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Abstract: Ultrasonic based inspection of thin-walled structures often requires prior knowledge of
their mechanical properties. Their accurate estimation could be achieved in a non-destructive manner
employing, e.g., elastic guided waves. Such procedures require efficient approaches for experimental
data extraction and processing, which is still a challenging task. An advanced automated technique
for material properties identification of an elastic waveguide is proposed in this investigation. It
relies on the information on dispersion characteristics of guided waves, which are extracted by
applying the matrix pencil method to the measurements obtained via laser Doppler vibrometry.
Two objective functions have been successfully tested, and the advantages of both approaches are
discussed (accuracy vs. computational costs). The numerical analysis employing the synthetic data
generated via the mathematical model as well as experimental data shows that both approaches
are stable and accurate. The influence of the presence of various modes in the extracted data is
investigated. One can conclude that the influence of the corruptions related to the extraction of
dispersion curves is not critical if the majority of guided waves propagating in the considered
frequency range are presented. Possible extensions of the proposed technique for damaged and
multi-layered structures are also discussed.

Keywords: laminate; material properties; identification; guided waves

1. Introduction

Information about mechanical properties of engineering structures is essential equally
at the stage of their manufacturing (e.g., for their quality control) as well as at the operation
stage (e.g., for the periodic structural integrity assessment). Besides, prior accurate knowl-
edge of material properties is a crucial point for computational models employed at various
stages of the structural design, since discrepancies between assumed and actual values
of such parameters may cause large errors in the prediction, resulting in miscellaneous
undesired consequences. Numerous static or dynamic methods are being developed for
accurate evaluation of the material elastic constants [1–3]. The former include tensile, com-
pression, and bending tests, whereas the latter typically rely on low-frequency vibration or
high-frequency ultrasonic-related approaches.

Recent advancements in experimental facilities and devices caused the intensive de-
velopment of non-destructive dynamic approaches for material characterization. Detailed
reviews of the vibrational evaluation methods, where low frequencies are employed, can be
found in [3,4]. Identification techniques based on ultrasonic guided waves (GW) rely on GW
propagation characteristics, which carry information on the material properties in a wider
frequency range compared with vibrational methods. Therefore, they require multi-modal
high-resolution signals, where data collection and extraction of multiple propagating modes
are necessary, which is still a challenging task [5]. Typically, scanning of a certain area of
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the specimen surface is needed to obtain dispersion properties, and, therefore, various ex-
perimental techniques are used. Chen et al. [5], Okumura et al. [6,7], Bochud et al. [8] and
many others used a linear array probe attached at the surface of a specimen for dispersion
data extraction. Since the attachment of an ultrasonic probe changes the guiding properties
of the waveguide in the area of contact, non-contact techniques are preferable. Among
them, laser-based approaches are becoming widespread: GWs are excited by a laser source
through thermoelastic conversion [9] or by a piezoelectric transducer [10–12], and surface
displacement/velocity is detected by laser interferometry. A scanning procedure can also be
performed by an air-coupled transducer, e.g., Takahashi et al. [13] varied angle of incidence,
in order to estimate the properties of a bi-layered structure. In addition, the non-contact
technique based on the transient grating method was employed for the identification of
elastic properties of a composite consisting of GaN nanowires embedded into a dielectric
matrix [14].

Waveguide mechanical properties are usually obtained via the minimization of the
discrepancy between the measured and calculated wave characteristics. Therefore, an opti-
mization problem is to be solved, where an objective function providing a stable numerical
procedure fitting a waveguide model to the experimental data should be constructed. In
vibrational-based material identification, the objective function can generally be defined in
various forms involving natural frequencies and mode shapes [4]. For instance, Pagnotta
and Stigliano [15] investigated the feasibility of a vibration-based approach using natural
frequencies of thin isotropic plates of various shapes to determine Young’s modulus, Pois-
son’s ratio, mass density and thickness, showed the robustness of the identification process
with respect to measurement noise. Within GW-based approaches, as soon as measure-
ments are made, the corresponding GW characteristic features (e.g., wavenumbers, phase
or group velocities or slownesses) are to be accurately extracted from the experimental data.
For this purpose, the two-dimensional Fourier transform [8,10,14,16], the dynamic mode
decomposition [17] or the matrix pencil method (MPM) [18–20] are employed.

