 4}
5k, otherwise

Shao et al. [14]

γdR(P(4, 1)) = 6, γdR(P(8, 2)) = 14, γdR(P(10, 2)) = 16 Jiang et al. [15]

γdR(P(12, 3)) = 18, γdR(P(5, 1)) = 9 Shao et al. [13]

γdR(P(4k, k)) =

{
6k, k odd

6k + 3, k > 2 even
Folklore, C.F. [20]

23 ≤ γdR(P(15, 3)) ≤ 26 Gao et al. [12]

k ≥ 2:

8k ≤ γdR(P(5k, k)) ≤
{

8k, k ≡ 2, 3 mod 5

8k + 2, otherwise
Rupnik P. et al. [20]

The double Roman domination number on Petersen graphs P(ck, k) for small c (c = 3,
4 and 5) has been studied in recent years. The results are summarized in Table 3.

In [20], it has been proven that certain generalized Petersen graphs are covering graphs
of some other generalized Petersen graphs.

Proposition 1 ([20]). Let k ≥ 1, c0 ≥ 3, and h ≥ 2. The generalized Petersen graph P((hc0)k, k)
is an h-lift of P(c0k, k).

Proposition 1 immediately provides a method for establishing upper bounds for
double Roman domination numbers of h-lifts.

Proposition 2 ([20]). γdR(P((hc0)k, k)) ≤ hγdR(P(c0k, k)).

2.5. Our Results

The main results of this paper are either exact values or narrow bounds for the double
Roman domination numbers of all Petersen graphs P(ck, k), c ≥ 3, k ≥ 3.

More precisely, we will prove the following theorem.

Theorem 1. Let c ≥ 3, and k ≥ 3.

1. If c ≡ 0 mod 4 and k odd, then

γdR(P(ck, k)) =
3
2

ck.

2. If c 6≡ 0 mod 4 and k odd, then

3
2

ck≤γdR(P(ck, k))<


3
2 (c +

1
2 )k, c ≡ 1, 3 mod 4,

3
2 (c +

2
3 )k, c ≡ 2 mod 4,

.

3. For k even, it holds

3
2

ck≤γdR(P(ck, k))<


3
2 c(k + 1

2 ), c ≡ 0 mod 4,
3
2 (c +

1
2 )(k +

1
2 ), c ≡ 1, 3 mod 4,

3
2 (c +

2
3 )(k +

1
2 ), c ≡ 2 mod 4,

.
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3. Constructions and Proofs—Overview

Below we first observe that applying Propositions 1 and 2 gives exact values of double
Roman domination number for all P(ck, k) where c ≡ 0 mod 4 and k odd.

The second tool is provided by two constructions that transform P(ck, k) to
P((c− 1)k, k) and P(ck, k) to P(c(k− 1), k− 1) by deleting some vertices and adding some
edges. It is shown in Propositions 3 and 4 that the result of the construction indeed is
isomorphic to P((c− 1)k, k) and to P(c(k− 1), k− 1). Based on the first construction, the
upper bounds for γdR(P(ck, k)) are established for arbitrary c by using exact values for
γdR(P(ck, k)), where h = d c

4e and k odd (see Section 5). The second construction allows
extension of the results to even k (elaborated upon in Section 6).

4. The Constructions

In the continuation we will heavily use the following construction which produces the
graph P((c− 1)k, k) from P(ck, k).

Construction 1.

• Start with P(ck, k).
• Delete vertices

Vc−1 = {v(c−1)k, v(c−1)k+1, v(c−1)k+2, . . . , vck−1} and
Uc−1 = {u(c−1)k, u(c−1)k+1, u(c−1)k+2, . . . , uck−1}
and delete all edges incident to these vertices.

• Add edges {v(c−2)kv0, v(c−2)k+1v1, v(c−2)k+2v2, . . . v(c−1)k−1vk−1} on the inner cycles and
edge {u(c−1)k−1u0} on the outer cycle.

