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Abstract: A digital signature is one of the most widely used cryptographic primitives in asymmetry
cryptography. According to the security requirements in different symmetry or asymmetry network
models, various digital signatures have been developed in the literature. To protect the right of
the signer, Chaum and Antrepen first introduced the concept of an undeniable signature, where
interactive protocols are needed for the verification process. Besides, a signer can, also, perform
a disavowal protocol to prove that they did not sign the message. On the other hand, threshold
cryptography is, usually, used to protect the system from a single point of failure. In a (t, n)-threshold
signature scheme, as long as t people in the group of n people participate, the signature can be
smoothly signed. By combining these two features, an undeniable threshold signature enjoys the
advantages from both sides. After our survey, we found that the existing undeniable threshold
signature schemes are either insecure or apply impractical assumptions. Thus, in this manuscript, we
aim at designing a novel and provably secure undeniable threshold signature scheme. The proposed
scheme is formally proven to be unforgeable and invisible. Besides, our scheme supports cheater
identification, which allows one to find the cheater, when a signing protocol fails. Moreover, the
proposed scheme can be performed without the help of trusted third parties or secure cryptographic
modules, which would be more practical when our scheme is deployed in real-world applications.

Keywords: digital signature; undeniable signature; threshold signature; cryptanalysis

1. Introduction

A digital signature is widely used, nowadays. It is a mathematical technique used
to validate the authenticity and integrity of a message. Unlike a handwritten signature,
it is easily copied and distributed. According to the security requirements in different
symmetry or asymmetry network models, various digital signatures have been developed
in the literature. For example, the signature scheme used in cryptocurrency and centralized
digital currency should be different, due the requirements of the environments, even
though they are digital currency as well. Though these properties are convenient, they
are unsuitable for some cases. Consider a commitment that is sensitive to some extent,
personally or commercially, so one would only want to commit to the party they specified,
but not to others. For example, someone may want to break the news of some incriminating
information on the Internet. To protect themself, they may only want to sign for a reporter
or judge, not for everyone. In such cases, undeniable signatures are well suited. An
undeniable signature is a digital signature that allows a signer to be selective to whom they
allow to verify their signature. Without the signer’s cooperation, the signature could not
be verified. One may consider a designated verifier signature [1–5] for such a scenario,
which allows an interactive portion of the scheme to be offloaded onto a designated verifier
for each signature, reducing the burden on the signer. However, in a designated verifier
signature scheme, a signer has to designate a verifier in the signing phase, which would
be inconvenient. In the example mentioned above, since the signer could not know which

Symmetry 2022, 14, 1118. https://doi.org/10.3390/sym14061118 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14061118
https://doi.org/10.3390/sym14061118
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-6948-2405
https://doi.org/10.3390/sym14061118
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14061118?type=check_update&version=2


Symmetry 2022, 14, 1118 2 of 16

reporter is interested in the news or which judge would like to verify the news at first, they
cannot designate a verifier beforehand.

The first undeniable signature was proposed by Chaum and Antwerpen in 1989 [6].
In an undeniable signature, there are two interaction protocols: confirmation protocol and
disavowal protocol. Confirmation protocol confirms that a candidate is a valid signature
of the message issued by the signer. However, the signer can always refuse to take part
in confirmation protocol and claim that the signature is invalid, at anytime. As the result,
disavowal protocol, which confirms that a candidate is not a valid signature of the message
issued by the signer, is an important part of an undeniable signature. Such a protocol is
not available for a designated verifier signature. Later, in 1990, Chaum proposed a zero-
knowledge undeniable signature scheme [7]. Lots of research [8–12] following Chaum’s
work has been proposed. However, not until 2005 were the unforgeability and invisibility
for Chaum’s scheme proven by Ogata et al. [13]. More precisely, it was the security of
the full-domain hash (FDH) variant of Chaum’s scheme that Ogata et al. proved. Due to
the special properties of an undeniable signature, a lot of related works [14–18] have been
given in the literature.

