symmetry

Article

Geometry of Developable Surfaces of Frenet Type Framed Base
Curves from the Singularity Theory Viewpoint

Qiming Zhao !, Lin Yang 2 and Yongqiao Wang %*

check for
updates

Citation: Zhao, Q.; Yang, L.; Wang, Y.
Geometry of Developable Surfaces of
Frenet Type Framed Base Curves
from the Singularity Theory
Viewpoint. Symmetry 2022, 14, 975.
https://doi.org/10.3390/
sym14050975

Academic Editor: Christophe
Humbert

Received: 5 April 2022
Accepted: 30 April 2022
Published: 10 May 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

School of Mathematics, Jilin University of Finance and Economics, Changchun 130117, China;
zhaoqiming@jlufe.edu.cn

School of Science, Dalian Maritime University, Dalian 116026, China; yanglin@dlmu.edu.cn

*  Correspondence: wangyq@dlmu.edu.cn

Abstract: In this paper, we consider Frenet type framed base curves that may have singular points
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1. Introduction

The research concerning developable surfaces has many applications. For instance, in
industrial design and modelling, P. Bo et al. proposed a method to create seamless, smooth,
multi-strip developable surfaces from some design curves in [1]. By curve modifications,
their work achieved high accuracy of developability with the controllable error. The
superior performance of their method was demonstrated by the fabrication of some paper
industrial products. In [2], P. Bo et al. also provided a method to compute design curves to
define surfaces with large developability. The surfaces generated by this method do not
need any explicit curve interpolation procedure. In mathematics, developable surfaces can
be developed into planes without distorting the surface metric. There are many literature
studies about developable surfaces (see e.g., [3-7]). A tangent developable surface is a
special developable surface, which is formed by a spatial curve and its tangent lines. In
classical algebraic geometry, the tangent developable surface plays an important role in
the spatial curve duality theory [8]. In [4], the rectifying developable surface of a regular
curve was introduced by S. Izumiya et al.; they proved that a regular curve is always the
geodesic of its rectifying developable surface. The geodesic properties of a regular curve
on its rectifying developable surface were also studied in [9]. For a given geodesic curve,
P. Bo and W. Wang showed the expression of the rectifying developable surface of the
geodesic curve. In addition, Frenet type framed base curves are smooth curves with moving
frames, which may have singular points. S. Honda gave the existence and uniqueness for
Frenet type framed base curves in Euclidean space [10]. Here, we study one-parameter
developable surfaces, which are generated by Frenet type framed base curves, as a primary
case for the study of singular manifolds in Euclidean 3-space.

Singularity theory is a direct descendant of differential calculus, with interest in
equations, geometry, astronomy, physics, and other disciplines. There are some research
studies about hypersurfaces immersed in different spaces from the viewpoint of singularity
theory [11-14]. Furthermore, some of the latest research about singularity theory and the
submanifold theory can be seen in [3,4,15-27]. For instance, J. Sun and D. Pei considered
the Lorentzian hypersurface on the pseudo n-sphere and classified the singularities of this
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hypersurface in [11]. They also studied the geometric properties of lightlike hypersurfaces,
which are degenerate submanifolds in the Minkowski 4-space [12]. In addition, one-
parameter developable surfaces are hypersurface families. They can also be seen as bundles
along a Frenet type framed base curve, whose fibers are developable surfaces, and the
‘normals’ of these developable surfaces are located in the normal planes of the Frenet type
framed base curve. Rectifying developable surfaces and tangent developable surfaces of the
Frenet type framed base curve are two sections of one-parameter developable surfaces. We
prove that Frenet type framed base curves have similar properties to regular curves in their
rectifying developable and tangent developable surfaces. We also define one-parameter
support functions on the Frenet type framed base curves to investigate the singularities
of one-parameter developable surfaces. By using the unfolding theory of functions, the
one-parameter support functions can be used to analyze the geometric properties of one-
parameter developable surfaces. One-parameter developable surfaces are the discriminant
sets of one-parameter support functions. The singularities of developable surfaces are
Ag-singularities (k = 2,3) of these functions. Since Frenet type framed base curves may
have singular points, the situation presents some differences when compared with the
regular case in [28]. For instance, three cases for developable surfaces have cuspidal edge
singularities in the present paper. Theorems 1 and 2 are the main results of this paper.

