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Abstract: In this paper, we study the bisymmetric and skew bisymmetric solutions of quaternion
generalized Lyapunov equation. With the help of semi-tensor product of matrices, some new conclusions
on the expansion rules of row and column of matrix product on quaternion matrices are proposed
and applied to the calculation of quaternion matrix equation. Using the H-representation method,
the independent elements are extracted according to the structural characteristics of bisymmetric matrix
and skew bisymmetric matrix, so as to simplify the operation process. Finally, it is compared with the real
vector representation method of quaternion matrix equation to illustrate the effectiveness and superiority
of the proposed method.
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1. Introduction

The notations and definitions used in this paper are summarized as follows. Let R/C/Q
be the sets of the real numbers/complex numbers/quaternions, respectively. Rn represents the
set of all real column vectors with order n. Rm×n/Cm×n/Qm×n represent the set of all m× n real
matrices/complex matrices/quaternion matrices, respectively. BRn×n/SBRn×n/BQn×n/SBQn×n

represent the set of all n×n real bisymmetric matrices/real skew bisymmetric matrices/quaternion
bisymmetric matrices/quaternion skew bisymmetric matrices, respectively. AT/AH/A† represent
the transpose/conjugate transpose/Moore–Penrose inverse of matrix A, respectively. In represents
unit matrix with order n. For A = (aij) ∈ Qm×n, Vc(A) is the column stacking form of the matrix
A, i.e., Vc(A) = (a11, · · · , am1, a12, · · · , am2, · · · , amn)T; Vr(A) is the row stacking form of the
matrix A, i.e., Vr(A) = (a11, · · · , a1n, a21, · · · , a2n, · · · , amn)T. ⊗ represents the Kronecker product
of matrices. ‖·‖ represents the Frobenius norm of a matrix or Euclidean norm of a vector.

With the development of science and technology, Lyapunov equation has been widely
used in engineering, so its research has attracted more and more scholars’ attention.
The equation

AX + XAT +
k

∑
i=1

CiXCT
i = B (1)

is called the generalized Lyapunov equation, which plays an important role in studying
the mean square stability, precise observability and H2/H∞ control of linear stochastic
systems [1–4]. In particular, Equation (1) is closely related to the linear Itô-type system

dx(t) = Ax(t)dt +
k

∑
i=1

Cix(t)dωi(t), x(0) = x0 ∈ Rn,

where A, C1, · · · , Ck are real constant matrices of suitable dimensions, x ∈ Rn is the system
state, x0 ∈ Rn is a deterministic initial state, and ωi(t), i = 1, · · · , k are independent,
standard 1-D Wiener processes defined on the filtered probability space [5].
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Matrix theory is recognized as a branch of mathematics originating in China. Katz,
a professor at the University of Columbia, once said, “the idea of a matrix has a long history,
dated at least from its use by Chinese scholars of the Han period for solving systems of
linear equations”. However, the traditional matrix theory is flawed, due to the limitations of
matrix dimension, which greatly limits the application of matrix method. The semi-tensor
product of matrices is the development of traditional matrix theory, which overcomes
the limitation of traditional matrix theory on dimension. Therefore, it is also called the
matrix theory of crossing dimension. It is now widely used in biological systems and life
sciences [6–8], game theory [9–11], image encryption [12,13]. In addition, some scholars
applied semi-tensor product of matrices to the solution of matrix equations. For example,
Li studied the least squares solution of matrix equations under semi-tensor product of
matrices [14], Ding studied the triangular Toeplitz solution of complex linear system by
using semi-tensor product of matrices [15], and Wang studied the least squares Hermitian
solution of quaternion matrix equation by using semi-tensor product of matrices [16].