Though an undeniable signature has been found useful in many scenarios, it can be
further improved. The original construction for an undeniable signature is a single-signer
paradigm. However, a theft or loss of the signing key can be a catastrophic problem.
The most common way for preventing this issue is storing secrets in multiple locations,
which prevents the capture of the secrets and the, subsequent, cryptanalysis of the system.
Nevertheless, just splitting and combining the secrete is unstable for a corporation because
of the single point of failure problem. The key should never be stored at a single location,
throughout its entire lifetime. In such cases, threshold cryptosystem [19] and threshold
signatures [20–23], in particular, are well suited. In a threshold signature scheme, signing
keys are distributed among several servers, which need to act jointly to issue a signature.
A threshold signature may fit Bitcoin or blockchain-based applications [24], due to its
distributed architecture. In a threshold signature scheme, n parties are allowed to share
the signing ability under a single public key. A parameter t is defined, such that an
adversary that compromises t or fewer shares is unable to generate a signature and learns no
information about the key. Besides, such an approach is able to better fit into a decentralized
environment. The first threshold undeniable signature was proposed by Harn and Yang
in 1992 [25]. They proposed two threshold undeniable signature schemes: (1, n) scheme
and (n, n) scheme. Following Harn and Yang’s [25] schemes, Lin et al. [26] presented a
general (t, n) threshold undeniable signature scheme. In 1998, Lin and Wu [27] pointed out
that their scheme suffers from a cheating attack by a dishonest signer, which can result in a
fake group signature. A scheme should identify the evil party that sends out the invalid
value in the interaction protocol. As a result, Lin and Wu [27] proposed an undeniable
(t, n)-threshold signature scheme, supporting cheater identification. Their scheme does
not need to trust any third party, and provides two capabilities to withstand cheating
attacks. Each member’s secret key corresponds to a public key, which can be verified
in the key-generation phase. Besides, their scheme allows one to identify any dishonest
participant in the group-signature-generation phase. Nevertheless, Lin and Wu’s scheme
has the following problem:

1. Although Lin and Wu claimed that no trusted third party is required for key gener-
ation, a secure cryptographic module is required in the group-signature-generation
phase.

2. There is a vulnerability: a dishonest signer still can forge a fake signature that the
secure cryptographic module is unable to detect, which can result in a fake group
signature. The corresponding cryptanalysis has been shown in [28], by Lin and Tseng
in 2021.

3. There is no security proof in Lin and Wu’s paper.
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1.1. Contribution

After our survey, we found that there is, probably, no secure threshold undeniable sig-
nature with cheater identification. Therefore, in this manuscript, we design an undeniable
(t, n)-threshold signature scheme with the following features.

1. Standing from a forge attack from a dishonest signer by identification.
2. Our scheme does not need any trusted third party or secure cryptographic module in

any phase.
3. We, formally, demonstrate the security proofs of the unforgeability and invisibility for

our scheme.

1.2. Organization

The rest of this manuscript is organized as follows. In Section 2, we present the
preliminaries for the proposed scheme. In Section 3, we demonstrate the details of our
scheme. In Section 4, we define and prove the security of our scheme. Next, we compare our
scheme with others [27,29–33] in Section 5. Finally, in Section 6 we discuss opportunities
for future work and conclude this work.

2. Preliminaries

We, first, define some notations in Table 1 for our manuscript. We use pk, sk, and
tk to represent public key, secret key, and trapdoor key, respectively. By m, we mean a
message used in a signature scheme or a commitment scheme. For the output (C, D) of
a commitment scheme Com, C and D are the commitment string and the decommitment
string, respectively. In our undeniable threshold signature scheme, n and t are used for the
number of users and the threshold value for signing a message, respectively. For an integer
q, Zq is the set {0, 1, . . . , q− 1}. Besides, by Prob[E], we mean the probability that event E
happens.

Table 1. Notations.

Notation Meaning

pk public key
sk secret key
tk trapdoor key
m message
(C, D) commitment string/decommitmenet string
n number of users
t threshold value
Zq {0, 1, . . . , q− 1}
Prob[E] the probability that event E happens

2.1. Non-Malleable Equivocable Commitments

A trapdoor commitment scheme, or equivocable commitments [34], is a commit-
ment scheme with a special property, called “equivocable”. As a commitment scheme, a
trapdoor commitment scheme should be hiding and binding. The former requires a com-
mitment string that reveals no information about the committed message, while the latter
guarantees the committed message cannot be altered after commitment. Moreover, the
“equivocable” property allows a sender to open a commitment string in any possible way
using the trapdoor. A trapdoor commitment scheme consists of the following algorithms:
KG, Com, Ver, Equiv.

• KG(1λ). On inputting the security parameter 1λ, the key generation algorithm KG
outputs a public/trapdoor key pair (pk, tk).

• Com(pk, m). On inputting the public key pk and a message m, the commitment
algorithm Com outputs [C(m), D(m)] = Com (pk, m; R), where R is the random
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coin used in the algorithm. Here, C(m) is the commitment string, and D(m) is the
decommitment string, which should be kept secret before opening.