The organization of this paper is as follows. In Section 2, we review the concepts of
Euclidean space that we used in this paper. We define one-parameter developable surfaces
of a Frenet type framed base curve and obtain two geometric invariants of the base curve in
Section 3. The geometric meaning of these two invariants (Theorem 1) and the classification
of singularities of one-parameter developable surfaces (Theorem 2) are also shown in this
section. The preparations for the proof of Theorem 2 are in Sections 4 and 5. In Section 6,
we provide an example to illustrate the main results in this paper.

All manifolds and maps considered in this paper are differentiable of class C*.

2. Basic Notions

In this paper, we suppose that a curve ¢ : I — R3 may have singular points. We
cannot define the Frenet frame along v if 7 has singular points. Fortunately, S. Honda
defined a Frenet type framed base curve under a certain condition, as follows [10].

Definition 1. We say that iy : I — R is a Frenet type framed base curve if there exists a reqular
spherical curve T : I — S? and a smooth function o : I — R, such that () = a(t)T (t) for all
t € I. Then we call T (t) a unit tangent vector and a(t) a speed function of y(t).

Obviously, 7 has singular point at ty if and only if a(ty) = 0. We define a unit

principal normal vector by N (t) = H;Eig\l and a unit binormal vector by B(t) = T (t) x N (t),
respectively. Then an orthonormal frame {7 (¢), N'(t), B(t)} along «(¢) is obtained and we

call it the Frenet type frame along 7 (t). We have the following formula:

{ T(t) =x(ON(2)

N(t) = —x(t)T(t) + T(t)B(t)
B(t) = —t(t)N(t),

where
K(t) = TN, ©(t) = det(T(t), T (), T(£) /T ()]

The functions x(t) and 7(t) are called the curvature function and the torsion function
of the Frenet type framed base curve v, respectively.

Now we briefly review the basic notions of developable surfaces and ruled surfaces.
Suppose ¢ : I — R3and & : I — R3\ {0} are C*-mappings. Consider a mapping
Foon:IxR— R?, which is defined by

Foyo) () = (£) + ug(t).
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Lo, (t) =

We call & a director curve, <y a base curve, and F, ¢ a ruled surface, respectively. For a
fixed t € I, y(t) + ug(t) is a ruling when u varies. A developable surface is a ruled surface
with the vanishing Gaussian curvature. We know that a ruled surface F, ¢ is a developable
surface if

det(Z(t), (1), &(t)) = 0.
Specifically, F. ¢ is called a cylinder if the direction of ¢ is fixed. We denote

Z(t) = &(t)/||&(t)|| and it follows that Fo,o(IxR) = F(%g)(l x R). Then F, ¢ is a

cylinder if and only if 5 () =0.1f 5 (t) # 0, we say that F(, ¢ is non-cylindrical. In this case,
a striction curve of F, » is defined by

y(£) - E(t)
- XS Ey,
oIk

We know that the singular points of a non-cylindrical ruled surface are located on the
striction curve. A cone is a non-cylindrical ruled surface whose striction curve c is constant.

e(t) = (t

3. One-Parameter Developable Surfaces

We study one-parameter developable surfaces of a Frenet type framed base curve
in this section. Let o be a Frenet type framed base curve. A spherical vector field
L:Ix[0,%] — S?is defined by

()T (t) — x(t) sin @ cos ON (t) + «(t) cos? OB(t)
V/T2(t) + x2(t) cos? 0

L(t,0) =

7

where T2(t) + k2(t) cos’6 # 0. We assume throughout the whole paper that 72(t)
+x2(t) cos? 6 # 0 for any (t,60) € I x [0, Z]. We denote L(t,6) = Ly(t) and consider a
surface Dy : [ x R — R3, which is defined by

T(t)T (t) — x(t) sin @ cos ON (t) + x(t) cos? GB(t)'

Dy(t,u) = y(t) +uLg(t) = v(t) +u VT2(t) + 12(t) cos? 0

We call Dy one-parameter developable surfaces of «y. For any 6 € [0, 5], we have

(kT2 sin By + x> sin By cos? B + kT cos Oy — kT cos By) (k cos T + T sin Gy N — T cos Oy B)
- i
2

(T2 + x2 cos? 6y)

Then it follows

det(y(t), Lgy(t), Lo, (£))

= (KT2 sin 6y + k1 cos 0y + > sin 6 cos® Oy — kT cos 6o)detA
=0

for all t € I, where

B (aT TT — x sin 6y cos BgN + «k cos? 0y B KcosGoT—f—TsmeoN—TcosQoB)

VT2 + K2 cos? 6 ' (12 + k2 cos? 0p)?2

It means Dy, is a developable surface. So we call Dy the one-parameter developable surfaces
of 4. If 6y = 0, T, we have the following proposition.