The construction is illustrated on example, from P(12, 3) to P(9, 3) (see Figure 2).

v0

v1

v2
v3

v4
v5

v6

v7
v8 v9

v10

v11

u0

u1

u2
u3

u4

u5

u6

u7

u8
u9

u10

u11

v0

v1

v2
v3

v4
v5

v6

v7
v8

u0

u1

u2
u3

u4

u5

u6

u7

u8

Figure 2. A construction of P(9, 3) from P(12, 3).

Proposition 3. Construction 1 on P(ck, k) results in the graph P((c− 1)k, k).

Proof. Obviously, by the construction, each last vertex of each inner cycle is deleted,
together with its neighbor on the outer cycle. The labels of the remaining vertices are the
same as the standard labeling of P((c− 1)k, k), and it is easy to see that the construction
adds exactly the edges that are missing to obtain P((c− 1)k, k).

Obviously, repeated construction results in graphs P((c− 2)k, k) and P((c− 3)k, k).

The second construction transforms P(ck, k) to P(c(k− 1), k− 1).
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Construction 2.

• Start with P(ck, k). Choose K ∈ {0, 1, . . . , k− 1}.
• Delete the vertices OutK = {ujk+K | j = 0, 1, 2, . . . , c− 1} and vertices of the correspond-

ing inner cycle InnK = {vjk+K | j = 0, 1, 2, . . . , c − 1} and delete all edges incident to
these vertices.

• Add edges ujk+K−1ujk+K+1 for j = 0, 1, 2, . . . , c− 1.

The construction is illustrated on example, from P(12, 3) to P(8, 2) (see Figure 3).

v0

v1

v2
v3

v4
v5

v6

v7
v8 v9

v10

v11

u0

u1

u2
u3

u4

u5

u6

u7

u8
u9

u10

u11

v0

v2
v3

v5

v6

v8 v9

v11

u0

u2
u3

u5

u6

u8
u9

u11

Figure 3. A construction of P(8, 2) from P(12, 3).

Proposition 4. Construction 2 on P(ck, k) results in the graph that is isomorphic to
P(c(k− 1), k− 1).

Proof. (Sketch.) Recall that the Petersen graph P(ck, k) consists of a long outer cycle and k
inner cycles of length c.

Let us choose one inner cycle and delete its vertices and all edges incident to these
vertices. The resulting graph has exactly c vertices of degree 2 on the outer cycle. Deleting
these vertices and replacing each of the paths of length two with a new edge clearly
results in a graph that has k − 1 cycles of length c, and one long (outer cycle of length
ck − k = c(k − 1). Observe that this graph is isomorphic to P(c(k − 1), k − 1). We omit
obvious technical details.

We continue with explicit constructions of double Roman dominating sets that directly
imply upper bounds, and, in some cases, exact values of P(ck, k).

5. Odd k

Recall that for odd k, exact values of double Roman domination number are known,
namely (see Table 3)

γdR(P(4k, k)) = 6k . (1)

In this section we first generalize this result to obtain exact values of γdR(P(ck, k)) for
c = 4h (or, c ≡ 0 mod 4). Then we consider the cases where c 6≡ 0 mod 4, and provide
double Roman dominating functions implying upper bounds in each case.

5.1. Case c ≡ 0 mod 4

Proposition 5. Let k ≥ 1 and c = 4h.
If k ≡ 1 mod 2, then γdR(P(ck, k)) = γdR(P(4hk, k)) = hγdR(P(4k, k)) = 6hk = 3

2 ck.
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Proof. Let c = 4h. Then, Propositions 1 and 2 imply

• P((h4)k, k) is a h-lift of P(4k, k) and, consequently,
• γdR(P((h4)k, k)) ≤ hγdR(P(4k, k)) = 6hk.

Recalling the general lower bound ([13], see Table 3) we conclude that the
statement holds.