• Ver(pk, C, D). On inputting the public key pk and the commitment/decommitment
string C, D, the verification algorithm Ver, also known as the open algorithm, either
outputs a message m or an invalid symbol ⊥ .

• Equiv(pk, m, R, m′, tk) is the algorithm that realizes the equivocable property. It takes
as inputs the public key pk, strings m, R for [C, D] = Com(pk, m, R), a message
m′ 6= m, and the trapdoor key tk, and outputs D′ such that Ver(pk, C, D′) = m′.

A trapdoor commitment scheme should satisfy the following properties:

• Correctness: If [C, D] = Com(pk, m, R) then Ver(pk, C, D) = m.
• Hiding: For every message pair m, m′ the distributions C(m) and C(m′) are statistically

close.
• Binding: There is no probabilistic polynomial-time algorithm A that is able to output

C, D, D′, such that Ver(pk, C, D) = m, Ver(pk, C, D′) = m′ and m 6= m′.

A commitment scheme is said to be non-malleable [35], if there is no adversary
intercepting C(m), so it is able to compute C(m′) for a related message m′. We refer the
readers to [36–40], for more details about non-malleable commitments.

2.2. Threshold Signatures

A threshold signature is a multi-signer digital signature scheme. Let S = (Key-Gen,
Sig, Ver) a signature scheme. A (t, n)-threshold signature scheme T for S realizes the
functionality to distribute the signing key among a group of n players, P1, . . . , Pn. To
sign on a message, there must be at least t + 1 players to jointly perform a multiparty
protocol in order to generate a valid signature. A threshold signature scheme T consists of
two protocols:

• Thresh-Key-Gen(1λ), the distributed key-generation protocol. Taking as input the
security parameter 1λ, in this protocol, n players jointly compute the public key pk
and private keys ski for player Pi, for i = 1, . . . , n.

• Thresh-Sig, the distributed signing protocol, which takes as a public input a message
m to be signed, and private inputs {ski}i∈I for I ⊆ {1, . . . , n} and |I| ≥ t + 1. The
output of the protocol is a signature σ.

Note that, to verify the signature σ on message m with public key pk, one can run the
Ver algorithm of S .

2.3. The FDH Variant of Chaum’s Undeniable Signature Scheme

The full-domain hash (FDH) variant of Chaum’s scheme is, briefly, described as
follows. Let G be a commutative group of prime order q, and with a generator g.

• Key Generation. On inputting the security parameter 1λ, the algorithm outputs the
public key pk = (g, y, H) and the secret key sk = x, where x is randomly chosen from
Zq, y = gx, H : {0, 1}∗ → G is a cryptographic hash function.

• Signing. Taking as inputs the public key pk = (g, y, H), the secret key sk = x, and a
message m ∈ {0, 1}∗, the algorithm outputs the signature as σ = H(m)x.

There are two protocols, the confirmation protocol and the disavowal protocol. The
former allows one to prove that she/he is indeed the signer, while the later is used to prove
that one is not the signer. Here, we omit the description for the confirmation protocol and
disavowal protocol, since they are unnecessary for reading our manuscript. As one would
observe in Section 3, the signature of our scheme is of the same form of that of Chaum’s
scheme. Therefore, in the security proofs shown in Section 4, we will prove the security
of our scheme based on the security of Chaum’s scheme. Besides, as we mentioned in
Section 1, Chaum’s scheme has been proven unforgeable and invisible by Ogata et al. [13].
For more details, the readers are referred to [13].
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2.4. Cheater Identification

In this manuscript, we follow the definition of secure multi-party computation with
an identifiable abort defined in [41], which allows the computation to fail (abort), while
guaranteeing that all the honest parties agree on the identity Pi of a cheater.

If F is the functionality computed by the original MPC protocol, then a protocol for F
with identifiable aborts, computes a modified functionality F′ that either computes F or
outputs the identity Pi of a cheater, in case of an abort.

2.5. Undeniable (t, n)-Threshold Signature with Cheater Identification

The Undeniable (t, n)-Threshold Signature with Cheater Identification is described
as follows:

• Key Generation. A verifiable (t, n)-threshold secret sharing [42] for a secret x consists
of n shares x1, . . . , xn distributed to n parties. Any party can check the share they get
during the phase. If the check does not hold, the protocol will abort and the cheater
will be identified.

• Signature Generation. An undeniable signature that t parties cooperate, generates a
valid signature that does not reveal any information of the party’s share. If any party
sends out an invalid value that causes the signature to be invalid, the protocol will
abort and the cheater will be identified.