Proposition 1. Let vy : [ — R3 be a Frenet type framed base curve. Then we have the following:

(1) The normal vector field of Do along -y is parallel to the unit principal normal vector field of -y.
(2) If vy is not a plane curve, then v is the singularities of Dy.
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Proof. By the definition of Dgo, we have

xk(H)B(t) + t(£)T(t)

Dolt,u) = (1) +u T2(t) + x2(t)

Dy (t,u) =y(t) +uT(t).

We can calculate that

oDy oDy o K(f) (t +T(l’)T(t)
20,0 = )T, o) - LTGRO,
aDg aD%
SR =T, SE0) =T
And
dD dD a(b)r(t)
SR 0,0)x SR (00) = - LMD
oDz 0D

2 2 _
Py (t,0) x o (t,0) =0.
Therefore, statements (1) and (2) hold. O

If y is a regular curve, we can easily check that Dy(t, u) and Dz (t,u) are the rectifying
developable surface and tangent developable surface of -y, respectively. The regular curve
is always the geodesic of its rectifying developable surface (see [4,9]), and it is also always
the singularities of its tangent developable surface (see [3]). Here, we call Dy(t, u) and
Dz (t,u) the rectifying developable surface and tangent developable surface of the Frenet
type framed base curve v, respectively. By Proposition 1, the Frenet type framed base
curve has similar properties to a regular curve in its rectifying developable and tangent
developable surfaces.

In addition, we define two invariants, as follows:

() sinfp(T2(t) + k2 (t) cos® ) + cos g (e ()T (t) — &(t)T(t))

o) = T2(t) + k2(t) cos? 0y ’
— a(t)T(t) d a(t)x(t) cos By when
olt) = V/T2(t) + k2(t) cos? 90 < £)\/T2(t) + x2(f) cos? 90)’ (when 6(t) # 0).
Since

(k1% sin By + x> sin Oy cos? By + kT cos By — kT cos By) (k cos OyT + T sin g N — T cos Oy B)
(12 + k2 cos? 0) ?
xcosOyT + TsingN — Tcos 9B )

VT2 + k2 cos? 6

then §(t) = 0if and only if Ly, (t) = 0. By calculation, we have that

L, (t) = (£)

=5(1)

9Dy, 9Dy,
ot (b#) X —,

(bu) = (ﬁzw(it))Jr(K)zcosﬁsZ . + u5(t)> (cos OgN (t) + sin B B(t)).

Therefore, (o, ug) is a singular point of Dy, if and only if

tx(to)K(to) cos b Ty K(to) sin 90(T2(t0) + Kz(to) cos? 90) -+ cos 90(K(t0)i‘(t0) — f((to)T(to))

=0.
VT2 (to) + x2(to) cos? By 0 T2(to) + k2(tp) cos? 6y

If 6y # 7 and Dy, has singular point at (to, ug), then we have ugy # 0. It means that Dy,
has no singularities on the base curve v(t). For the geometric meaning of the above two
invariants, we have the following theorem.
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Theorem 1. Let  : I — R3 be a Frenet type framed base curve. Then we have the following:
(A) For any 6y € [0, %], the following statements are equivalent:

(1) o6(t)=0foralltel.

(2) Dy, is a cylinder.
(B) If6(t) # O forall t € I, then the following statements are equivalent:

(3) o(t)=0forallt el

(4) Dy, is a conical surface.

(C) The singular points of one-parameter developable surfaces Dy are y(t), Dz and

{Dg(t, u)|a(t)x(t) cos 0\/T2(t) + x2(t) cos2 0 4 u[k(t) sin 8(T>(t) + x*(t) cos® ) 4 cos O(k(t)T(t) — &(t)T(t))] = 0}.
Proof. (A) By the definition, Dy, is a cylinder if and only if Lg, () is a constant vector. Since

xcosOyT + TsingN — Tcos B
/T2 + x2 cos? 6

L, (t) is a constant vector if and only if 6(t) = 0 forall t € I.
(B) The striction curve ¢(t) of Dy, is expressed by

y(t) - Loy (t)
Lo, (t) - L, (t)

