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Abstract: The algebras of the symmetry operators for the Klein–Gordon equation are important
for a charged test particle, moving in an external electromagnetic field in a space time manifold on
the isotropic hydrosulphate. In this paper, we develop an analytical and numerical approach for
providing the solution to a class of linear and nonlinear fractional Klein–Gordon equations arising in
classical relativistic and quantum mechanics. We study the Yang homotopy perturbation transform
method (YHPTM),which is associated with the Yang transform (YT) and the homotopy perturbation
method (HPM), where the fractional derivative is taken in a Caputo–Fabrizio (CF) sense. This
technique provides the solution very accurately and efficiently in the form of a series with easily
computable coefficients. The behavior of the approximate series solution for different fractional-order
℘ values has been shown graphically. Our numerical investigations indicate that YHPTM is a simple
and powerful mathematical tool to deal with the complexity of such problems.

Keywords: fractional Klein–Gordon equation; Yang transform; homotopy perturbation method;
series solution

1. Introduction

Recently, fractional calculus has grown in popularity due to its significant prospective
applications in physics and engineering such as biology, mathematics, chemistry, fluid
mechanics, physics, and nonlinear optics [1,2]. Fractional partial differential Equations
(FPDEs) are a contemporary tool in calculus that can be used to simulate a wide range of
classifications in applied sciences and engineering [3–5].

The Klein–Gordon (KG) equation performs a significant role in mathematical physics
and many other scientific studies such as quantum field theory, nonlinear optics, and solid-
state physic [6–10]. On the other hand, the fractional-order KG equation is derived from
the classical KG equation by substituting the time order derivative with the fractional
derivative of order ℘. The fractional-order KG equation can be illustrated as below

D℘
q ϑ(ε, q)− D2

εϑ(ε, q) + a1ϑ(ε, q) + a2G(ϑ(ε, q)) = f (ε, q), (1)

with initial conditions

ϑ(ε, 0) = f1(ε), ϑq(ε, 0) = f2(ε), (2)

where D℘
q represents the Caputo fractional time derivative, a1 and a2 are real constants,

f (ε, q), f1(ε) and f2(ε) are known as analytical functions, whereas G(ϑ(ε, q)) is a nonlinear,
and ϑ is an unknown function of ε and q.

Various authors [11–15] have investigated different analytical and numerical strategies
to examine the solution to the KG equation but with some restrictions and lacks. Tamsir
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and Srivastava [16] used fractional reduced differential transform to obtain the analyti-
cal solution of linear and nonlinear KG equation with time-fractional order. Bansu and
Kumar [17] used a radial basis approach, and Kurulay [18] applied the homotopy analy-
sis method to evaluate the numerical solution of the space-time fractional KG equation.
Later, Khader and Adel [19] applied a hybridization scheme to achieve the solution of the
fractional KG equation. Zhmud and Dimitrov [20] developed the fractional integration
method, which is based on extrapolation using a series of integrating and differentiating
links with a time constant that changes symmetrically from one step to another. In order to
obtain the solution of FPDEs, several valuable strategies have been considered, such as the
generalized differential transform method [21], the adomian decomposition method [22],
the homotopy analysis method [23], the variational iteration method [24], the homotopy
perturbation method [25], the Elzaki transform decomposition method [26], the fractional
wavelet method [27,28] and the residual power series method [29,30].

In this paper, we present the Yang homotopy perturbation transform method (YHPTM),
which is a composition of YT and HPM. The primary objective of this approach is to investi-
gate the approximate solution of fractional KG equations and minimize the computational
work that overcomes nonlinear problems easily. Next, this scheme can promptly deal with
the nonlinear KG equation. Finally, this method can reduce the range of the computations
and generate an approximate solution with elegantly computed expressions, which is its
most impressive advantage. The design of this paper is framed as follows. In Section 2, we
start with some primary definitions of Caputo–Fabrizio. In Section 3, we formulate the
idea of the Yang homotopy perturbation transform method. In Section 4, we perform this
scheme on some illustrative examples to show its capability and efficiency. Concluding
remarks are given in Section 5.