• Confirmation Protocol. Given a message-signature pair, the group of t parties cooper-
ates, to prove the validity of the signature that does not reveal any information about
the party’s share. If any party sends out an invalid value that causes the proof to fail,
the protocol will abort, and the cheater will be identified.

• Disavowal Protocol. Given a message-signature pair, the group of t parties cooperates,
to prove the invalidity of the signature that does not reveal any information of the
party’s share. If any party sends out an invalid value that causes the proof to fail, the
protocol will abort and the cheater will be identified.

3. The Proposal Scheme

The most difference of our scheme and Lin et al.’s scheme is that it is not necessary for
the usage of secure cryptographic module, which can be viewed as an online trusted third
party. We show the details of our scheme as follows:

Initialization Phase: Let G be a group of signers {U1, U2, . . . , Un}, where each signer
Ui is identified by a unique string IDi. The following public parameters are defined by
the group before other phases. Let p, q be two large primes, such that p = 2q + 1. For the
multiplicative group of the field GF(p), let g be a generator of order q.

Key Generation Phase: The key generation process is described as follows

Step 1: Each Ui selects a random value xi ∈ Zq, computes yi = gxi ∈ GF(p) and
[Ci, Di] = Com(yi), then broadcasts Ci.

Step 2: Each Ui broadcasts Di. Let yi be the value decommitted by Ui.
Step 3: Each Ui randomly generates a t− 1 degree polynomial.

fi(x) = ai0 + ai1x + ai2x2 + . . . + ai,t−1xt−1 (1)

where each aij ∈ Zq and ai0 = xi. Then, each Ui computes

vij = gaij mod p (2)

for j = 0, . . . , t− 1, and publishes Vi = [vi0, vi1, . . . , vi,t−i]. Note that vi0 = yi.
Step 4: Each Ui in G computes a shadow key.

uij = fi(IDj) mod q (3)
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for each Uj ∈ G\{Ui}. Next, uij is sent to Uj via a secure channel. Note that Uj
is able to check the validity of uij by checking

guij ?
=

t−1

∏
k=0

((vik)
(IDj)

k
)(mod p). (4)

Ui will be identified as a cheater, if Equation (4) does not hold.
Step 5: After receiving n− 1 shadow keys from the others, the secret key ui of each Ui

in G can be computed by Ui as:

ui = ∑
Uk∈G

uki mod q. (5)

Note that Ui’s share public key ni can be computed as:

ni = gui =
t−1

∏
`=0

t−1

∏
k=0

((v`k)
(IDi)

k
) mod p

Once all signers’s secret keys are verified, the public key for the signer group G is computed
as y = ∏Ui∈G vi0 mod p, and the secret key will be the form x = ∑Ui∈G ai0 mod p.

Signature Generation Phase: Any group W ⊆ G of t signers are able to jointly sign
on a message M, via the following protocol:

Step 1: Each Ui ∈ W computes their partial signature Ti = Mui , computes [Ci, Di] =
Com(Ti), and broadcasts Ci.

Step 2: Each Ui broadcasts Di. Let Si be the value decommitted by Ui. Note that each Ui
can prove to others that they know ui s.t. Si = Mui , ni = gui using Chaum’s [7]
zero-knowledge protocol, by replacing Z with Si, x with ui, and y with ni,
respectively.
If all Si are accepted, the players compute:

Z = ∏
Ui∈W

(S
∏Uj∈W\Ui

−IDj ·(IDi−IDj)
−1

i ) mod p,

which will be the form of Mx.

Confirmation Protocol: Assume that a group W ′ ⊆ G of any t signers, who are willing
to help a verifier to verify, the signature is Z. Then, the following zero-knowledge protocol
will be run jointly, by the members in W ′ and the verifier.

Step 1: The verifier sends
{

D =
(
h(M)α · gβ

}
to W ′, where α, β are randomly chosen

from Zq, and h is a collision-resistant hash function.
Step 2: W ′ performs Step 1 to Step 2 of the Signature Generation Phase, whereas the

message M is replaced with D. Let δ be the result after Step 2 of the Signature
Generation Phase. Note that, δ = Dx mod p. Next, W ′ randomly chooses r and
sends R = δr (mod p) to the verifier.

Step 3: The verifier then sends (α, β) to W ′.

Step 4: W ′ then verify D ?
=
(
h(M)α · gβ

)
(mod p). If the equation holds, then W ′ reveals

r to the verifier; otherwise the protocol is terminated.
Step 5: Finally, the verifier checks

R ?
=
(

Za ·Yβ
)r

.