Then (B)-(4) is equivalent to ¢(f) = 0 for all t € I. We can calculate that

. aK cos 6y aK cos By i
¢=7y— Ly,
dt 64/ T2 + %2 cos? B 5\/T2+K2C08290
wx cos O 3(k cos 09T + TsingN — T cos 6y B) B d( ax cos b >
54/ T2 + 12 cos? 6 /T2 + x2 cos? 6 T2 + %2 cos? By
_at(TT — K sin b cos OpN + « cos® 6y B) d ax cos b
- 72 4 K2 cos? b 72 + k2 cos? 6,

190 (t) =4(t)

(t)/

a(£)x(t) cos By

e(t) =) - (t)/T2(t) + K2(t) cos? by

Ly, (1) = ¥(t) — Ly, (£)-

=aT —

( XT d ( ax cos O )]L
= - 0
VT2 +K2cos20y At \5+/12 + x2 cos? 6 0
ZO’(t)L(;O.

This means (B)-(4) and (B)-(3) are equivalent.
(C) By straightforward calculations, we have

oDy T+ u [k sin O(T? + k2 cos? ) + cos O(kt — kT)](k cos 6T + TsinON — T cos 6B)
ot (12 + K2 cos? 0) 3 '
oDy  TT — «sin6cos N + x cos® OB
o N B
0Dy x2TsincosOT + (k72sin® 0 — k72 cos? 0 — k3 cos* O) N — (k3 sin 0 cos® 0 + 2«72 sin 6 cos 0) B
0 (12 + k2 cos? 0)3 .

The above three vectors are linearly dependent at the singularities of Dy. So that we can
obtain these singularities if

ux cos 0[u(x sin (7% + k2 cos? 0) + cos 0(xt — k7)) + ax cos 0/ 72 + k2 cos? ]

(12 + k2 cos? 0) 3

It follows that cos® = 0or u = 0 or
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ulre(t) sin O(t2(t) + x2(t) cos? 8) + cos O(x(t)T(t) — k(£)T(t))] + a(t)x(t) COSQ\/TZ(t) +x2(t) cos? 6 = 0.
Therefore (C) holds. [

Next, we show the relationships between the above two invariants and the singularities
of one-parameter developable surfaces, as follows.

Theorem 2. Let oy : [ — R® be a Frenet type framed base curve. Then we have the following:
(1) (to,uo) is a regular point of Dy, if and only if

a(tg)x(tg) cos by
VT2 (to) + x2(tg) cos? 0y

+ ugd(ty) # 0.

(2)  Suppose (to, uo) is a singular point of Dy, then Dy, is locally diffeomorphic to the cuspidal
edge C x Roat (to, ug) if

(i) 6(tg) #0,0(tg) # 0and

B (X(to)K(to) cos By
§(t0) \/Tz(t()) + Kz(i’o) cos? 90,

Ug =

or
(i1) 5(1’0) = Dé(i’o) cosfy =0, S(to) # 0 and

o £ —((ax)(to) cos By — (axT)(to) sinby)+/T2(to) + x2(tg) cos Og
07 (2x7t)(to) sin by + (k72) () sin g + (3k2k) (t9) sin g cos? O + (k) (t) cos Oy — (Ti) (t) cos 6y

or

(iii)  O(ty) = a(tg) cosBy = 6(ty) = 0 and

i(tg) cos by — a(ty)T(to) sinfp = 0.
(3)  Suppose (to, ug) is a singular point of Dy, then Dy, is locally diffeomorphic to the swallowtail
SW at (to,ug) if5(i‘0) #0,0(ty) =0,0(ty) # 0and
a(to)K(tg) cos by

0 S (to) /T2 (ko) + K2 (k) o By

Here C = {(x1,x2,x3)|x? = x3} is the cusp (see Figure 1), C x R is the cuspidal edge (see
Figure 2), SW = {(x1, X2, x3)|x1 = 3u* + 120, x, = 4u3 + 2uv, x3 = v} is the swallowtail (see
Figure 3).

Figure 1. Cusp.
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Figure 2. Cuspidal edge.

>

Figure 3. Swallowtail.

4. One-Parameter Support Functions

For a Frenet type framed base curve 7 : I — R3, we define a function
G:1Ix [O,g] xR = R

by G(t,0,x) = (x — (t)) - (cos ON (t) + sin0B(t)). We call G a one-parameter support func-
tion of y with respect to the unit normal vector cos 0N (t) + sin 5 (t). We write gg, ,(t) =
G(t, 60, x9) for any (6, x9) € [0, 7] x R3. Then we have the following proposition.