For later use, observe that application of Proposition 1 provides explicit construction
of the double Roman dominating partition. More precisely, for example,

D3 = {v0+4i | i = 0, 1, . . . , k− 1} ∪ {u2+4i | i = 0, 1, . . . , k− 1} (2)

D = (∅, ∅, ∅, D3)

is a double Roman domination partition for P(4k, k) of minimal weight. We call this parti-
tion the basic double Roman domination partition of P(4k, k). Let f be the corresponding
double Roman dominating function. Then f (x) = 3 for x ∈ D3 and f (x) = 0 otherwise.

Looking more closely to the partition, if k = 4` + 3, then by trivial counting we
observe that

w( f (Uc−4)) = 3(`+ 1), w( f (Vc−4)) = 3(`+ 1),
w( f (Uc−3)) = 3`, w( f (Vc−3)) = 3(`+ 1),
w( f (Uc−2)) = 3(`+ 1), w( f (Vc−2)) = 3(`+ 1),
w( f (Uc−1)) = 3(`+ 1), w( f (Vc−1)) = 3` .

(3)

In fact,

if i ≡ 0 mod 4 then w( f (Ui)) = 3(`+ 1), w( f (Vi)) = 3(`+ 1),
if i ≡ 1 mod 4 then w( f (Ui)) = 3`, w( f (Vi)) = 3(`+ 1),
if i ≡ 2 mod 4 then w( f (Ui)) = 3(`+ 1), w( f (Vi)) = 3(`+ 1),
if i ≡ 3 mod 4 then w( f (Ui)) = 3(`+ 1), w( f (Vi)) = 3` .

(4)

It is useful to observe that summing up the weight of the sets for any two consecutive
indices gives 3k, i.e.,

w( f (Ui−1)) + w( f (Vi−1)) + w( f (Ui)) + w( f (Vi)) = 3(4`+ 3) = 3k . (5)

Also note that in the case k = 4`+ 1, by similar reasoning, we have

w( f (Uc−4)) = 3`, w( f (Vc−4)) = 3(`+ 1),
w( f (Uc−3)) = 3`, w( f (Vc−3)) = 3`,
w( f (Uc−2)) = 3(`+ 1), w( f (Vc−2)) = 3`,
w( f (Uc−1)) = 3`, w( f (Vc−1)) = 3` .

(6)

and, again, w( f (Ui−1)) + w( f (Vi−1)) + w( f (Ui)) + w( f (Vi)) = 3(4`+ 1) = 3k, for all i.
Let us summarize the observations for a later reference formally.

Proposition 6. Let c ≡ 0 mod 4 and k odd. Then the basic double Roman dominating partition of
V(P(ck, k)):

D3 = {v0+4i | i = 0, 1, . . . , k− 1} ∪ {u2+4i | i = 0, 1, . . . , k− 1} (7)

D = (∅, ∅, ∅, D3)

gives rise to a double Roman domination function f that is a γdR-function. Furthermore, for the
function f , it holds that

w( f (Uc−1)) + w( f (Vc−1)) + w( f (Uc)) + w( f (Vc)) = 3k

and
w( f (Uc−1)) + w( f (Uc)) > w( f (Vc−1)) + w( f (Vc)) .
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Furthermore,

• if k = 4`+ 3 then w( f (Uc)) = 3(`+ 1) > 3
4 k , and w( f (Vc)) = 3` < 3

4 k .
• if k = 4`+ 1 then w( f (Uc−1)) = 3(`+ 1) > 3

4 k , and w( f (Vc−1)) = 3` < 3
4 k .

Obviously, for s = 0, 1, 2, 3, starting with double Roman domination partitions (indices
are taken modulo ck)

Ds
3 = {vs+4i | i = 0, 1, . . . , k− 1} ∪ {us+2+4i | i = 0, 1, . . . , k− 1} (8)

Ds = (∅, ∅, ∅, Ds
3)

gives rise to double Roman domination function f s that is a γdR-function. Clearly D0 = D,
the basic double Roman domination partition.