If the equation holds, then the verifier accepts the signature Z; otherwise, it is
rejected.
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Disavowal Protocal: To convince a verifier that a specific value Z 6= Mx, for a given
message M and public key y = gx, a group of signer W ′ of any t members in G perform
the following protocol with the verifier.

Step 1: The verifier chooses, uniformly at random, an integer s from {0, 1, . . . , k}, where
k should be mutually agreed. Besides, the verifier randomly chooses a ∈ Zq.
Then, the verifier sends {D = Msga, E = Zsya} to the group W ′.

Step 2: W ′ performs Step 1 to Step 2 of the Signature Generation Phase, whereas the
message M is replaced with D. Let δ be the result after Step 2 of the Signature
Generation Phase, δ = (Msga)x = Msxya.

Step 3: The group W ′ chooses ζ ∈ {0, 1, . . . , k} and tests if

E
δ
= (Z ·M−x)ζ . (6)

The equality of Equation (6) means that ζ is equal to the value s chosen by the
verifier. Since there are at most k + 1 choices of s, W ′ is able to find the correct ζ,
with at most k + 1 trials. Note that if Z, indeed, is equal to Mx, then W ′ can only
guess the correct ζ ∈ {0, 1, . . . , k} with probability 1/(k + 1), since “Z = Mx”
implies Z ·M−x = 1. Next, W ′ uses a commitment scheme to commit the correct
ζ, which is the one that makes Equation (6) hold, and sends the commitment C
of ζ to the verifier.

Step 4: The verifier then sends a to W ′.
Step 5: If D = Mζ ga, then W ′ sends ζ and the decommitment string D to the verifier.
Step 6: The verifier accepts if C opens ζ via D and ζ = s.

4. Security Proof

There are two security notions defined by Chaumin his paper [7]: unforgeability and
invisibility [13]. Unforgeability guarantees that an adversary cannot forge a valid signature
pair without the private key. Invisibility guarantees that one cannot determine whether a
given signature/message pair is valid. There is another security notion, called anonymity,
defined by Galbraith and Mao [43], which (roughly) states that it is difficult to determine
the real signer, if there are two or more signers. It has been shown that, if the message space
are the same for all the signer groups, then invisibility and anonymity are equivalent. In
this section, we will prove the unforgeability and invisibility for our undeniable threshold
signature scheme. We start the proof with a technical overview below.

Our scheme is based on a full-domain hash (FDH) variant of Chaum’s scheme, which
has been proven to be unforgeable [44]. The form of the signature generated at the end
of the Signature Generation Phase is of the same form as that of Chaum’s scheme. The
concept of our proof is that, if there exists an adversary A being able to forge a valid
signature of scheme with a probability ε ≥ λ−c, then we can build a forger F to forge a
valid signature for Chaum’s undeniable signature scheme, also with probability ε ≥ λ−c.
We assume that F can simulate the signing oracle and the confirmation/disavowal oracle.
These assumption is the same for an invisibility distinguisher D.

Without loss of generality, we may assume that the adversary controls players
U2, . . . , Ut and that U1 is the honest player who always speaks first at each round. We, then,
build a simulator acting on behalf of U1, to simulate the protocol without knowledge of
U1’s private key, to interact with the U2, . . . Un that the adversary controlled.

By A(τA)U1(τ1)
, where τA is the random tape of A, and τ1 is the random tape of U1,

we denote the output of A. Assume that

Probτ1,τA

[
A(τA)U1(τ1)

is a successful forgery
]
≥ ε.
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for some value ε. As stated in [44], if we rewind A, we still have:

Probτ1

[
A(τA)P1(τ1)

is a successful forgery
]
≥ ε

2
.

This fact will help us to make the simulation sound using trapdoor commitments. If the
simulation is indistinguishable from the real protocol from the view of A, the adversary
will act as if it is in the real protocol, and output the corresponding result. Next, we describe
the details of the simulation as follows:

4.1. Unforgeability

Consider the following game.

1. First, A participates in the key generation protocol to jointly compute a public key y
for the undeniable threshold signature scheme.

2. Next,A is allowed to request the group of players to sign on messages M1, . . . , M`, and
the signer group jointly performs the signing protocol to generate the corresponding
signatures Z1, . . . , Z`.

3. Besides, A is also allowed to send message-signature pairs (M1, Z1), . . . , (M`, Z`),
and the signer group performs the confirmation/disavowal protocol with the pairs.

4. At the end, the adversary outputs a message-signature pair (M∗, Z∗) for it, under the
public key y, with probability of at least ε.