The specific features of GWs obtained from the experiment are further used for the
inverse problem solution, which also involves intensive computations using mathematical
models [8,14,20,21]. In GW-based identification methods, various objective functions are
constructed employing dispersion characteristics. A typical approach is to consider the
discrepancy between experimental and theoretical dispersion properties of GWs [11,13].
Its minimization demands calculation of dispersion curves of a waveguide at each step.
The latter is reduced to root-finding procedures, which are cumbersome for multi-layered
waveguides. Besides, reliable mode separation and reconstruction methods allowing for
individual mode extraction from dispersive multi-modal GW signals are needed [22].
Fairuschin et al. [23] used an alternative method, in which the dispersion properties are
calculated by solving the underlying differential equations using the spectral collocation
method. The latter provides a good trade-off between precision, implementation effort,
and computation, but it is not always robust [24]. It should be mentioned that addi-
tional features of GWs such as zero group velocities can be combined with waveguide
modelling for material properties identification [25]. Alternative approaches to avoiding
root-finding procedures, which are time-consuming, rely also on dispersion character-
istics. Thelen et al. [21] proposed a thorough assessment of the effective mechanical be-
haviour of pSi using dispersion maps, where the maps are obtained by converting the
modelled guided modes into a binary image. The objective function is defined as the
mean value of the element-wise product between experimental and modelled dispersion
maps. Chen et al. [5] and Bochud et al. [8] defined the objective function as the ratio of the
number of experimental pairs wavenumber-frequency estimates satisfying the dispersion
equation to the number of the total estimates for an isotropic layer. In this case, roots of the
dispersion equation are not necessary, since the experimental wavenumber-frequency is
substituted into the dispersion equation, and the objective function is defined using the
signum function, showing sign change in the vicinity of a certain wavenumber at a given
frequency, for more details see [5,8]. Also, Green’s matrices can be employed instead of
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the dispersion equation [14], which demands more computational time (2–3 times), but
provides a smoother objective function.

In this paper, a novel automated technique for the identification of material properties of
an elastic waveguide is proposed, validated and verified using synthesized and experimental
data. The approach relies on the information on the dispersion characteristics of GWs,
which are extracted here by applying the MPM to the measurements obtained via laser
Doppler vibrometry. Two objective functions have been composed: the first functional
uses information on slownesses, while the second one employs the Fourier transform of
Green’s matrix [14]. The numerical analysis relying on the synthesized data generated via
the mathematical model (the algorithm of data synthesis is described in Section 5) shows
that both approaches are stable. With the help of synthesized data, the accuracy of the two
approaches is compared and the efficiency and the biasedness of the obtained estimates is
tested. It is demonstrated that the approach using slownesses is more accurate, but it is more
time-consuming. The influence of the presence of certain modes in the extracted data is also
investigated. One can conclude that the influence of the corruptions related to the extraction
of dispersion curves extraction is not critical if the majority of guided waves propagating in
the considered frequency range are presented. Discussions of the possible extensions of the
proposed technique for damaged and multi-layered structures are also given.

2. Theoretical Determination of Guided Waves Characteristics

Let us consider the steady-state motion of an elastic layer V = {|x| < ∞,−H ≤ z ≤ 0}
of thickness H characterized by the mass density ρ, Young’s modulus E, and Poisson’s ratio
ν as shown in Figure 1, so that the parameter of the model θ = {E, ν, H} is introduced. The
mass density ρ is not included into the model parameter since the dispersion characteristics
of the layer depend only three values, and the density can be determined without ultrasonic
measurements. For the time-harmonic wave motion with the angular frequency ω = 2π f ,
the displacement vector u obeys the symmetric governing equations

1− ν

1− 2ν
∇ · ∇u− 1

2
∇× (∇× u) +

(1 + ν) ρ

E
ω2u = 0. (1)

HV

x

z

Figure 1. Geometry of the problem.

Hooke’s law relates the components of the stress tensor σik and the displacement
vector u. The upper and lower surfaces of the layer are assumed to be stress-free

σi2(x, 0) = σi2(x,−H) = 0, ∀x. (2)

Since the solution corresponding to a guided wave propagating in a positive direction
with the wavenumber ζ at the angular frequency ω = 2π f ( f is the dimensional frequency)
has the form:

u(x, z, ω) = U(z) exp[i(ζx−ωt)].