5.2. Case c ≡ 3 mod 4

According to Proposition 3, we know that P(ck, k) can be obtained from P((c + 1)k, k)
by Construction 1.

Proposition 7. If k ≡ 1 mod 2, and c ≡ 3 mod 4, then γdR(P(ck, k)) < 3
2 (c +

1
2 )k.

Proof. Let c = 4h − 1 and let f be the double Roman dominating function of P((c +
1)k, k) = P(4hk, k) as defined above. Recall Construction 1 and note that V(P((c +
1)k, k)) = ∪c

i=0(Vi ∪Ui) and V(P(ck, k)) = ∪c−1
i=0 (Vi ∪Ui).

First assume, that k ≡ 3 mod 4. Define f̃ on V(P(ck, k)) as follows.

• f̃ (x) = f (x) for x ∈ V(P(ck, k)) \ (Vc−1 ∪Uc−1).
• For x ∈ Vc−1 ∪ Uc−1, observe that x = u(c−1)k+i or x = v(c−1)k+i for some i =

0, 1, ..., k− 1, and define

f̃ (v(c−1)k+i) = f (v(c−1)k+i) + f (vck+i) and

f̃ (u(c−1)k+i) = f (u(c−1)k+i).

It is straightforward to observe that, by definition, f̃ dominates all vertices on the inner
cycle. On the outer cycle, the only interesting part are vertices {uck−3, uck−2, uck−1, u0, u1, u2}.
By the basic assignment (see Equation (7)), we know that f̃ (u2) = f (u2) = 3, and
f̃ (uck−3) = f (uck−3) = 3. Furthermore, uck−1 and u0 are dominated by f̃ , because
f̃ (vck−1) = 3 and f̃ (v0) = 3. See Figure 4 below. We conclude that f̃ is a double Ro-
man dominating function of P(ck, k).

Now recall that, by Proposition 6, if k ≡ 3 mod 4 then w( f (Uc)) = 3(`+ 1) > 3
4 k, and

w( f (Vc)) = 3` < 3
4 k . It follows that w( f̃ ) < 3

2 (c +
1
2 )k, as needed.

The case k ≡ 1 mod 4 can be treated similarly. Instead of D, Ds is used (with s = 1).
We omit the details.
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u0 u1 u2 u3 u4

...
uk−2 uk−1

uck uck+1 uck+2 uck+3 uck+4

...
u(c+1)k−2 u(c+1)k−1

u(c−1)k u(c−1)k+1 u(c−1)k+2 u(c−1)k+3 u(c−1)k+4

...
uck−2 uck−1

u(c−2)k u(c−2)k+1 u(c−2)k+2 u(c−2)k+3 u(c−2)k+4

...
u(c−1)k−2 u(c−1)k−1

uk uk+1 uk+2 uk+3 uk+4

...
u2k−2 u2k−1

Figure 4. The outside vertices U of P((c + 1)k, k) and construction of P(ck, k). Emphasized are the
vertices that are deleted (one row) and the row of vertices who‘s neighbors are possibly altered.

5.3. Case c ≡ 2 mod 4

According to Proposition 3, we know that P(ck, k) is obtained from P((c + 2)k, k) by
Construction 1.

Proposition 8. If k ≡ 1 mod 2, and c ≡ 2 mod 4, then γdR(P(ck, k)) < 3
2 (c +

2
3 )k.

Proof. Let c = 4h− 2 and let f be the double Roman dominating function of (P((c+ 2)k, k))
as defined above.

Define f̃ on V(P(ck, k)) as follows. (Recall that Construction 1 was applied twice.)