Definition 1 (Unforgeability). An undeniable threshold signature scheme achieves the existential
unforgeability under the adaptive chosen message attacks, if ε is negligible.

We state the proof for the unforgeability as follows. In our proof, we aim at build
a forger F for Chaum’s undeniable signature scheme, who will simulate the view for
an adversary A to our scheme, according to the unforgeability game. Note that, as an
attacker to Chaum’s signature scheme, F is given a public key y and allowed to access the
signature/confirmation/disavowal oracles of Chaum’s signature scheme. An overview is
illustrated in Figure 1.

4.1.1. Simulation for the Key Generation Phase

The simulation is described below. On input, a group public key y = gx for Chaum’s
undeniable signature scheme, the forger F plays the role of U1, as follows:

1. F selects a random value x1 ∈ Zq, and computes [C1, D1] = Com(gx1) and broadcasts
C1. Meanwhile, A broadcasts commitments Ci for i = 2, . . . , t.

2. Each player Ui broadcasts Di. Let yi be the value decommitted from Ci using Di.
3. F then rewinds A to Step 2. Now, F can compute a new D̂1, such that, C1 is de-

committed to ŷ1 = y ·∏n
i=2 y−1

i using D̂1. This can be done by adopting the Equiv
algorithm of the trapdoor commitment scheme.

4. Next, F chooses u12, . . . , u1t ∈ Zq and sets a polynomial f1(x) = a0 + a1x + . . . +

at−1xt−1, satisfying f1(IDi) = u1i and ŷ1 ·∏t−1
k=1 gak(ID)k

= gu1i for i = 2, . . . , t.
5. F simulates the remaining parts of the protocol, following the procedure of the Key

Generation Phase shown in Section 3.
6. At the end of the simulation of this phase, a public key ŷ is outputted.

In the simulation, the view of the adversary A is the same as that in the real scheme,
thanks to the equivocable property of the trapdoor commitments. Besides, one can see that
vi0 = yi for i = 2, . . . , t, and v10 = ŷ1 = y ·∏n

i=2 y−1
i . Therefore, the public key outputted at

the end of the simulation is:

ŷ =
t

∏
i=1

vi0 = (y ·
n

∏
i=2

y−1
i ) · y2 . . . yt = y,

which is actually the given public key of Chaum’s signature scheme.
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Figure 1. Simulation of proving unforgeability.

4.1.2. Simulation for the Signature Generation Phase

F simulates this phase as follows, with A for generating a signature of a message M.

1. F selects a random value x1 ∈ Zq, computes [C1, D1] = Com(Mx1) and broadcasts C1.
Meanwhile, A broadcasts commitments Ci for i = 2, . . . , t.

2. Next, each player Ui broadcasts Di. Let Si be the result decommitted from Ci using Di.
3. F queries the signature oracle with M, to obtain a signature Z, and, then, rewinds A

to Step 2. Now, F is able to compute a new D̂1, such that, D̂1 decommits C1 to

Ŝ1 =

Z ·

 t

∏
i=2

S
∏j∈{1,...,t}/{j}

−IDj
(IDi−IDj)

i

−1


∏t
j=2

ID1−IDj
−IDj

.

4. At the end of the simulation, a signature Ẑ is outputted.

Thanks again to the equivocable commitment scheme, the view in the simulation if
the same as that in a real protocol to the adversary. Besides, one can observe that

Ẑ = Ŝ
∏t

j=2
−IDj

ID1−IDj
1 ·

t

∏
i=2

S
∏j∈{1,...,t}/{j}

−IDj
(IDi−IDj)

i = Z.
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Besides, Z = Mx, where x = logg y, since it is a valid signature of Chaum’s signature
scheme. Therefore, the signature Ẑ generated in this phase is, also, a valid signature of our
scheme, since the form of a signature in our scheme is the same as that in Chaum’s scheme.

4.1.3. Simulating the Confirmation/Disavowal Protocol

Since F is allowed to query to confirmation/disavowal oracles, and F can successfully
simulate the signature generation phase, F is able to simulate confirmation/disavowal
protocol for our scheme, by just following the procedures shown in Section 3.

Lemma 1. Our scheme is unforgeable, if the full-domain hash (FDH) variant of Chaum’s scheme
is unforgeable.