Proposition 2. Let 7y : I — R3 be a Frenet type framed base curve and g, », (t) = G(t,60,x0)
the one-parameter support functions. Then the following assertions hold.

(1) 80y, (to) = 0 if and only if there exist u,v € R such that
xo — y(to) = uT (to) + v(sin BN (ty) — cos B B(ty)).
(2)  &6y,x, (o) = 86y,x, (to) = 0 if and only if there exists u € R such that

T(to) T (to) — x(tg) sin By cos 8o N (tg) + x(tg) cos? By B(tg)
VT2 (to) + x2(tg) cos? 6y

xo —y(to) = u

(A)  Suppose 5(tg) # 0. Then the following assertions hold.
(3) 8o (t0) = by,xo (t0) = &oyx (to) = 0 if and only if

%0 — (ko) = — a(to)x(ty) cos by T(to)T (tg) — x(tg) sin By cos BgN (tg) + x(tg) cos? BoB(to)
O T S (k) /T2 (to) + K2(t) cos2 o VT2 (t0) + 2(fo) cos2 By '
(4) Qa0 (t0) = Gayx0 (o) = Faoo (t0) = Ziy vy (to) = O if and only if o (ko) = 0 and
%0 — (o) = — a(to)x(tg) cos by T(to)T (to) — x(to) sin By cos BpN (to) + x(tg) cos? BoB(to)
07t 5(to)/T2(to) + k2 (tg) cos? By V/T2(to) + x2(tg) cos? By '
(5) Zoyrolto) = Gopng(H0) = Gopro(to) = Ziony (o) = Ror(to) = O if and only
lfU’(to) =0, (7'(t0) =0
and
%0 — (ts) a(tg)x(tp) cos by T(tg) T (to) — x(t) sin By cos BN (tg) + x(tg) cos? By B(to)
0o— (o) = — .

8(to) /T2 (to) + 2 (to) cos? O VT2 (to) + x2(to) cos? By
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(B)  Suppose §(tg) = 0. Then the following assertions hold.

(6) 89y, (to) = L60,x(t0) = Zoyx,(to) = 0 if and only if a(tg) cos 6y = 0 and there
exists u € R, such that

T(tg)T (tg) — x(t) sin Hp cos GoN(to) + x(tp) cos? 6o B (o)

xg—y(tg) =u .
) V12(to) + x2(tg) cos? 6y
(7) 86y, (t0) = &ag,x0 (t0) = Fop,xo(t0) = g(gi,)xo(fo) = Oifand only if one of the following
holds:

(@) a(tg)cosby =0,0(ty) # 0and

(i cos By — axTsin ) (TT — x sin By cos BN + x cos? 6y B) (to)
%72 sin 0y + 3x2% sin O cos? Oy + 2xTT sin Oy — Tk cos Oy + kT cos Oy

xg — y(to) =
(b) IX(to) cos by = S(to) = &(to)K(to) cos By — lX(to)K(to)T(to) sinfy = 0 and

T(to)T(to) - K(to) sin 6 cos GON(tO) + K(to) cos? QQB(fo)
V/T2(to) + x2(tg) cos? By

xo — y(to) = u

Proof. Since gg, v, (t) = (x0 — ¥(t)) - (cos BN (t) + sinfpB(t)), we have the following:

(1) 60,0 =(x0 — ) - (=K cos BT — Tsin N + T cos 6y B),
(ii) §6,x, =k cos by + (xg — ) - [(kTsin Oy — K cos )T — (k2 cos By + T sin By 4 T2 cos By )N
+ (tcos by — T2sinby) B,
(i) géz’,)x() =2ak cos By + &k cos 6y — axT sin 6
+ (%0 — ) - [(kT sin 6y 4 2T sin 6y — & cos By + k> cos B + k1> cos 6g) T
+ (k*T sin By — 3k cos By — 3TT cos By + T° sin By — T sin Oy )N

2

+ (T cos by — 3711 sin By — k>T cos By — T° cos 6p) B],

(iv) géj)xO =3k cos Oy + 3ik cos Oy + ik cos Oy — 2akT sin Hy
— Bakt sinfy — &kt sinfy — ak> cos By — akT? cos by
+ (%0 — ) - [(kTsin by 4 3k T sin By — & cos By + kT2 cos By + 3k sin b