2. Preliminaries and Concepts

Definition 1. The CF derivative is described as [31]

CFD℘
q ϑ(ε, q) =

S(℘)
1− ℘

∫ q

0
[Q′($)K(q, $)]d$, n− 1 < ℘ ≤ n (3)

S(℘) is the normalization function with S(0) = S(1) = 1, and then, Equation (3) becomes as

CFD℘
q ϑ(ε, q) =

S(℘)
1− ℘

∫ q

0
[Q(q)−Q($)]K(q, $)d$, n− 1 < ℘ ≤ n (4)

Definition 2. The fractional CF integral is stated as [32]

CF I℘q ϑ(ε, q) =
1− ℘

S(℘)
Q(q) +

℘

S(℘)

∫ q

0
Q($)d$, q ≥ 0, ℘ε(0, 1]. (5)

Definition 3. For S(℘) = 1, the Laplace transform of the CF derivative is [33]

L
[CF

D℘
q Q[(q)]

]
=

vL[Q(q)−Q(0)]
v + ℘(1− v)

. (6)

Definition 4. The YT of Q(q) is framed as [34]

Y[Q(q)] = χ(v) =
∫ ∞

0
Q(q)e−

q
v dq. q > 0 (7)
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Remarks

The YT of some helpful expressions are as follows:

Y[1] = v;

Y[q] = v2;

Y[qi] = Γ(i + 1)vi+1.

Lemma 1. Let the Laplace transform of Q(q) be F(v), and then χ(v) = F(1/v) [35].

Proof. From Equation (7), we can obtain the Yang transform by putting q/v = ζ as

L[Q(q)] =
∫ ∞

0
Q(vζ)eζ dζ, ζ > 0 (8)

since L[Q(q)] = F(v), which implies that

F(v) = L[Q(q)] =
∫ ∞

0
Q(q)e−vqdq. (9)

Putting q = ζ/v in Equation (9), we obtain

F(v) =
1
v

∫ ∞

0
Q
( ζ

v

)
eζ dζ. (10)

Thus, from Equation (8), we obtain:

F(v) = χ
(1

v

)
. (11)

Furthermore, from Equations (7) and (9), we obtain

F
(1

v

)
= χ(v). (12)

The links between Equations (11) and (12) represent the duality connection among the
Laplace and Yang transforms.

Lemma 2. Let Q(q) be a function, then YT of CF derivatives of Q(q) is [35]

Y
[

Q(q)
]
=

Y
[

Q(q)− vQ(0)
]

v + ℘(v− 1)
. (13)

Proof. The fractional Laplace transform of CF is defined as in Equation (13)

L
[

Q(q)
]
=

L
[
vQ(q)−Q(0)

]
v + ℘(1− v)

. (14)

However, we have a correlation among the YT and Laplace properties, namely χ(v) = F(1/v),
so put 1/v for v in Equation (14), and we obtain

Y
[

Q(q)
]
=

Y
[

1
v Q(q)−Q(0)

]
1
v + ℘(1− 1

v )
,

Y
[

Q(q)
]
=

Y
[

Q(q)− vQ(0)
]

1 + ℘(v− 1)
.

(15)
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Thus, the proof is satisfied.

3. Idea of Yang Homotopy Perturbation Transform Method (YHPTM)

In this part, we will demonstrate the concept of YHPTM. Let us assume a nonlinear
fractional-order PDE, such as

CFD℘
q ϑ(ε, q) + Rϑ(ε, q) + Nϑ(ε, q) = g(ε, q), (16)

ϑ(ε, 0) = h(ε), (17)

where g(ε, q) is called the source function. Applying the YT to Equation (16),

1
v℘

Y
[
ϑ(ε, q)− vϑ(ε, 0)

]
= −Y[R(ϑ(ε, q)) + N(ϑ(ε, q)) +Y[g(ε, q)]],

Y[ϑ(ε, q)] = vh(ε)− v℘
[
Y[R(ϑ(ε, q)) + N(ϑ(ε, q))]

]
+Y[g(ε, q)].