The latter form is substituted into governing Equation (1), which leads to the following
system of ordinary differential equations:

B2(ζ)
d2U(z)

dz2 + B1(ζ)
dU(z)

dz
+ ω2B0(ζ)U(z) = 0. (3)

Differential Equation (3) can be rewritten in the following form

dY
dz

= P(ζ, f )Y , (4)
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Y =

{
U1, U2,

∂U1

∂z
,

∂U2

∂z

}
.

The solution of (4) can be written in terms of the matrix M(ζ, f ) composed of eigen-
vectors, E(ζ, f , z) = diag{exp(γ1z), . . . , exp(γ4z)}, where γ1( f ) are eigenvalues of P(ζ, f ),
and the vector of unknown coefficients t:

Y(ζ, f , z) = M(ζ, f ) · E(ζ, f , z) · t. (5)

Replacement of (5) into stress-free boundary conditions (2) gives

T(ζ) ·M(ζ, f ) · E(ζ, f , 0) · t = 0,
T(ζ) ·M(ζ, f ) · E(ζ, f ,−H) · t = 0,

which can be rewritten in terms of a four-by-four matrix D

D(ζ, f ) · t = 0 (6)

and differential operator T(ζ) corresponding to Hooke’s law. Therefore, the solution ζk( f )
of the dispersion relation

∆( f , ζk) = det D(ζk, f ) = 0 (7)

gives wavenumbers of guided waves propagating in the elastic layer. In order to construct
components of the Fourier transform of Green’s matrix Kij(ζ, f ), the right-hand side of the
system (6) is substituted by g j (g1 = {1, 0, 0, 0}T, g2 = {0, 1, 0, 0}T) assuming that the load
is applied at the lower boundary z = 0. The latter leads to the following system:

D(ζ, f ) · t j = g j. (8)

The solution of (8) is then substituted into (5), and the Fourier transform of Green’s
matrix can be represented as follows

K( f , ζ/ f , z, θ) = M(ζ, f ) · E(ζ, f , z) · {t1(ζ, f ), t2(ζ, f )} (9)

in terms of slowness value s(θ) = ζ(θ)/ f , which is employed further.

3. Experimental Data Extraction Using the Matrix Pencil Method

In the experimental investigations, a rectangular aluminium plate (5754 alloy) with
dimensions 600× 600× 2 mm3 is employed, see Figure 2. Ultrasonic GWs are excited
by a circular piezoelectric actuator of 8 mm radius and 0.2 mm thickness manufactured
from PZT PIC 151 (PI Ceramic GmbH, Lederhose, Germany). It is adhesively attached on
one of the plate surfaces at its central point and is driven by broadband 0.5 µs rectangular
pulse tone burst voltage of 100 V-pp amplitude. Out-of-plane velocities of propagating
wave packages are measured at the surface of the specimen by PSV-500-V laser Doppler
vibrometer (LDV) (Polytec GmbH, Waldbronn, Germany), which sensing head is placed
about 1100 mm above the sample, minimizing the oblique angle laser beam measurement
errors [26]. Since the specimen surfaces remained intact with no special treatment for
their reflectivity improvement applied, at least 200 times averaging are performed for each
measurement point to improve the signal-to-noise ratio. Moreover, high-frequency noise is
filtered out from the acquired wavesignals by 3 MHz low-pass filter applied through the
vibrometer software.

For the sake of convenience, let us introduce the Cartesian coordinates so that the scan
line goes along the Ox-axis, and the transducer is situated at the origin of coordinates. The
LDV allows measuring out-of-plane velocities v(x, 0, 0, t) at the surface z = 0 of the specimen.

The out-of-plane velocities v(xi, tk) = vik measured at points (xi, 0, 0) at moments
of time tk in the form of B-scans are further post-processed using the MPM to extract
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corresponding slowness dispersion curves of propagating GWs. According to the MPM,
the Fourier transform is applied to v(xi, tk) with respect to time-variable for a certain set of
frequencies f j, which gives V(xi, f j) = V j

i . In the MPM, the singular value decomposition

is applied to the matrix composed of V j
i in order to compute the discrete relation between

the wavenumber k and the frequency f following Schöpfer et al. [18]. The MPM returns
the complex-valued wavenumbers kij describing propagating GWs at the frequency f j.
Therefore, a set of experimental slownesses sij = kij/ f j is obtained after the application
of the processing procedure, removing kij, which most likely does not correspond to a
propagating GW. Thus, it does not include kij with large imaginary parts (|ImkijH| > 0.005),
and kij corresponding to those points in the slowness-frequency plane (s, f ), which has the
lowest number of neighbouring points.