Matrix equation is one of the important research fields of numerical algebra, and the
research on quaternion matrix equation also has been widely concerned by scholars.
For example, Kyrchei studied the least-norm of the general solution to some system
of quaternion matrix equations and its determinantal representations [17] and Cramers
rules for Sylvester quaternion matrix equation and its special cases [18], Liu and Wang
studied the solvability conditions and the formula of the general solution to a Sylvester-like
quaternion matrix Equation [19], Mehany and Wang investigated the solvability conditions
and the general solution of three symmetrical systems of coupled Sylvester-like quaternion
matrix Equations [20], Jiang and Ling studied closed-form solutions of the quaternion
matrix equation AX̃− XB = C in explicit forms [21], Wang studied the bisymmetric and
central symmetric solutions of quaternion matrix Equations [22], Zhang studied the least
squares biHermitian solutions and oblique biHermitian solutions of quaternion matrix
Equations [23].

Because of the uniqueness of the special matrix structure, we can use its structural
characteristics to simplify the operation when solving the equation. H-representation is
a systematic method for extracting independent elements of special matrix proposed by
Zhang [5]. With the help of H-representation, we can reduce the number of elements involved
in the operation, thereby simplifying the operation process. At present, H-representation
has a preliminary application in the field of system and control [24,25]. For example, Zhao
studied the moment stability of nonlinear discrete time delay stochastic systems based on
H-representation [26], Sheng studied the observability of time-varying stochastic Markov jump
systems based on H-representation [27]. H-representation method to simplify the linear
matrix equation problem. Then,can it be used in the study of linear matrix inequality?
This is a question that can be considered. For example, whether the H-representation
method can be applied to the almost sure consensus of multi-agent systems [28] and the
event-triggered L2 − L∞ filtering for network-based neutral systems with time-varying
delays by using T-S fuzzy method [29]. In this paper, we will study the bisymmetric
and skew bisymmetric solutions of quaternion matrix equation by using the expansion
rules of quaternion matrix product, H-representation of matrices and semi-tensor product
of matrices.

Problem 1. Let A, B, Ci ∈ Qn×n, i = 1, · · · , n, and

Tb =

{
X|X ∈ BQn×n, AX + XAT +

n

∑
i=1

CiXCT
i = B

}
.

Find out Xb ∈ Tb such that
‖Xb‖ = min

X∈Tb
‖X‖.

Xb is called the minimal norm bisymmetric solution of (1).
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Problem 2. Let A, B, Ci ∈ Qn×n, i = 1, · · · , n

Tsb =

{
X|X ∈ SBQn×n, AX + XAT +

n

∑
i=1

CiXCT
i = B

}
.

Find out Xsb ∈ Tsb such that

‖Xsb‖ = min
X∈Tsb

‖X‖.

Xsb is called the minimal norm skew bisymmetric solution of (1).

The main contributions of this paper are as follows: (i) By using the semi-tensor
product of matrices, the new conclusions of the row and column expansion rules of matrix
product over quaternion skew field are proposed, which can transform quaternion matrix
equation into quaternion linear equations for solving. (ii) The H-representation method
provides a systematic method to extract independent elements of special matrices.This
paper applies this method to solve quaternion matrix equations, and provides a simple
and feasible method to simplify the solution of quaternion matrix equations. (iii) The
proposed method is compared with the real vector representation method in [16] to reflect
the advantages of the proposed method in computational time and computable dimension.

This article is structured as follows. In Section 2, we introduce some basic knowledge of
quaternion and semi-tensor product of matrices. In Section 3, we introduce H-representation,
bisymmetric matrix and skew bisymmetric matrix, and give H-representation of these two
kinds of special matrices, respectively. In Section 4, we study the minimal norm bisymmetric
solution and the minimal norm skew bisymmetric solution of Equation (1) and give the
necessary and sufficient conditions for the existence of solutions and the general solution
expressions. In Section 5, the effectiveness of the algorithms are verified by numerical
examples. Furthermore, by comparing this method with the real vector representation
method, the superiority of this method is illustrated. In Section 6, a brief conclusion is given.

2. Preliminaries

In this section, we will review some basic knowledge of the quaternion and semi-tensor
product of matrices.