• f̃ (x) = f (x) for x ∈ ∪c−1
i=0 Ui

• f̃ (x) = f (x) for x ∈ ∪c−2
i=1 Vi

• For x ∈ V0, let x = vi, i = 0, 1, . . . , k− 1 and set f̃ (vi) = f (vi) +
2
3 f (v(c+1)k+i)

• For x ∈ Vc−1, let x = v(c−1)k+i, i = 0, 1, . . . , k− 1 and set f̃ (v(c−1)k+i) = f (v(c−1)k+i) +
2
3 f (vck+i)

Observe that, by construction, f̃ is a double Roman dominating function of P(ck, k).
To compute the weight of f̃ , recall that by Proposition 6

w( f (Uc−1)) + w( f (Uc)) > w( f (Vc−1)) + w( f (Vc))

and hence
w( f (Vc−1)) + w( f (Vc)) <

1
2

3k < w( f (Uc−1)) + w( f (Uc)) ;

thus, the total additional weight assigned is 2
3 (

1
2 3k) = k, because the weights transferred

were multiplied by 2
3 . It follows that w( f̃ ) < 3

2 (c +
2
3 )k, as claimed (see Figure 5).
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u0 u1 u2 u3 u4

...
uk−2 uk−1

u(c+1)k u(c+1)k+1 u(c+1)k+2 u(c+1)k+3 u(c+1)k+4

...
u(c+2)k−2 u(c+2)k−1

uck uck+1 uck+2 uck+3 uck+4

...
u(c+1)k−2 u(c+1)k−1

u(c−1)k u(c−1)k+1 u(c−1)k+2 u(c−1)k+3 u(c−1)k+4

...
uck−2 uck−1

u(c−2)k u(c−2)k+1 u(c−2)k+2 u(c−2)k+3 u(c−2)k+4

...
u(c−1)k−2 u(c−1)k−1

uk uk+1 uk+2 uk+3 uk+4

...
u2k−2 u2k−1

2

2 2

Figure 5. The outside vertices U of P((c + 2)k, k) and construction of P(ck, k). Emphasized are the
vertices that are deleted (two rows) and the row of vertices whose neighbors are possibly altered.

5.4. Case c ≡ 1 mod 4

According to Proposition 3, we know that P(ck, k) can be obtained from P((c + 3)k, k)
by Construction 1, applied three times.

Proposition 9. If k ≡ 1 mod 2, and c ≡ 1 mod 4, then γdR(P(ck, k)) < 3
2 (c +

1
2 )k.

Proof. Let c = 4h− 3 and f be the double Roman dominating function of (P((c + 3)k, k))
as defined above.

Recall Construction 1 and assume k ≡ 3 mod 4. Define f̃ on V(P(ck, k)) as follows.

• f̃ (x) = f (x) for x ∈ V(P(ck, k)) \ (Vc−1 ∪Uc−1)
• For x ∈ Vc−1 ∪ Uc−1, observe that x = u(c−1)k+i or x = v(c−1)k+i for some

i = 0, 1, ..., k− 1, and define

f̃ (v(c−1)k+i) = f (v(c−1)k+i) + f (v(c+2)k+i) and

f̃ (u(c−1)k+i) = f (u(c−1)k+i).

Observe that, by construction, f̃ is a double Roman dominating function of
P((c− 3)k, k) and w( f̃ ) < 3

2 (c +
1
2 )k, as needed (see Figure 6). We omit the details.

The case k ≡ 1 mod 4 is analogous. We skip the details. This completes the proof.
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u0 u1 u2 u3 u4

...
uk−2 uk−1

u(c+2)k u(c+2)k+1 u(c+2)k+2 u(c+2)k+3 u(c+2)k+4

...
u(c+3)k−2 u(c+3)k−1

u(c+1)k u(c+1)k+1 u(c+1)k+2 u(c+1)k+3 u(c+1)k+4

...
u(c+2)k−2 u(c+2)k−1

uck uck+1 uck+2 uck+3 uck+4

...
u(c+1)k−2 u(c+1)k−1

u(c−1)k u(c−1)k+1 u(c−1)k+2 u(c−1)k+3 u(c−1)k+4

...
uck−2 uck−1

uk uk+1 uk+2 uk+3 uk+4

...
u2k−2 u2k−1

Figure 6. The outside vertices U of P((c + 3)k, k) and construction of P(ck, k). Emphasized are the
vertices that are deleted (three rows) and the row of vertices whose neighbors are possibly altered.