By using inverse YT,

ϑ(ε, q) = ϑ(ε, 0)−Y−1
[
v℘
[
Y[R(ϑ(ε, q)) + N(ϑ(ε, q))]

]
+Y[g(ε, q)]

]
. (18)

However, HPM is stated as

ϑ(ε, q) =
∞

∑
i=0

piϑi(ε, q), (19)

and

Nϑ(ε, q) =
∞

∑
i=0

pi Hiϑ(ε, q). (20)

The following strategy can be operated to acquire the He’s polynomials,

Hi(ϑ0 + ϑ1 + · · ·+ ϑi) =
1
n!

∂i

∂pi

(
N
( ∞

∑
i=0

piϑi

))
p=0

. n = 0, 1, 2, · · ·

With the help of Equations (19) and (20), we can obtain Equation (18), such as

∞

∑
i=0

piϑi(ε, q) = ϑ(ε, 0)− pY−1

[
v℘Y

{
R
( ∞

∑
i=0

piϑi(ε, q)
)
+

∞

∑
i=0

pi Hnϑi(ε, q)

}]
.
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We can obtain the following terms by evaluating the p components:

p0 = ϑ0(ε, q) = ϑ(ε, 0),

p1 = ϑ1(ε, q) = −Y−1

[
v℘Y

{
Rϑ0(ε, q) + H0(ϑ)

}]
,

p2 = ϑ2(ε, q) = −Y−1

[
v℘Y

{
Rϑ1(ε, q) + H1(ϑ)

}]
, (21)

p3 = ϑ3(ε, q) = −Y−1

[
v℘Y

{
Rϑ2(ε, q) + H2(ϑ)

}]
,

...

pi = ϑi(ε, q) = −Y−1

[
v℘Y

{
Rϑi(ε, q) + Hi(ϑ)

}]
,

Thus, we can summarize the set of Equations (21) in the series form, such as

ϑ(ε, q) = ϑ0(ε, q) + ϑ1(ε, q) + ϑ2(ε, q) + · · ·

ϑ(ε, q) = lim
N→∞

N

∑
n=0

ϑn(ε, q) (22)

4. Numerical Applications
4.1. Example 1

Consider a linear time-fractional KG problem

D℘
q ϑ(ε, q)− D2

εϑ(ε, q)− ϑ(ε, q) = 0, (23)

with the initial condition

ϑ(ε, 0) = 1 + sin(ε). (24)

Taking YT of Equation (23), we obtain

Y
[∂℘ϑ

∂q℘
]
= Y

[∂2ϑ

∂ε2 + ϑ
]
.

Executing the differential property of YT, we obtain

1
v℘

Y
[
ϑ(ε, q)− vϑ(ε, 0)

]
= Y

[∂2ϑ

∂q2 + ϑ
]
,

Y
[
ϑ(ε, q)

]
= vϑ(ε, 0) + v℘Y

[∂2ϑ

∂q2 + ϑ
]
.

The inverse YT indicates

ϑ(ε, q) = ϑ(ε, 0) +Y−1
[
v℘
{
Y
(∂2ϑ

∂q2 + ϑ
)}]

.

Employing HPM such as

ϑ(ε, q) = ϑ0 + pϑ1 + p2ϑ2 + · · · ,

∞

∑
i=0

piϑi(ε, q) = 1 + sin(q) + p

(
Y−1

[
v℘
{
Y
( ∞

∑
i=0

pi ∂2ϑi
∂q2 +

∞

∑
i=0

piϑi

)}])
,
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on comparing the identical of p, we obtain

p0 = ϑ0(ε, q) = ϑ(ε, 0),

p1 = ϑ1(ε, q) = Y−1

[
v℘
{
Y
(∂2ϑ0

∂q2 + ϑ0

)}]
,

p2 = ϑ2(ε, q) = Y−1

[
v℘
{
Y
(∂2ϑ1

∂q2 + ϑ1

)}]
,

p3 = ϑ3(ε, q) = Y−1

[
v℘
{
Y
(∂2ϑ2

∂q2 + ϑ2

)}]
,

...