Definition 1 ([30]). The set of quaternions can be regarded as a four-dimensional algebra,that is,

Q = {q = q1 + q2i + q3j + q4k|i2 = j2 = k2 = −1, ijk = −1, q1, q2, q3, q4 ∈ R}.

Quaternion q can be uniquely represented as q = b1 + b2j, where b1 = q1 + q2i,
b2 = q3 + q4i.

The conjugate of the quaternion q is defined as q = q1 − q2i− q3j− q4k = b1 − b2j. The
norm of a quaternion q is

‖q‖ =
√

q2
1 + q2

2 + q2
3 + q2

4 =
√

qq.

Definition 2 ([30]). Note that for any quaternion matrix A ∈ Qm×n, A can be represented as

A = A11 + A12i + A13j + A14k = A1 + A2j,

in which A11, A12, A13, A14 ∈ Rm×n, and A1 = A11 + A12i, A2 = A13 + A14i.
The conjugate matrix A is defined as A = A11 − A12i− A13j− A14k = A1 − A2j. The

Frobenius norm of quaternion matrix A is

‖A‖ =
√
‖A11‖2 + ‖A12‖2 + ‖A13‖2 + ‖A14‖2.
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Lemma 1 ([30]). Let a, b ∈ Q, A ∈ Qm×n, B ∈ Qn×p, then

ab = ba, (A)T = (AT), Vc(AB) = Vc(AB)

Definition 3 ([31]). Let A ∈ Rm×n, B ∈ Rp×q, t = lcm(n, p) is the least common multiples of n
and p, then the semi-tensor product of A and B is defined as

A n B = (A⊗ It/n)(B⊗ It/p).

Through the definition of semi-tensor product of matrices, we find that when n = p, it
is the traditional matrix multiplication. So semi-tensor product of matrices is a generalization
of traditional matrix multiplication.

Because semi-tensor product of matrices allows the expansion of the dimension of
matrices, we can realize the transformation between row and column stacking form of
matrix by using swap matrix.

Definition 4 ([31]). Define the mn dimensional swap matrix as follows

W[m,n] = [In ⊗ δ1
m, In ⊗ δ2

m, · · · , In ⊗ δm
m ],

where δi
m is the ith column of Im.

Lemma 2 ([31]). Let A ∈ Rm×n, then

W[m,n]Vr(A) = Vc(A), W[n,m]Vc(A) = Vr(A).

With the help of semi-tensor product of matrices, we present some new conclusions
on the expansion rules of quaternion matrix product.

Theorem 1. Suppose B ∈ Qm×n, X ∈ Qn×p, Y ∈ Qq×m, then

(1) Vr(BX) = B n Vr(X), Vc(BX) = (Ip ⊗ B)Vc(X);
(2) Vc(YB) = BH n Vc(Y), Vr(YB) = (Iq ⊗ BH)Vr(Y).

Proof. (1) For B = (bij) ∈ Qm×n, X = (xij) ∈ Qn×p, and Bi is the ith row of B, then the ith
block on the right side of C = BX is

Bi n Vr(X) = (Bi ⊗ Ip)Vr(X) =

∑n
k=1 bikxki

...
∑n

k=1 bikxkp

 = (Ci)
T.

So Vr(BX) = Vr(C) = B n Vr(X). From Lemma 2,

Vc(BX) = W[m,p]Vr(BX) = W[m,p] n B n Vr(X) = W[m,p] n B nW[p,n]Vc(X) = (Ip ⊗ B)Vc(X).

(2) Note B = (b1, · · · , bn), bi ∈ Qm(i = 1, · · · , n), Y = (y1, · · · , ym), yj ∈ Qq(j = 1, · · · , m),
then

Vc(YB) = Vc(Yb1, · · · , Ybn) =

Yb1
...

Ybn

.