31sinfy — kT3 sinby) T

+ 61>k cos Oy + 5k TT cos By — Kk
+ (BxkTsin 6y + 3121 sin 6y — 4ki cos 0y + k* cos 0y + 2k>T% cos By — T sin by
— 3(k)% cos By — 47% cos By — 3(7)% cos By + 6721 sin By + T* cos By )N
+ (% cos By — 4Tt sin By — 3(7)? sin By — 5k T cos By — k> cos by
— 6721 cos By + k>7% sin 6y + * sin 6) B].
By the definition, gg, x, (to) = 0 if there exist u,a,b € R, such that
X0 — ’y(to) = MT(fQ) + Ll./\/(fo) + bB(to)

and acosfy + bsinfy = 0. So that there exists v € R, such that a = vsinfy and b =
—v cos 0y, then we have

X0 — ’y(to) = MT(to) + Z)(SineoN(fo) — Cos QQB(fo)).

Therefore (1) holds.
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By (i), gQO,XO(tO) = gQO’xO(tO) = 0if and only if
xo — v(tg) = uT (to) + U(SineoN(to) — Cos 908(1‘0))

and ux cosfy + vt = 0. Since x # 0 and «? cos 93 + 72 # 0, so that there exists u € R,

such that
T(f())T(fo) — K(to) sin 6 cos QoN(to) + K(to) cos? Gog(to)
xg—y(to) =u -
VT2(to) + x2(tg) cos? By
Therefore (2) holds.
By (ii), 865,x,(f0) = 60,x,(t0) = §6y,x,(to) = 0 if and only if there exists u € R, such
that
T(to)T (tg) — x(tg) sin By cos BgN (tg) + x(tg) cos? o B(to)
X0 — ’Y(to) =u > 3
V12 (to) + x2(tg) cos? By
and

x(to) sin 8o (T2 (tg) + x2(to) cos? 8p) + cos B (x(to) T (to) — i (to)T(to))

=0.
V12(to) + x2(tg) cos? 6y

a(to)x(fo) cosbp + u

It follows

& (to)r(to) cos 60 + ud(t0) /72 (o) + K2 (fg) cos? 6 = .

5(to) = K (to) sin B (T2 (tg) + x2(tg) cos? By) + cos By (x (to)T(to) — k(to)T(to)) 40

T2(ty) + x2(tg) cos? 6

- _ a(tg)x(tg) cos By
5(t0)/7(h) + (ko) coT B

or é(tp) = 0 and a(ty) cosy = 0. This completes the proof of (A)-(3) and (B)-(6).
If 5(to) # 0, by (iii), we have

. ) 3
80,x0 (t0) = oo, (f0) = &ay,x, (fo) = g((;o,)xo(fo) =0

if and only if
%o — (k) = — a(to)x (k) cos by T(to)T (to) — x(tg) sin By cos BgN (tg) + x(tg) cos® BoB(to)
O T S (o) /T2 (o) + K2 (ko) o5 B V/T2(50) + K2(s0) cos2 by
and

wK cos by

5(t2 + k2 cos2 6y (kT2 sin B + 3%k sin B cos? O + 2k TT sin O

[2a cos 6 + ik cos By — axT sin 6y —
— Ti cos 0 + Kt cos bp)] (to) = 0.

We denote o (ty) as following:

0
o(ty) = — /1% + K2 cos? b [2ak cos b + ik cos Oy — axT sin 6y — 5(_(203_( ]C;SCO(;Z o) (k7% sin 6

+ 3k%%k sin 6y cos> 0y + 2Tt sin 6y — T cos Oy + kT cos 00)] (o).
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Therefore o(ty) = 0, we have (A)-(4). By the similar arguments to the above, we have
(A)-(5)-
If 5(to) = 0, by (iii),

. . 3
800,10 (0) = Go0,%0 (f0) = G (F0) = 8 (f0) = 0

if and only if a(ty) cos 6y = 0 and there exists u € R, such that

[(ik cos By — axT sin ) /T2 4 k2 cos O + u (kT2 sin O + 3x2i sin 6 cos b
+ 2xTT sinfy — Tk cos Oy + kT cosbp)](ty) = O.