6. Even k

For even k, we start with DRD functions for P(c(k + 1), k + 1) constructed in the
previous considerations (Propositions 5–9). The upper bounds for γdR(P(ck, k)) for k even
will be established by using the next observation.

Proposition 10. Assume f is a DRDF for P(c(k + 1), k + 1). Then there is a DRDF f̃ for P(ck, k)
of weight w( f̃ ) ≤ (k + 1

2 )
1

k+1 w( f ).

Proof. Let f be a DRDF for P(c(k + 1), k + 1). Recall Construction 2. By Proposition 4, if
we choose any K ∈ {0, 1, . . . , k}, delete the inner cycle InnK = {vjk+K | j = 0, 1, 2, . . . , c},
K ∈ {0, 1, . . . , k}, and the corresponding K-th “column” of vertices OutK = {ujk+K | j =
0, 1, 2, . . . , c}, we obtain a graph that is isomorphic to P(ck, k).

Define a DRDF f̃ on P(ck, k), using the original labeling of P(c(k+ 1), k+ 1), as follows.

• f̃ (x) = f (x) for x ∈ P(c(k + 1), k + 1) \ (OutK−1 ∪ InnK−1 ∪OutK ∪ InnK).
• For x ∈ OutK−1 we know that x = ujk+K−1 for some j and define

f̃ (x) = f (ujk+K−1) + f (ujk+K).
• For x ∈ InnK−1 we know that x = vjk+K−1 for some j and define f̃ (x) = f (vjk+K−1).

Recall that the basic double Roman dominating partition for P(ck, k) with c = 4h and
k odd was higly symmetrical, in the sense that w(Inni) = w(Outi) =

3
4 c. Furthermore, in

the proofs of Propositions 7–9, DRDF’s were constructed such that the property w(Inni) ≥
w(Outi) was preserved. Therefore, we can choose K such that the weight of the inner cycle
is not under average, i.e., w( f (InnK)) ≥ 1

2(k+1)w( f ).

We conclude that, by construction, f̃ is a double Roman dominating function of
P(ck, k), and

w( f̃ ) ≤ w( f )− 1
2(k + 1)

w( f ) = (k +
1
2
)

1
k + 1

w( f ),

as needed.
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The Proposition just proved directly implies the next statement.

Proposition 11. γdR(P(ck, k)) ≤ (k + 1
2 )

1
k+1 γdR(P(c(k + 1), k + 1)),

We are now ready to prove the upper bounds in case k is even.

Proposition 12. Let k ≡ 0 mod 2, then

1. If c ≡ 0 mod 4, then γdR(P(ck, k)) ≤ 3
2 c(k + 1

2 ).
2. If c ≡ 1 mod 4, then γdR(P(ck, k)) ≤ 3

2 (c +
1
2 )(k +

1
2 ).

3. If c ≡ 2 mod 4, then γdR(P(ck, k)) ≤ 3
2 (c +

2
3 )(k +

1
2 ).

4. If c ≡ 3 mod 4, then γdR(P(ck, k)) ≤ 3
2 (c +

1
2 )(k +

1
2 ).

Proof. By Proposition 5 we have γdR(P(c(k + 1), k + 1)) = 3
2 c(k + 1) for c ≡ 0 mod 2 and

k+ 1 ≥ 1 odd. From the proof of Proposition 5, we have explicit definition of a γdR-function
f , with the property that w( f (Ui)) = w( f (Vi)) = 3 k+1

4 for all i. By Proposition 10, there is
a DRD function f̃ w( f̃ ) ≤ (k + 1

2 )
1

k+1 w( f ). Hence γdR(P(ck, k)) ≤ 3
2 c(k + 1

2 ).
The other three cases follow from Propositions 7–9 by analogous reasoning.