By Lemma 1,

Ybi = y1b1i + y2b2i + · · ·+ ymbmi = b1iy1 + b2iy2 + · · ·+ bmiym =
[
b1i Iq, · · · , bmi Iq

]
Vc(Y).
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So

Vc(YB) =


b11 Iq b21 Iq · · · bm1 Iq
b12 Iq b22 Iq · · · bm2 Iq

...
... · · ·

...
b1n Iq b2n Iq · · · bmn Iq

Vc(Y).

And

Vr(YB) = W[n,q]Vc(YB) = W[n,q] n BH n Vc(Y) = W[n,q] n BH nW[q,m]Vr(Y) = (Iq ⊗ BH)Vr(Y).

Lemma 3 ([32]). The linear system of equation Ax = b, with A ∈ Rm×n and b ∈ Rm, has
a solution x ∈ Rn if and only if AA†b = b. In case that it has the general solution

x = A†b + (I − A† A)y,

where y ∈ Rn is an arbitrary vector. The minimal norm solution of the linear system of equation
Ax = b is A†b.

3. The H-Representation of Bisymmetric Matrix and Skew Bisymmetric Matrix

This section describes the H-representation of matrices and related properties.

Definition 5 ([22]). For a matrix A = (aij) ∈ Qn×n, if aij = an−i+1,n−j+1 = aji, then A is
called bisymmetric matrix.

Definition 6 ([33]). For a matrix A = (aij) ∈ Qn×n, if aij = an−i+1,n−j+1 = −aji, then A is
called skew bisymmetric matrix.

Next, a brief introduction to the H-representation is given.

Definition 7 ([5]). Consider a p-dimensional complex matrix subspace X ⊂ Cn×n over the field C.
For each matrix X = (xij)n×n ∈ X, there always exist a map ψ:X ∈ X 7→ Vc(X). If dim(X) = p
and e1, e2, . . . , ep (p ≤ n2), form a basis of X, define H = [Vc(e1), Vc(e2), . . . , Vc(ep)], there
exist x1, x2, . . . , xp ∈ C, such that X = ∑

p
i=1 xiei. Therefore for each X ∈ X, if we express

ψ(X) = Vc(X) in the form of
ψ(X) = Vc(X) = HX̃,

where X̃ = [x1, x2, . . . , xp]T is an order arrangement of independent elements in X, then HX̃ is
called an H-representation of ψ(X), and H is called an H-representation matrix of ψ(X).

In the complex matrix subspace X, the H-representation of the matrix is related to the
selection of the basis. The H-representation of a matrix is unique when the basis are fixed.

Based on the above definitions, the following examples are given.

Example 1. Let X = BRn×n, X = (xij)4×4 ∈ X, and then dim(X) = 6. If we select a basis of
X as

e1 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

, e2 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

, e3 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

,
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e4 =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

, e5 =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

, e6 =


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

.

It is easy to compute

ψ(X) = Vc(X) = [x11, x21, x31, x41, x21, x22, x32, x31, x31, x32, x22, x21, x41, x21, x31, x11]
T,

H =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0



, X̃ = [x11, x21, x31, x41, x22, x32]
T.

Example 2. LetX = SBRn×n, X = (xij)4×4 ∈ X, and then dim(X) = 2. If we select a basis of X as

e1 =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

, e2 =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

.

It is easy to compute

ψ(X) = Vc(X) = [0, x21, x31, 0,−x21, 0, 0,−x31,−x31, 0, 0,−x21, 0, x31, x21, 0]T,

H =



0 0
1 0
0 1
0 0
−1 0
0 0
0 0
0 −1
0 −1
0 0
0 0
−1 0
0 0
0 1
1 0
0 0



, X̃ = [x21, x31]
T.
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In general, we will give the H-representation for X = BRn×n and X = SBRn×n.
Firstly, we select the standard basis of n-dimensional bisymmetric matrix subspace and
n-dimensional skew bisymmetric matrix subspace.