It means that

(k7% sin 6y + 3%k sin By cos? B + 2kTT sin Oy — Tk cos By + k1 cos B (ty) # O

and
y - (&x cos 0y — axTsinfy)+/ T2 + k2 cos b (t)
K72 sin 0 + 3x2k sin Oy cos? Oy + 2Tt sin By — Tk cos Oy + kT cosfy ' O’
or

(k72 sin By + 3% sin O cos? O + 2k Tt sin g — Tk cos By + x cos ) (tg) = 0,

d(tg) = 0 and (dxcosfy — axTsinby)(ty) = 0. Therefore, we have (B)-(7). This completes
the proof. O

5. Unfolding of Functions

We classify the singularities of one-parameter developable surfaces by using the
unfolding theory of functions in this section .

Let F: (R x R", (o, x9)) — R be a function germ and f(t) = Fy,(t, xp), then F is called
an r-parameter unfolding of f. We say that f has Ag-singularity at to if f(*)(ty) = 0 for all
1< p <kand f&+1(ty) # 0. We also say that f has A~ -singularity at to if f(P)(t) = 0
forall1 < p < k. If f has A-singularity (k > 1) at tp and F is an r-parameter unfolding of
f, the (k — 1)-jet of the partial derivative dF /0x; at ty is defined by

'(k—l) aF k+1 .
j e (t,x0)( thﬂt—to (i=1,...,7).

1

We call F an R-versal unfolding of f if the rank of k x r matrix (ag;, ;i) is k (k < r), where
Ky = %(to,xo). The discriminant set of F is defined to be

oF
={xeR"|3teR F(tx) = g(f,x) =0}.
There is the following classification theorem in [29].

Theorem 3. Let F : (R x R, (tp,x0)) — R be an r-parameter unfolding of f which has Ay-
singularity at ty. Suppose F is an R-versal unfolding of f. Then Dr is locally diffeomorphic to
C x R"™2 ifk = 2; D is locally diffeomorphic to SW x R" =3 if k = 3.

By Proposition 2, the discriminant set of the one-parameter support functions G(t, 0, x) is

T()T () — x(t) sin 6 cos ON (t) + x(t) cos? 6B(t)
V/T2(t) + x2(t) cos? 0

DG:{'y(t)—i-u t,uER,He[O,Z]}.
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We have the following proposition for the proof of Theorem 2.

Proposition 3. Let y : I — R® be a Frenet type framed base curve. If 860,x has the Ay-singularity
(k =2,3) at ty, then G is an R-versal unfolding of gg, x,. Here, we assume 5(tg) # 0 for k = 3.

Proof. We write x = (x1,x2,x3), ¥(t) = (71(£), v2(£), 73(t)) and cos OpN (t) 4 sin O B(t) =
(li(t),12(t),13(t)). Then we have

G(t,00,x) = I (t) (x1 — 71(t)) + L2(t) (x2 — 72(t)) + I3(t) (x3 — 13(t))
and

9G .
5e (LX) = (1), (1=1,23).

Therefore the 2-jet is as following;:

j2§fi(to, xo) = Li(to) + [i(to) (t — to) + %Ti(fO)(t — to)?.

We consider the following 3 x 3 matrix:

( ll(to) lz(to) l3(t0) ) ( cosOON(to) +Sil’1905(t0) )
A= ll(tO) lz(to) l3(t0) = COs 90./\“[(1'0) + Sil’lG()l?(to)
ll(tO) lz(to) l3(t0) COSs 90./\[(1’0) + SineoB(to)

By the Frenet type formula, we have

cos GoN(to) + sin Gog(to) = — K(to) cos 90T(t0) — T(to) sin QQN(to) + T(fo) cos 908(t0),
cos 0o N (to) + sinBoB(tg) =(x(to)T(to) sin by — & (to) cos ) T (to) — [(k*(to) + T2(t0)) cos by
+ 'i'(to) sin Go]N(fo) + (T(fo) cos By — Tz(to) sin Qo)B(to).

Since {7 (tg), N'(to), B(ty)} is an orthonormal basis of R3, then the rank of

cos OpN (tg) + sin 6y B(ty)
A= | cosByN(tg) +sinfyB(ty)
cos 8o N (tg) + sin 0y B (to)

is equal to the rank of

0 cos ty sin 6y
—x(tp) cos by —1(tp) sin by T(tg) cos by .
x(to)T(to) sin By — i (tg) cosBy —(k>(to) + T2(to)) cos By — t(to)siny t(tg) cos By — T2(to) sin by

It means rank A = 3 if and only if
K(to) sin 8o (T2 (to) + k2 (tg) cos? Bp) + cos By (i (to )T (to) — k(to)T(to)) # O.