Proof. As stated in Sections 4.1.1–4.1.3, the view simulated by the forger F is indistinguish-
able from a real protocol, for the adversary A. Therefore, A will output a valid forgery
with the same probability, say ε, as that against a real protocol. However, due to the usage
of the rewinding technique, the probability for F succeeding in the key-generation phase
and the signature-generation phase is at least ε

2 . Thus, the probability for F obtaining a
forgery from A is at least ε2

4 . Note that the signature of our scheme is of the same form of
Chaum’s scheme. If A outputs a successful forgery, then F can output what A outputs, to
break the unforgeability of Chaum’s scheme. Under the assumption that Chaum’s scheme
is unforgeable, the probability of success of F must be negligible, which implies that A can
forge the scheme with the probability ε, which must, also, be negligible.

4.2. Invisibility

Consider the following game:

1. First, A participates in the key generation protocol to jointly compute a public key y,
for the undeniable threshold signature scheme.

2. Next,A is allowed to request the group of players to sign on messages M1, . . . , M`, and
the signer group jointly performs the signing protocol, to generate the corresponding
signatures Z1, . . . , Z`.

3. Besides, A is, also, allowed to send message-signature pairs (M1, Z1), . . . , (M`, Z`),
and the signer group performs the confirmation/disavowal protocol with the pairs.

4. At some point, A outputs a message M∗ that has never been queried before and is
given challenge signature Z∗. The generation of Z∗ follows the rules below. First, a
coin toss b hidden from A’s view is determined. Second, Z∗ is a valid signature on
M∗, if b = 1; Z∗ is uniformly chosen from the signature space at random if b = 0.

5. A keeps making queries as before, except when:

• making a signing query with M∗;
• making a confirmation/disavowal query with (M∗, Z∗).

6. At the end, the adversary outputs a guess b′, such that b′ = b, with probability at
least ε.

Definition 2 (Invisibility). An undeniable threshold signature scheme achieves invisibility under
an adaptive chosen message attack, if ε− 1

2 is negligible.

Note that the term ε− 1
2 is usually defined as the advantage for an adversary A, in

winning the invisibility game.
We state the proof for the invisibility as follows. In our proof, we aim at build a

distinguisher D for Chaum’s undeniable signature scheme, which will simulate the view
for an adversary A to our scheme, according to the invisibility game. Note that, as an
attacker to Chaum’s signature scheme, F is given a public key y and allowed to access the
signature/confirmation/disavowal oracles of Chaum’s signature scheme. An overview of
the proof is illustrated in Figure 2.
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Figure 2. Simulation of proving invisibility security.

Simulation

The simulation is as follows:

1. To simulate the key generation protocol, the distinguisher D plays the role of P1 and
does the same to simulate as the forger F does in the unforgeability proof, shown in
Section 4.1.1.

2. To simulate the signature generation protocol, the distinguisher D plays the role of P1
and does the same to simulate as the forger F does in the unforgeability proof, shown
in Section 4.1.2.

3. To simulate the confirmation/disavowal protocol, the distinguisher D plays the role
of P1 and does the same to simulate as the forger F does in the unforgeability proof,
shown in Section 4.1.3.

4. At some point, the adversary outputs a message M∗ to the distinguisher D. Then,
D forwards M∗ to the oracle of Chaum’s invisibility game, to obtain a signature Z∗.
Finally Z∗ is sent to A.

Lemma 2. Our scheme satisfies invisibility if full-domain hash (FDH) variant of Chaum’s scheme
is invisibility.
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Proof. Since the view simulated by the distinguisher D is indistinguishable from a real
protocol for the adversary A, A is able to distinguish Z∗ with the same probability, say
ε, as that in a real protocol. However, due to the usage of the rewinding technique, the
probability for F succeeding in the key generation phase and the signature generation
phase is at least ε

2 . Thus, the probability for F obtaining a forgery from A is at least ε2

4 . As
we mentioned in the proof of Lemma 1, since the signature of our scheme is of the same
form of Chaum’s scheme, we make D output what A outputs. Obviously, if A is able to
tell whether Z∗ is a valid signature or a random element from the signature space, then
D is able to break the invisibility of Chaum’s scheme. Thus, if Chaum’s scheme satisfies
the invisibility, the advantage for D succeeding in the invisibility game must be negligible,
which implies that A can distinguish the signature with the advantage that must, also, be
negligible.

5. Comparison and Analysis

In this section, we compare our scheme with undeniable threshold signature
schemes [27,29–32], an undeniable signature scheme [14], and a threshold signature
scheme, supporting designated verifier [33], for their security properties in Table 2. We,
also, make a comparison on computation cost, where the corresponding result is shown in
Table 3.

5.1. Security Properties

In this section, we will compare the scheme with the following properties:

• Share distribution center. The scheme does not need a trusted third party or secure
cryptographic module.