For X = BRn×n, when n is odd, we select a set of standard basis as{
E11, · · · , En1, E22, · · · , En−1,2, · · · , E n+1

2 , n+1
2

}
,

where Eij = (ekl)n×n, and ekl = en−k+1,n−l+1 = elk = 1, the other elements are 0. At this
time, we have

X̃b = (x11, · · · , xn1, x22, · · · , xn−1,2, · · · , x n+1
2 , n+1

2
)T. (2)

When n is even,we select a set of standard basis as{
E11, · · · , En1, E22, · · · , En−1,2, · · · , E n

2 , n
2
, E n

2 +1, n
2

}
,

where Eij = (ekl)n×n, and ekl = en−k+1,n−l+1 = elk = 1, the other elements are 0. At this
time, we have

X̃b = (x11, · · · , xn1, x22, · · · , xn−1,2, · · · , x n
2 , n

2
, x n

2 +1, n
2
)T. (3)

Similarly, for X = SBRn×n, when n is odd, we select a set of standard basis as{
F21, · · · , Fn−1,1, F32, · · · , Fn−2,2, · · · , Fn+1

2 , n−1
2

}
,

where Fij = ( fpq)n×n, and fpq = fn−p+1,n−q+1 = − fqp = 1, the other elements are 0. At this
time, we have

X̃sb = (x21, · · · , xn−1,1, x32, · · · , xn−2,2, · · · , x n+1
2 , n−1

2
)T. (4)

When n is even,we select a set of standard basis as{
F21, · · · , Fn−1,1, F32, · · · , Fn−2,2, · · · , Fn

2 , n
2−1, Fn

2 +1, n
2−1

}
,

where Fij = ( fpq)n×n, and fpq = fn−p+1,n−q+1 = − fqp = 1, the other elements are 0. At this
time, we have

X̃sb = (x21, · · · , xn−1,1, x32, · · · , xn−2,2, · · · , x n
2 , n

2−1, x n
2 +1, n

2−1)
T. (5)

Remark 1. Note that ψ(Xb) is a column vector formed by all elements of Xb, while X̃b, X̃sb are
column vectors formed by different nonzero elements of Xb, Xsb, respectively. For clarity, we
denote the H-matrix in H-representation corresponding to X = BRn×n by Hb, the H-matrix in
H-representation corresponding to X = SBRn×n by Hsb.

4. The Solutions of Problems 1 and 2

In this section, by using the properties of semi-tensor product of matrices and the
H-representation, we study Problems 1 and 2.
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For convenience, we denote B = B11 + B12i + B13j + B14k = B1 + B2j,

−→
B =


Vc(B11)
Vc(B13)
Vc(B12)
Vc(B14)

, IB =



In2 0 0 0
0 0 In2 0

In2 0 0 0
0 0 In2 0
0 In2 0 0
0 0 0 In2

0 −In2 0 0
0 0 0 −In2


, D = In ⊗ A = D1 + D2j, E = A⊗ In =

E1 + E2j, Fi = In⊗Ci = F1i + F2ij, Gi = Ci⊗ In = G1i +G2ij, M11 = D1 + E1 +∑n
i=1 F1G1i,

M21 = −E2 −∑n
i=1 F1G2i, M12 = E2 + ∑n

i=1 F1G2i , M22 = D1 + E1 + ∑n
i=1 F1G1i, M13 =

∑n
i=1 F2G2i, M23 = D2 + ∑n

i=1 F2G1i, M14 = −D2 −∑n
i=1 F2G1i, M24 = ∑n

i=1 F2G2i. Then

M =

[
M11 M12 M13 M14
M21 M22 M23 M24

]
= M1 + M2i.