Transducers

LDV

Specimen

Scan points

x

z

y

Figure 2. Experimental setup.

Therefore, some GWs are not included in the final set and vice versa, some sij do not
match the actual guided wave. The LDV used in this study has an operating frequency
range up to 20 MHz. However, since no special treatment to the specimen surface (i.e.,
spraying of the reflective paint or gluing of the retroreflective film) was applied, the
spectrum of the measured signals at the frequencies higher than 2.5–3 MHz was found to
be noisy. Thus, to provide better signal-to-noise ratio in the experimental signals, a 3 MHz
lowpass filter was applied through the vibrometer software. Since its transition band was
within 2.5 and 3 MHz, in the paper we considered frequencies up to 2.5 MHz.

4. Objective Functions for Material Properties Characterization

As soon as slownesses s̆k at frequencies fn (n = 1, N f ) are extracted from the experi-
mental data, an inverse problem for material properties’ identification is to be formulated
and solved. With a certain model parameter vector θ including Young’s modulus, Poisson’s
ratio, and plate thickness, the mathematical model presented in Section 2 can be applied for
computing slownesses as roots of dispersion Equation (7) (for instance, using the method
of interval bisection) or the Fourier transform of Green’s matrix (9). Numerical routines
for calculating slownesses s and the Fourier transform of Green’s matrix (9) at a given fre-
quency f have been implemented in the FORTRAN programming language. Therefore, an
inverse problem is settled, matching the experimental and theoretical results via a specially
composed objective function. Two main approaches for the objective function composition
are considered here, and the effectiveness of several kinds of objective functions for material
properties identification are compared in the subsequent sections.

For both approaches and all the objective functions, the following optimization prob-
lem is formulated

θ̂ = arg min
θ∈Θ

g(θ, θ̆).

Here Θ denotes the bounds of the model parameters of a certain objective function
g(θ, θ̆), where the unknown parameter θ̆ incorporates information on the actual value of
the parameter, and θ̂ is an estimate determined as a result of solving the optimization
problem. The solution of the optimization problem has been implemented in the Python
programming language using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method [27].
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4.1. Objective Function Using Residual of Slownesses

In the first approach, the multi-parameter criterion is the minimization of the residual
between measured slownesses s̆k and slownesses sk calculated by employing the mathemat-
ical model described in Section 2 with the parameter θ. Therefore, an iterative correction of
simulation results is to be performed with varying material properties θ until the optimal
match between slowness-frequency pairs is found (sk(θ, fn), fn), calculated using a theoret-
ical model with parameters θ and the experiment (s̆k(θ̆, fn), fn), which contain information
about the unknown parameter vector θ̆, as well as other factors affecting the experiment.
Experimentally determined slownesses are denoted as s̆k(θ̆, fn) to show straightforwardly
that information about actual material properties θ̆ is included into the data.

Formally, the optimal model parameters θ̂ are obtained from the minimization of the
objective function

F(θ, θ̆) =
1
N

N f

∑
n=1

∑
k∈Pn

|s̆k(θ̆, fn)− sk(θ, fn)| (10)

is composed assuming the modal decomposition of the data. Here, k is the index of
experimentally found out data for some frequency fn, i.e., Pn = {k| ∃s̆k(θ̆, fn), n = 1, N f },
N f is the number of all frequencies, and N is the total number of pairs. Weights can also be
used to take into account the sensitivity of the modes to the material properties changes,
while such an investigation is out of the scope of the present study and the weights are
assumed to be equal. The disadvantage of the employment of this objective function is the
necessity of the numerical search of the roots of the dispersion Equation (7) for all dissimilar
frequencies s̆k(θ̆, fn) and the determination of slownesses sk(θ, fn) corresponding to the
experimental ones.