7. Conclusions and Future Work

Based on the previously known constructions of DRDF’s for P(4k, k), the upper bounds
for double Roman domination numbers of P(ck, k) were derived, using the notion of graph
covers and some new constructions of DRDF’s.

It may be of interest to compare the upper bounds of Theorem 1 with the bounds
given by Gao et al. [12] (see Table 2). Let us take n = ck and compare the following cases
based on formula by Gao et al. below.

1. Case k ≡ 1 mod 2, n ≡ 0 mod 4. Both formulas give exact value.
2. Case k ≡ 1 mod 4, n 6≡ 0 mod 4. Theorem 1 gives either 3k

2 (c +
1
2 ) or 3k

2 (c +
2
3 ) de-

pending on c. As

3k
2
(c +

1
2
) <

3k
2
(c +

2
3
) =

3ck
2

+ k <
3ck
2

+
5k + 5

4
,

we conclude that Theorem 1 improves the upper bound of [12] in these cases.
3. Case k ≡ 3 mod 4, n 6≡ 0 mod 4. Reasoning along the same lines as in the previous

case shows that Theorem 1 also improves the upper bound of [12] in these cases.
4. Case k ≡ 0 mod 4, n ≡ 0 mod (3k+1). As we assume n = ck, it follows that we

must have n ≡ 0 mod4 and c must be odd. Theorem 1 thus assures the upper bound
γdR(P(ck, k)) < 3

2 (c + 1
2 )(k + 1

2 ) = 3
2 ck + 3

4 c + 3
4 k + 3

8 . Because
3ck
2

(3k+2)
(3k+1) = 3ck

2 (1 + 1
3k+1 ) =

3ck
2 + c

2
3k

(3k+1) < 3ck
2 + c

2 , we conclude that in this case
the upper bound in Theorem 1 does not improve the general bound of [12].

5. Case k ≡ 0 mod 4, n 6≡ 0 mod (3k + 1). Now we cannot extract any condition on c so

we compare d 3ck
2

(3k+2)
(3k+1) e+

5k+4
4 with the upper bound 3

2 (c +
2
3 )(k +

1
2 ) =

3
2 ck + 3

4 c +

k + 1
2 and conclude that for large enough k, the upper bound of Theorem 1 is better,

whereas for the large c, the bound of [12] is not improved.
6. Case k ≡ 2 mod 4, n ≡ 0 mod (3k−1). Compare 3ck

2
(3k)

(3k−1) = 3
2 ck + 3k

(3k−1)
c
2 with

3
2 c(k + 1

2 ) =
3
2 ck + 3

4 c to conclude that in this case, the bound of Theorem 1 does not
improve the general bound.

7. Case k ≡ 2 mod 4, n 6≡ 0 mod (3k−1). In this case, comparing d 3n
2

(3k)
(3k−1) e+

5k+6
4 =

d 3
2 ck+ 3k

(3k−1)
c
2e+

5k+6
4 and 3

2 (c+
2
3 )(k+

1
2 ) =

3
2 ck+ 3

4 c+ k+ 1
2 leads to the conclusion

that Theorem 1 improves the general bounds for large enough k, and that for large c,
the bound of [12] is not improved.
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We can thus conclude that Theorem 1 in several cases improves the previously known
general upper bound. The new bounds hold for all c and k, and are asymptoticaly the best
possible, as the following corollary formally states.

Corollary 1. For the double Roman domination number of generalized Petersen graphs P(ck, k) of
large graphs the following holds.

(1)
3
4

c ≤ lim
k→∞

γdR(P(ck, k))
2k

≤ 3
4
(c + ε), where ε = 0, 1

2 , 2
3 , 1

2 when c ≡ 0, 1, 2, 3 mod 4.

(2)
3
4

k ≤ lim
c→∞

γdR(P(ck, k))
2c

≤ 3
4
(k + ε), where ε = k mod 2.

(3) lim
c→∞,k→∞

γdR(P(ck, k))
2ck

=
3
4

.

The proof of Corollary 1 follows from Theorem 1.
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