Theorem 2. Suppose A, B, Ci ∈ Qn×n (i = 1, · · · , n), and denote H1 =


Hb

Hsb
Hsb

Hsb

,

L1 =

[
M1 −M2
M2 M1

]
IBH1. Hence (1) has a bisymmetric solution if and only if(

L1L†
1 − I4n2

)−→
B = 0. (6)

Moreover, if (6) holds, the solution set of (1) can be represented as

Hb =

X = X11 + X12i + X13j + X14k
∣∣∣∣


X̃11
X̃12
X̃13
X̃14

 =

{
L†

1
−→
B + (In2−n+1 − L†

1 L1)y, ∀y ∈ Rn2−n+1, if n is odd
L†

1
−→
B + (In2−n − L†

1 L1)y ∀y ∈ Rn2−n, if n is even

,

where X̃1p is the independent elements of X1p, p = 1, 2, 3, 4.
Then, the minimal norm bisymmetric solution X̂b satisfies

X̃11
X̃12
X̃13
X̃14

 = L†
1
−→
B . (7)

Proof. For X = X1 + X2j = X11 + X12i + X13j + X14k ∈ BQn×n, using Theorem 1 and
H-representation of bisymmetric matrix, we can obtain∥∥∥∥∥AX + XAT −

n

∑
i=1

CiXCT
i − B

∥∥∥∥∥
=

∥∥∥∥∥Vc(AX + XAT −
n

∑
i=1

CiXCT
i − B)

∥∥∥∥∥
=

∥∥∥∥∥Vc(AX) + Vc(XAT)−Vc(
n

∑
i=1

CiXCT
i )−Vc(B)

∥∥∥∥∥
=

∥∥∥∥∥(In ⊗ A)Vc(X) + (A⊗ In)Vc(X) +
n

∑
i=1

(In ⊗ Ci)(Ci ⊗ In)Vc(X)−Vc(B)

∥∥∥∥∥
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=

∥∥∥∥∥(D1 + D2j)Vc(X1 + X2j) + (E1 + E2j)Vc(X1 − X2j) +
n

∑
i=1

(F1 + F2j)(G1i + G2ij)Vc(X1 − X2j)−Vc(B1 + B2j)

∥∥∥∥∥
= ‖D1Vc(X1)− D2Vc(X2) + D1Vc(X2)j + D2Vc(X1)j + E1Vc(X1) + E2Vc(X2) + E1Vc(X2)j− E2Vc(X1)j

+
n

∑
i=1

F1G1iVc(X1) +
n

∑
i=1

F1G2iVc(X2) +
n

∑
i=1

F2G1iVc(X2) +
n

∑
i=1

F2G2iVc(X1)

+
n

∑
i=1

F1G1iVc(X2)j−
n

∑
i=1

F1G2iVc(X1)j +
n

∑
i=1

F2G1iVc(X1)j−
n

∑
i=1

F2G2iVc(X2)j−Vc(B1)−Vc(B2)j‖

= ‖[M11Vc(X1) + M12Vc(X2) + M13Vc(X1) + M14Vc(X2)]−Vc(B1)

+ [M21Vc(X1) + M22Vc(X2) + M23Vc(X1) + M24Vc(X2)]j−Vc(B2)j‖

=

∥∥∥∥[M11Vc(X1) + M12Vc(X2) + M13Vc(X1) + M14Vc(X2)
M21Vc(X1) + M22Vc(X2) + M23Vc(X1) + M24Vc(X2)

]
−
[

Vc(B1)
Vc(B2)

]∥∥∥∥
=

∥∥∥∥∥∥∥∥
[

M11 M12 M13 M14
M21 M22 M23 M24

]
Vc(X1)
Vc(X2)
Vc(X1)
Vc(X2)

− [Vc(B1)
Vc(B2)

]∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥(M1 + M2i)


Vc(X11 + X12i)
Vc(X13 + X14i)
Vc(X11 − X12i)
Vc(X13 − X14i)

− [Vc(B11 + B12i)
Vc(B13 + B14i)

]∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥(M1 + M2i)




Vc(X11)
Vc(X13)
Vc(X11)
Vc(X13)

+


Vc(X12)
Vc(X14)
−Vc(X12)
−Vc(X14)

i

−([Vc(B11)
Vc(B13)

]
+

[
Vc(B12)
Vc(B14)