4.2. Objective Function Based on the Fourier Transform of Green’s Matrix

The second approach avoids time-consuming root search procedure. Moreover, instead
of direct insertion of the experimentally determined slowness-frequency pairs (s̆k(θ̆, fn), fn)
into dispersion Equation (7), they are substituted into the inversion of the Fourier transform
of Green’s matrix K−1

22 ( f , s, 0, θ) as proposed in [14]. The latter provides a smoother surface
compared with ∆( f , s), an example of dispersion map |K−1

22 ( f , s, 0, θ)| is demonstrated in
Figure 3a for typical aluminium parameters θ = {70 GPa, 0.33, 1.9 mm} (here all values
|K−1

22 ( f , s, 0, θ)| > 100 are substituted by 100). In this case, the following objective function
is employed:

Gβ(θ, θ̆) =
1
N

N f

∑
n=1

∑
k∈Pn

min
(
|K−1

22 ( fn, s̆k(θ̆, fn), 0, θ)|, β
)

. (11)

Here, an additional parameter β is introduced in order to avoid large values of objective
function (11), which improves the effectiveness of the inversion procedure, since extremely
large values (visible in Figure 3b) could strongly influence the objective function, if, for
instance, some points related to noise are included. Another alternative for avoiding too
large values of the objective function is the employment of a logarithm procedure so that
objective functions

Hβ(θ, θ̆) =
1
N

N f

∑
n=1

∑
k∈Pn

ln min
(
|K−1

22 ( fn, s̆k(θ̆, fn), 0, θ)|, β
)

and

Jβ(θ, θ̆) =
1
N

N f

∑
n=1

∑
k∈Pn

log10 min
(∣∣∣K−1

22 ( fn, s̆k(θ̆, fn), 0, θ)
∣∣∣, β
)

,
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which are also considered in this study. An example of dispersion map log10 |K
−1
22 ( f , s, 0, θ)|

is shown in Figure 3b for the same parameters θ as used for Figure 3a.

Figure 3. Surfaces of the dispersion maps for |K−1
22 ( f , s, 0, θ)| (a) and log10 |K

−1
22 ( f , s, 0, θ)| (b) at

θ = {70 GPa, 0.33, 1.9 mm}.

5. Generation of Test Data Sets

In the case of the data obtained from a physical experiment, slownesses can be repre-
sented as a sum of the slownesses depending on the material parameters and the random
component ε included the actions of random factors during the experiment, which can be
represented as follows for a given discrete data set

s̆k(θ̆, fn) = sk(θ̆, fn) + εnk.

To obtain statistics proving the effectiveness of the identification procedure, the method
must be validated in numerous tests, where the material properties θ̆ ∈ Θ are known, but
the data have to simulate the experimental data. For this purpose, test data sets, i.e.,
slowness–frequency pairs, are to be prepared at first.

At the first stage of the test data preparation, theoretical slownesses are calculated for a
known parameter θ̆ = θ∗ at the set of frequencies { f ′n}

N′
n=1. Since the number of propagating

guided waves varies with frequency, slowness–frequency pairs are split into sets sk(θ
∗, f ′n)

of various numbers of elements M′k in the general case, and each set corresponds to a kth
non-attenuating guided wave. Next, white noise ε̆ ∼ N(0, σ) with the standard deviation
σ is added so that

s′k(θ
∗, f ′n) = sk(θ

∗, f ′n)(1 + ε̆)

is generated independently, and corrupted data sets (s′k(θ
∗, f ′n), f ′n}) are prepared for each

guided wave.
At the next stage, the noisy slownesses s′k(θ

∗, f ′n) are damaged for getting a given
percentage δ of gaps in the dispersion curves. To this end, the parameter δ1 ∈ (0, 1]
describing the percentage of sole points to be removed from initial data and the parameter
δ2 ∈ (0, 1] describing percentage of points belonging to the chains of random lengths to be
deleted from s′k(θ

∗, f ′n) are introduced so that δ = δ1 + δ2 < 1.
For simplicity, let us introduce one-dimensional arrays of frequencies related to the

kth guided wave as follows:

{ f ′nk} = { f ′n | Im s′k(θ
∗, f ′n) = 0}.

and denote their lengths as M′k = |{ f ′nk}n|. Next, the number of slowness–frequency
pairs for each guided wave, which are expected at the final stage, are defined by the
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relation Mk = M′k −M1
k −M2

k , where M1
k =]M′kδ1[ is the number of individual points to

be excluded from the initial set at random positions, while M2
k =]M′kδ2[ is the number of

points in Lk = random(2, 7) chains to also be deleted at random positions. To obtain

s̆k(θ
∗, fn) =

⋃{
s′k(θ

∗, f ′n′k)|n
′ /∈ Ik, n′ ∈ 1, M′k

}
,

the auxiliary set

Ik =

M1
k⋃

j=1

{
Akj

} ∪
 Lk⋃

j=1

{
Bkj

}
is composed of indices of slowness–frequency pairs to be deleted from the initially gener-
ated set sk(θ

∗, f ′n) employing temporary sets

Akj = random(1, M′k)

and
Bkj =

{
bkj, . . . , bkj + lkj

}
,

where
bkj = random(1, M′k),

lkj = random(2, M2
k),

Lk

∑
j=1
|lkj| = M2

k , bkj + lkj ≤ M′k,

Akj
⋂
Akj′ = Bkj

⋂
Bkj′ = Akj

⋂
Bkj′ = ∅, ∀j 6= j′.