With help of Equation (24), we gain the iterations successively ϑi(ε), i = 1, 2, 3, · · · ,
as follows:

ϑ0(ε, q) =1 + sin(ε),

ϑ1(ε, q) =
1

Γ(1 + ℘)
q℘,

ϑ2(ε, q) =
1

Γ(1 + 2℘)
q2℘,

ϑ3(ε, q) =
1

Γ(1 + 3℘)
q3℘,

...

ϑi(ε, q) =
1

Γ(1 + i℘)
qi℘,

Thus, the approximate solution can be obtained by:

ϑ(ε, q) =1 + sin(ε) +
1

Γ(1 + ℘)
q℘ +

1
Γ(1 + 2℘)

q2℘ +
1

Γ(1 + 3℘)
q3℘ + · · · (25)

=1 + sin(ε) +
∞

∑
i=0

pi qi℘

Γ(1 + i℘)
,

which implies the exact solution of Equation (23), In particular, at ℘ = 1, we obtain

ϑ(ε, q) =1 + sin(ε), (26)

which is in full agreement.
Figure 1a–d indicate the physical behavior of the obtained solution at ε ∈ [0, 4] and

q ∈ [0, 0.8]. From these figures, it can be observed that the solution graphs of the problem
show the friendly touch with each other. Figure 1a–d demonstrate that the solution achieved
by YHPTM approaches the precise solution very rapidly with more iterations. In Figure 2,
we have plotted the graph of ϑ(ε, q) at different fractional order of ℘ = 0.25, 0.50, 0.75, 1
and ε ∈ [0, 2π] with different values of q.
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(a) (b)

(c) (d)

Figure 1. The surface solution of ϑ(ε, q) with respect to ε and q for distinct values of ℘: (a) surface
solution of ϑ(ε, q) when ℘ = 0.25; (b) surface solution of ϑ(ε, q) when ℘ = 0.50; (c) surface solution
of ϑ(ε, q) when ℘ = 0.75; (d) surface solution of ϑ(ε, q) when ℘ = 1.

℘=0.25

℘=0.50

℘=0.75

HPTM at ℘=1

℘=Exact

1 2 3 4 5 6
ε

0.5

1.0

1.5

2.0

2.5

3.0

q

ϑ (ε, q)

Figure 2. Plot of ϑ(ε, q) for different values of ℘.

4.2. Example 2

Assume a nonlinear time-fractional KG problem

D℘
q ϑ(ε, q)− D2

εϑ(ε, q) + ϑ2(ε, q) = 0, (27)

with the initial condition

ϑ(ε, 0) = 1 + sin(ε). (28)

Taking the Yang transform of Equation (27), we obtain

Y
[∂℘ϑ

∂q℘
]
= Y

[∂2ϑ

∂ε2 − ϑ2
]
.

Executing the differential property of YT, we obtain
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1
v℘

Y
[
ϑ(ε, q)− vϑ(ε, 0)

]
= Y

[∂2ϑ

∂q2 − ϑ2
]
,

Y
[
ϑ(ε, q)

]
= vϑ(ε, 0) + v℘Y

[∂2ϑ

∂q2 − ϑ2
]
.

The inverse YT indicates

ϑ(ε, q) = ϑ(ε, 0) +Y−1
[
v℘
{
Y
(∂2ϑ

∂q2 − ϑ2
)}]

.

Employing HPM such as

∞

∑
i=0

piϑi(ε, q) = 1 + sin(q) + p

(
Y−1

[
v℘
{
Y
( ∞

∑
i=0

pi ∂2ϑi
∂q2 −

∞

∑
i=0

piϑ2
i

)}])
,

on comparing the identical of p, we obtain

p0 = ϑ0(ε, q) = ϑ(ε, 0),

p1 = ϑ1(ε, q) = Y−1

[
v℘
{
Y
(∂2ϑ0

∂q2 − ϑ2
0

)}]
,

p2 = ϑ2(ε, q) = Y−1

[
v℘
{
Y
(∂2ϑ1

∂q2 − 2ϑ0ϑ1

)}]
,

p3 = ϑ3(ε, q) = Y−1

[
v℘
{
Y
(∂2ϑ2

∂q2 − ϑ2
1 − 2ϑ0ϑ2

)}]
,

...