]
i
)∥∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

[
M1 −M2
M2 M1

]


Vc(X11)
Vc(X13)
Vc(X11)
Vc(X13)
Vc(X12)
Vc(X14)
−Vc(X12)
−Vc(X14)


−


Vc(B11)
Vc(B13)
Vc(B12)
Vc(B14)



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

[
M1 −M2
M2 M1

]


In2 0 0 0
0 0 In2 0

In2 0 0 0
0 0 In2 0
0 In2 0 0
0 0 0 In2

0 −In2 0 0
0 0 0 −In2




Hb

Hsb
Hsb

Hsb




X̃11
X̃12
X̃13
X̃14

−


Vc(B11)
Vc(B13)
Vc(B12)
Vc(B14)



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
.

By means of the properties of the Moore–Penrose inverse, we get
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∥∥∥∥∥AX + XAT −
n

∑
i=1

CiXCT
i − B

∥∥∥∥∥
=

∥∥∥∥∥∥∥∥∥
[

M1 −M2
M2 M1

]
IBH1


X̃11
X̃12
X̃13
X̃14

−


Vc(B11)
Vc(B13)
Vc(B12)
Vc(B14)


∥∥∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥∥∥L1


X̃11
X̃12
X̃13
X̃14

−−→B
∥∥∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥∥∥L1L†
1 L1


X̃11
X̃12
X̃13
X̃14

−−→B
∥∥∥∥∥∥∥∥∥

=
∥∥∥L1L†

1
−→
B −−→B

∥∥∥ =
∥∥∥(L1L†

1 − I4n2

)−→
B
∥∥∥.

Therefore, for X ∈ BQn×n, we obtain∥∥∥∥∥AX + XAT −
n

∑
i=1

CiXCT
i − B

∥∥∥∥∥ = 0

⇐⇒
∥∥∥(L1L†

1 − I4n2

)−→
B
∥∥∥ = 0

⇐⇒
(

L1L†
1 − I4n2

)−→
B = 0.

In case that (1) is compatible, its solution X ∈ BQn×n satisfies

L1


X̃11
X̃12
X̃13
X̃14

 =
−→
B .

Moreover, we can get the bisymmetric solution X̂b satisfies
X̃11
X̃12
X̃13
X̃14

 = L†
1
−→
B + (Ip − L†

1 L1)y, ∀y ∈ Rp,

when n is odd, p = n2 − n + 1 ; when n is even, p = n2 − n.

Similarly, we can obtain the minimum norm skew bisymmetric solution of Problem 2.

Theorem 3. Suppose A, B, Ci ∈ Qn×n (i = 1, · · · , n), and denote H2 =


Hsb

Hb
Hb

Hb

,

L2 =

[
M1 −M2
M2 M1

]
IBH2. Hence (1) has a skew bisymmetric solution if and only if(

L2L†
2 − I4n2

)−→
B = 0. (8)

Moreover, if (8) holds, the solution set of (1) can be represented as
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Hsb =

X = X11 + X12i + X13j + X14k
∣∣∣∣


X̃11
X̃12
X̃13
X̃14

 =

{
L†

2
−→
B + (In2+n+1 − L†

2 L2)y, ∀y ∈ Rn2+n+1, if n is odd
L†

2
−→
B + (In2+n − L†

2 L2)y ∀y ∈ Rn2+n, if n is even

,

where X̃1q is the independent elements of X1q, q = 1, 2, 3, 4.
Then, the minimal norm skew bisymmetric solution X̂sb satisfies

X̃11
X̃12
X̃13
X̃14

 = L†
2
−→
B . (9)

5. Algorithms and Numerical Examples

This section provides algorithms and examples of H-representation methods for
solving bisymmetric and skew bisymmetric solutions of quaternion generalized Lyapunov
equation. For convenience, we take the case of i = 1.

Next, numerical experiments are used to verify the effectiveness of the above algorithms.