The latter allows us to simulate data gaps and white noise, which are usually observed
in experimental data [20,28].

The sets (s̆k(θ
∗, fn), fn) generated according to the procedure described above are

employed further to analyse the behaviour of the proposed objective functions. Figure 4
shows four corrupted data sets (s̆k(θ

∗, fn), fn) for two values of the standard deviation
(σ = 0.0025 and σ = 0.01) and two levels of corruption (δ = 20% and δ = 40%) for
θ∗ = {70 GPa, 0.33, 1.9 mm}.

Figure 4. Examples of artificially generated corrupted slowness-frequency pairs (s̆k(θ
∗, fn), fn) for

θ∗ = {70 GPa, 0.33, 1.9 mm}.
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6. Numerical Analysis
6.1. Analysis of the Properties of Objective Functions

Some guided waves in laminates may have very low vertical amplitudes or might
be poorly excited by the transducer. To emulate the variety of the possible measurement
results, including the worst-case scenarios mentioned above, the numerical studies for
values of delta varying from 0% to 80% (if the delta is about 80%, the experimental data
might be totally useless) have been performed. The conclusions are valid for all the
considered values of delta, so delta, which are typical for the experiments and usually lie in
the range between 20% and 40%, and have been chosen for the numerics. For all the data
samples depicted in Figure 4, the two-dimensional surfaces f (E, 0.33, H), f (E, ν, 1.9 mm)
and f (70 GPa, ν, H) are depicted in Figures 5–7 as contour plots of three slices (ν = 0.33,
H = 1.9 mm and E = 70 GPa) calculated for two objective functions (F and G1 are
calculated for the corrupted data s̆k(θ

∗, fn) at σ = 0.0075 and δ = 20%). These figures
demonstrate that both objective functions are smooth, and the global minimum, which is
clearly visible for both objective functions in Figures 5–7, could be determined at the next
stage, where the minimization problem is solved. One can also note that objective function
F is usually smoother than G1.

Figure 5. Surfaces of objective functions F(θ̃) (a–d) and G1(θ̃) (e–h) at θ̃ = (E, ν = 0.33, H) and for
different degrees of corruptness σ (δ = 0.4).

Figure 6. Surfaces of objective functions F(θ̃) (a–d) and G1(θ̃) (e–h) at θ̃ = (70 GPa, ν, H) for different
degrees of corruptness (δ = 0.4).
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Figure 7. Surfaces of objective functions F(θ̃) (a–d) and G1(θ̃) (e–h) at θ̃ = (E, ν, 1.9 mm) for different
degrees of corruptness σ (δ = 0.4).

6.2. Inverse Problem Solution Using Synthesized Data

Foremost, the material properties identification procedure has been validated using
synthesized data s̆k(θ

∗, fn) calculated for θ∗ = {70 GPa, 0.33, 1.9 mm} with different levels
of noise σ and corruption δ = 40%. The statistics have been estimated for Young’s mod-
ulus E, Poisson’s ratio ν, and plate thickness H using five different objective functions
F, G1, G100, H1, J150 and employing 1000 tests for synthesized data. Figures 8–10 depict the
lengths of confidence intervals in subplots (a, c, e, g), whereas the relative error

ε̂ =
E(θ̂)− θ∗

θ∗
.

is illustrated in the subplots (b, d, f, h). Here, the mean of the parameter estimates θ̂ is
employed as an estimate for the expectation E(θ̂). The length of the confidence interval for
the mean indirectly indicates the efficiency of the estimates, which characterizes the accuracy
of the obtained parameter estimates and allows us to compare the objective functions from
this point of view. The relative error vector ε̂ can be used to consider a property such as
biased or unbiased parameter estimates. To investigate the influence of the presence of
guided waves, various combinations of guided waves has been considered (markers in the
bottom of Figures 8–10 show which modes have been included in the data set).