• Security proof. Security proof for unforgeability and invisibility are provided.
• Cheater identification. The scheme can detect cheaters in the signing and key dis-

tributed phase.
• Avoid single point of failure. The scheme would not suffer from a single point of

failure problem, which means just one malfunction or fault of a participator would
not cause the whole phase to stop working.

Table 2 lists the results of the comparison between our schemes and their security
properties. Most schemes need a trust third party. Liu et al.’s scheme [33] needs a signature
combination. Although Wang and Qing’s scheme [30], also, satisfies the share-distribution-
center property, it suffers from a single point of failure problem. Only [32,33] give the
security proof for the unforgeability, however, they do not prove the invisibility. For the
lattice-based undeniable signature scheme proposed by Rawal et al. [14], the unforgeability
and invisibility are proven. However, Rawal et al.’s construction supports only a single-
signer version, not a threshold version, and, thus, cannot avoid a single point of failure.
Besides, their scheme does not support cheater identification, since only the single-signer
scenario is considered. One can see that, in Table 2, ours is the only one satisfying all the
required properties.

Table 2. Comparison of security properties with other schemes.

Schemes Share Distribution Security Proof Cheater Identification Avoid SPOF 1

[27] no no no 2 yes
[29] no no yes yes
[30] yes no yes no
[31] no no no yes
[32] no unforgeability yes yes
[33] key generation phase unforgeability yes yes
[14] yes yes no no

Ours yes yes yes yes
1 Single Point of Failure, SPOF. 2 Crack shown in [28].
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5.2. Computational Complexity

In this section, we will evaluate the computational complexity of [14,27,29–33] and
ours, in the following phases.

• Individual signature. The time for computing exponent generated by each individual
participants.

• Group signature. The time for computing the exponent of the group-signing genera-
tion.

• Confirmation protocol. The time for computing the exponent of the confirmation
protocol.

• Disavowal protoco.l: The time for computing the exponent of the confirmation proto-
col.

Table 3 lists the results of the comparison between our schemes and others. We assume
that each participant only needs to run the proof protocol one time to show they are not
a cheater. Let t be the least number of members that are needed for the protocol, Tm
represents the time for computing multiply in the elliptic curve, Te represents the modular
exponentiation operation, and ` denotes the worst time for the group to guess the correct
random number, selected by the verifier in the disavowal protocol. Besides, the computation
costs for the pre-image sampleable function SamplePre and matrix multiplication are
denoted by TPSF and TM, respectively. One can observe that our scheme does not perform
well. It might be a trade-off between security and efficiency, since our scheme provides
more security properties than other works, e.g., invisibility. In the future, we will try our
best to improve the performance.

Table 3. Comparison of computational complexity with other schemes.

Schemes Individual Group Confirmation Disavowal
Signature Signature Protocol Protocol

[27] (1 + 2t)Te 2tTe (9 + 8t)Te no
[29] 7tTe tTe (4 + 8t)Te (4 + 4t`)Te
[30] 9tTe tTe (4 + 9t)Te 2(4 + 9t)Te
[31] tTe – (6 + 4t)Te (4 + 4t + `)Te
[32] 10tTe – (6 + 23t)Te (4 + 21t + `)Te
[33] 4tTm – Te no
[14] TPSF + TM – 3TM 3TM

Ours 9tTe tTe (7 + 10t)Te (6 + 10t + 2`)Te

6. Conclusions

Undeniable threshold signature can protect the right of signers and prevent the single
point of failure at the same time. It would, also, be suitable for decentralized environments,
due to its non-centralized architecture. In this manuscript, we present a new undeniable
(t, n)-threshold-signature scheme, supporting cheater identification. In our scheme, there
is no need for a trusted third party or a secure cryptographic module. The unforgeability
and invisibility of our scheme have, also, been formally proven. Compared to other related
works, though the efficiency is not the best, our scheme is the only one that achieves
decentralization, cheater identification, unforgeability, and invisibility, simultaneously.

In our scheme, to identify the cheater, the step to verify cannot be avoided. The
property of the share-distribution center and to avoid a single point of failure, also, increase
the computation overhead of verification. As a result, the performance of our scheme,
shown in Section 5.2, is not well. Our scheme adopts the zero-knowledge proof skill
in Chaum’s scheme [7], which is the first undeniable signature scheme using the zero-
knowledge-proof technique. Using another more efficient zero-knowledge protocol in the
confirmation/disavowal protocol may improve the performance of our scheme. Another
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direction for improvement could be to design a quantum-resistant construction, e.g., lattice-
based construction.
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