Example 3. Suppose A, C ∈ Qn×n be generated randomly for n = 3 : 50. Denote

Xb =X1
b + X2

b i + X3
b j + X4

bk ∈ BQn×n,

Xsb =X1
sb + X2

sbi + X3
sbj + X4

sbk ∈ SBQn×n.

Compute AXb + Xb AT + CXbCT = Bb and AXsb + Xsb AT + CXsbCT = Bsb. For AX +
XAT +CXCT = Bb and AX + XAT +CXCT = Bsb, using Algorithms 1 and 2, we can obtain the
calculation solutions X̂b and X̂sb, respectively. Denote ε1 = log10‖Xb − X̂b‖, ε2 = log10‖Xsb −
X̂sb‖. As the dimension changes, εi, (i = 1, 2) are shown in Figure 1.

Algorithm 1: (Problem 1)

Step 1: Input A, B, C ∈ Qn×n, output M1, M2,
−→
B ,

Step 2: Input Hb, Hsb, output H1, L1,
Step 3: According to (7), output the minimal norm bisymmetric solution X̂b of (1).

Algorithm 2: (Problem 2)

Step 1: Input A, B, C ∈ Qn×n, output M1, M2,
−→
B ,

Step 2: Input Hb, Hsb, output H2, L2,
Step 3: According to (9), output the minimal norm skew bisymmetric solution X̂sb
of (1).
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Figure 1. Errors in different dimensions.

Next, the proposed method is compared with the real vector representation method in
Reference [16]. Next, we briefly introduce the real vector representation of quaternion.

Let q = q1 + q2i + q3j + q4k ∈ Q, denote

←−q =


q1
q2
q3
q4

,

←−q is called the real vector representation of q.
Let x = [x1, x2, · · · , xn], y = [y1, y2, · · · , yn]T be quaternion vectors. Denote

←−x =


←−x1
...
←−xn

,←−y =


←−y1
...
←−yn

,

←−x ,←−y are called as the real vector representation of quaternion vector x and y, respectively.
For A = (Aij) ∈ Qm×n, denote

←−
A c =


←−−−−
Col1(A)
←−−−−
Col2(A)

...
←−−−−−
Coln(A)

 =



←−
A11

...
←−−
Am1

...
←−
A1n

...
←−−
Amn


,
←−
A r =


←−−−−−
Row1(A)
←−−−−−
Row2(A)

...
←−−−−−−
Rowm(A)

 =



←−
A11

...
←−
A1n

...
←−−
Am1

...
←−−
Amn


,

where Colk(A) is the kth column of A(k = 1, · · · , n), Rowl(A) is the lth row of
A(l = 1, · · · , m).

←−
A c,
←−
A r are called the real column stacking form and the real row

stacking form of A, respectively. Real column stacking form and real row stacking form of
A are collectively called real vector representation of A.

By comparing the computer running time and the computable dimension, the superiority
of the proposed method is illustrated. Taking the bisymmetric matrix as an example, when n is
odd or even, the figures are shown in Figure 2.
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Figure 2. Comparison of running time of different methods.

Since the real vector representation method takes too long in calculating large dimensions,
the real vector representation method only calculates n = 18. By comparison, in terms of time,
under the premise of calculating the same dimension, the time required by this method is
shorter, and with the increase of dimension, the advantages of this method are more obvious.
Secondly, in terms of computable dimension, due to the smaller matrix size and less data to be
stored in this method, the computable dimension is larger.

6. Conclusions

With the help of semi-tensor product of matrices, this paper puts forward some new
conclusions about the product expansion rules of quaternion matrices and applies them to
the calculation of matrix equation. For solving quaternion matrix equation with special
structural solutions, H-representation is used to extract the independent elements of the
matrix to participate in the operation, by comparing with the real vector representation
of quaternion, we illustrate the effectiveness and superiority of the method. In addition,
the event-triggered L2 − L∞ filtering for network-based neutral systems with time-varying
delay via T − S fuzzy approach based on proposed method is a good direction worthy
of studying.
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