According to Figures 8–10, one can conclude that the estimates of all parameters
determined using the objective function F, which summarizes residuals in slownesses, are
unbiased and show the most efficiency for all the considered combinations of guided waves
except for GW 1. However, it should be noted that all estimates for the only first guided
wave GW 1, which is the fundamental antisymmetric mode, are biased. The objective
function Gβ gives the more efficiency and less biased estimates for β = 1 than β = 100 for
the majority of the considered synthesized data sets. Compared to the objective functions
H1 and J150, the functional G1 also provides more accurate estimates.

In general, it should be mentioned that the majority of the estimates calculated using
the approach based on the Fourier transform of Green’s matrix give an underestimated
value of Young’s modulus up to 9% (see Figure 8) and an overestimated value of the
Poisson’s ratio (more than 10%), see Figure 9. The plate thickness estimates are also more
inclined to be underestimated, but the error varies in the 3% range (Figure 10). It is also
noteworthy that the most efficient and less biased estimates for Young’s modulus and
Poisson’s ratio are determined for GW 2 and GW 2–GW 3. This regularity can not be
reported for the sample’s thickness, however, the estimation error is small for all the
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considered combinations of GW modes. It should also be noted that the computational
time for the approach based on the slowness residuals is hundred times smaller than for
the approach based on the Fourier transform of Green’s matrix.
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GW 5
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ˆ

Figure 8. The length of confidence intervals (a,c,e,g) and the relative error ε̂1 (b,d,f,h) for Young’s
modulus E identification obtained using five objective functions F, G1, G100, H1, J150 for different
levels of noise σ at δ = 40%.
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Figure 9. The length of confidence intervals (a,c,e,g) and the relative error ε̂2 (b,d,f,h) for Poisson’s
ratio ν identification obtained using five objective functions F, G1, G100, H1, J150 for different levels of
noise σ at δ = 40%.
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Figure 10. The length of confidence intervals (a,c,e,g) and the relative error ε̂3 (b,d,f,h) for plate
thickness H identification obtained using five objective functions F, G1, G100, H1, J150 for different
levels of noise σ at δ = 40%.

6.3. Inverse Problem Solution Using LDV Experimental Data

At the final stage, the two proposed approaches have been tested and validated using
experimental data obtained using the LDV setup for a plate made of aluminium alloy 5754
with the mass density ρ = 2660 kg/m3, with material parameters in dynamic tests that
are approximately the following: ν = 0.35, H = 2.0 mm and E = 71 GPa [29]. Figure 11
depicts slownesses (s̆k(θ̆, fn), fn) obtained applying the MPM to the experimental data as
circles. The optimization procedure has been run 1000 times using the BFGS method with
various starting points uniformly distributed in 10× 10× 10 grid in the parameter θ space
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using both objective functions. The statistics obtained for the estimates θ̂ calculated using
objective function F based on the slowness residuals are given in Table 1, while the statistic
estimations related to the objective function G1 based on the Fourier transform of Green’s
matrix are presented in Table 2. In these tables, the boundaries of the intervals, where
95% of all calculated parameters are located, as well as the medians and means, are given.
The results presented in these tables have been computed for the following sets of modes:
GW 1–GW 2, GW 2–GW 3, and GW 1–GW 5. The conclusions that can be drawn from the
analysis of Tables 1 and 2 are consistent with the results obtained for the synthesized data
provided in Section 6.2. The parameter estimates found for the approach using slowness
residuals are more accurate, since the lengths of confidence intervals are narrower. At
the same time, the obtained values are slightly underestimated for Young’s modulus and
Poisson’s ratio and slightly overestimated for the thickness for the mode set GW 1–GW 2.
It has been observed by [30] that the dispersion curves of A0 mode for a broad frequency
range demonstrate rather low sensitivity even to the essential changes in Young’s modulus
and Poisson’s ratio. Therefore, if being employed in the reconstruction procedure (as in the
considered case of GW 1–GW 2), it could provide higher dispersion and discrepancies in
the obtained results. As the final estimate of the faithful parameters, both the median and
the mean values can be taken, since their values are very close. For calculations by means
of the approach based on Green’s matrix, only the results obtained for the set of modes
GW 1–GW 5 can be considered acceptable.

Table 1. The cumulative percentages and the mean for the results calculated using objective function
F based on the slowness residuals.