The above inequality is equivalent to the condition é(g) # 0. Moreover, the rank of

cos g N (tg) 4+ sin6pB(tg) \
( cos BN (t) + sin g3 (to) ) -
cos 0N (tg) + sin o B(to)
( —x(tg) cos 0T (to) — T(t) sin OpN (tg) + T(to) cos B B(to) )

is always two under the condition x?(ty) cos? 6 + T%(t9) # O.
Then G is an R-versal unfolding of g, », if gg,,x, has Ax-singularity (k = 2,3) at fo.
This completes the proof. [
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Proof of Theorem 2. By straightforward calculations, we have

9Dy, 9Dy,
5t (1) X —,

_ a(t)x(t) cos by y os sin
(t,u) = (\/72(t)+K2(t)C08290+ (5(t)>( OoN (t) +sin6pB(t)).

Then (to, up) is a regular point of Dy, if and only if

D((tQ)K(tQ) cos By
V/T2(to) + x2(tg) cos? By

+ ugd(ty) # 0.

The assertion (1) holds.

By Proposition 2-(2), the image of one-parameter developable surfaces of v is the
discriminant set D of the one-parameter support functions G.

If 5(tg) # 0, by Proposition 2-(A)-(3), (4) and (5), gg,,x, has the As-type singularity
(respectively, the As-type singularity) at t = t if and only if

tX(to)K(to) cos 6y
5(t0) \/Tz(to) + Kz(to) cos? By
and o (to) # 0 (respectively, (), 0 (to) = 0 and ¢ (ty) # 0). It follows from Theorem 3 and
Proposition 3 that assertions (2)-(i) and (3) hold.

If 6(to) = 0, by Proposition 2-(B)-(6) and (7), g,,x, has the A>-type singularity if and
only if a(t) cos 6y = 0 and

(&x cos By — axT sin 6y) /T2 + k2 cos 6

%72 sin g + 3x2% sin O cos2 Oy + 2xTT sin By — Tk cos Oy + kT cos Oy

Ug = —

uy #

(to)-

It follows from Theorem 3 and Proposition 3 that assertion (2)-(ii) holds. This completes
the proof. O

6. Example

In this section, we define a Frenet type framed base curve that has a singular point,
and consider the one-parameter developable surfaces associated with this curve. We study
two sections of the one-parameter developable surfaces of the base curve. They are the
rectifying developable surface and tangent developable surface. These two developable
surfaces can also be seen as the wavefronts of the base curve.

Let v(t) = (32,33, 11°) be a Frenet type framed base curve with a singular point.

Then we have a(t) = tv/1 + 2 + t0 and

1
T(t) = —— (1,4, 3),
® 1+t2+t6( )
1
N(t) = —t—3t2,1— 21, 12(3 + 21%)),
Q V(2 +10) (14944 +4t6)( ( )
B(t) = ————_(28,-312,1).
V149t 4+ 416
We can calculate that
<) = V149t 4 4¢6 2(t) = 6tV 1+ t2 4t
142416 7 T 1494 4446

Since a(0) = 0, so that t = 0 is a singular point of 7. We also have §(0) = 6 and ¢/(0) = 1.
The tangent developable surface of v is as follows:

2 3 5 3

t u ut ut
Dy (t,u) = (

=+ =+ , =+ .
2 V1+#£2440° 3 J1+£24146°5 \/1+t2+t6)



Symmetry 2022, 14, 975 13 of 14

By Theorem 2, the tangent developable surface D« (t,u) is locally diffeomorphic to the
cuspidal edge at u = 0 (Figure 4).
The expression of the rectifying developable surface is as follows:

u
V/3612(1 + 12+ 16)3 + (14 94 + 46)3
+ 1+ +10)(1,t,1%)).

1,1,1
Do(t,u) = (=2, 213, —t°) +

1 44623_21
53t s (1498 +4t°%)(21°, =3t%,1)

By Theorem 2, the rectifying developable surface Dy(t, u) has cuspidal edge singularities at
(0,0) (Figure 5).

-10
-5
0.0
ns
Lo "0
-3
0.0
05
-10 “os 1) P Tle

Figure 4. v and the tangent developable surface Dz (t,u).

Figure 5. y and the rectifying developable surface Dy(t, u).
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