GW Modes Statistics

2.5% 97.5% 50% mean

Young’s modulus

69.44067 70.02778 69.53528 69.57336

70.85072 70.93444 70.89058 70.86935

70.57222 70.99317 70.94851 70.86905

Poisson’s ratio

0.2814911 0.3088387 0.2851565 0.2868929

0.3426350 0.345837 0.3443798 0.345837

0.3498317 0.352299 0.3513940 0.3512925

Thickness

2.038286 2.045689 2.044301 2.043785

2.019506 2.022150 2.020586 2.020512

2.001522 2.014291 2.013035 2.010527

Table 2. The cumulative percentages and the mean for the results calculated using objective function
G1 based on Green’s matrix.

GW Modes Statistics

2.5% 97.5% 50% mean

Young’s modulus

70.51223 70.55632 70.53855 70.54622

68.29054 70.90552 70.88853 70.71145

68.94975 71.68033 71.39863 71.13951
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Table 2. Cont.

GW Modes Statistics

Poisson’s ratio

0.3130311 0.3199611 0.3156035 0.3164631

0.2584863 0.3394943 0.3394111 0.3352184

0.2730250 0.3862568 0.3508503 0.3454789

Thickness

2.050283 2.058020 2.056627 2.055417

1.985751 2.081555 2.029845 2.029940

2.008208 2.090551 2.030139 2.034077
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Figure 11. Experimentally observed (circles) and theoretically predicted slownesses (lines) calculated
at θ̂ estimated using objective function F based on the slowness residuals (solid lines) and G1 based
on Green’s matrix (dash-dotted and dashed lines) for GW 1–GW 2 (dashed and thick solid lines) and
GW 1–GW 5 (dash-dotted and thin solid lines).

Figure 11 depicts the slownesses calculated as a solution of dispersion Equation (7)
for parameters estimated using the developed numerical routines (solid, dashed, dash-
dotted lines), the corresponding values of θ̂ are given in Tables 1 and 2 (see the last
column for the mean value). Four sets of slowness curves corresponding to θ̂ determined
using experimental data (s̆k(θ̆, fn), fn) and two approaches employing data for modes
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GW 1–GW 2 (dashed and thick solid lines) and GW 1–GW 5 (dash-dotted and thin solid
lines) are demonstrated in Figure 11. A sufficient discrepancy between theoretical curves
and the experimental data is clearly visible by eye for modes GW 1–GW 2. For the full data
set, including information on all modes GW 1–GW 5, both approaches have more or less
similar difference with experimentally obtained slownesses, though the approach based on
the slowness residuals provide material properties slightly more close to the actual ones.
This conclusion is made based on the knowledge that the actual measured thickness value
H = 2 mm, and the result of numerical experiments presented in Section 6.2.

7. Discussions

The proposed automated procedure is an attempt to summarize and extend the results
of the researchers mentioned in the introduction as well as many others, who used GWs
for material properties characterization. The comparison of two different approaches for
objective function composition for the proposed procedure has shown that both approaches
have some advantages as well as disadvantages. The approach using the Fourier transform
of Green’s matrix is much faster compared with the approach using discrepancy between
theoretical and experimental slownesses. The authors believe that the advantages of the
two approaches might be combined into an improved algorithm with low computational
costs and accuracy close to the approach using slownesses. In this study, a sufficient
influence of the number of propagating modes on the accuracy of the identification was
shown, which might be useful for improved algorithms based on both the approaches
considered in this paper.

Though the proposed procedure for material properties identification has been val-
idated and verified for an elastic isotropic waveguide, it can be naturally extended for
multi-layered structures and damaged laminates, e.g., considering the data from the previ-
ous authors’ studies [20,28]. Another possible extension of the algorithm is the properties
characterization of piezoelectric and anisotropic layered structures using information about
the properties of guided waves propagating there. Besides, it is not limited by the matrix
pencil method and laser Doppler vibrometry. The most important basis of the developed
procedure is careful extraction of the information about dispersion characteristics of the
layered waveguide and fast computational algorithms for Green’s matrices, which have
been recently advanced by the authors [31,32] and can be employed in the near future.
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Abbreviations
The following abbreviations are used in this manuscript:

NDT non-destructive testing
SHM structural health monitoring
SCs slowness curves
GWs guided waves
LDV laser Doppler vibrometer
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