With help of Equation (28), we gain the iterations successively ϑi(ε), i = 1, 2, 3, · · · ,
as follows:

ϑ0(ε, q) =1 + sin(ε),

ϑ1(ε, q) =
−q℘

Γ(1 + ℘)

(
1 + 3 sin(ε) + sin2(ε)

)
,

ϑ2(ε, q) =
q2℘

Γ(1 + 2℘)

(
11 sin(ε) + 12 sin2(ε) + 2 sin3(ε)

)
,

ϑ3(ε, q) =
q3℘

Γ(1 + 3℘)

(
18− 57 sin(ε)− 160 sin2(ε)− 82 sin3(ε)− 10 sin(4ε)

)
,

...

Thus, the approximate solution can be obtained by:

ϑ(ε, q) =1 + sin(ε)− q℘

Γ(1 + ℘)

(
1 + 3 sin(ε) + sin2(ε)

)
+

q2℘

Γ(1 + 2℘)

(
11 sin(ε) + 12 sin2(ε) + 2 sin3(ε)

)
+

q3℘

Γ(1 + 3℘)

(
18− 57 sin(ε)− 160 sin2(ε)− 82 sin3(ε)− 10 sin(4ε)

)
+ · · ·

Figure 3a–d indicate the physical behavior of the obtained solution at ε ∈ [0, 1] and
q ∈ [0, 1]. From these figures, it can be observed that with the increase in the value of ℘, the
approximate solution become close to the exact solution at ℘ = 1. In Figure 4, we have plotted
the graph of ϑ(ε, q) with different fractional orders of ℘ = 0.25, 0.50, 0.75, 1 at ε ∈ [0, 2π] with
different values of q. It is obvious that this approximation can only be employed numerically,
even though a closed form solution is not accessible. It can be seen that our approximate
solution using YHPTM in Table 1 is more significant than that obtained in [36,37].
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(a) (b)

(c) (d)

Figure 3. The surface solution of ϑ(ε, q) with respect to ε and q for distinct values of ℘: (a) surface
solution of ϑ(ε, q) when ℘ = 0.25 ; (b) surface solution of ϑ(ε, q) when ℘ = 0.50; (c) surface solution
of ϑ(ε, q) when ℘ = 0.75; (d) surface solution of ϑ(ε, q) when ℘ = 1.

℘=0.25

℘=0.50

℘=0.75

HPTM at ℘=1

1 2 3 4 5 6
ε

5

10

15

20

25

q

ϑ (ε, q)

Figure 4. Plot of ϑ(ε, q) for different values of ℘

Table 1. Comparison between the value ϑ(ε, q) for the solution of the KG equation.

Sr. No. q = 0.1 q = 0.2 q = 0.3
ε [36] [37] YHPTM [36] [37] YHPTM [36] [37] YHPTM

0.0 0.9949999861 0.9950000249 0.903 0.9799991162 0.9800015775 0.824 0.9549900052 0.9550176534 0.781
0.1 1.093291132 1.093291179 0.976100 1.073723730 1.073726319 0.871321 1.073723730 1.073726319 0.792208
0.2 1.190502988 1.190503087 1.04725 1.166134875 1.166138050 0.915126 1.125945576 1.125974851 0.794835
0.3 1.285668610 1.285668848 1.11584 1.256326130 1.256331032 0.955409 1.208114007 1.208147932 0.789972
0.4 1.377844211 1.377844710 1.18132 1.343423788 1.343432104 0.992136 1.287043874 1.287088824 0.778571
0.5 1.466118315 1.466119219 1.24317 1.426594492 1.426608263 1.0252 1.362025218 1.362089477 0.761295
0.6 1.549620480 1.549621939 1.3009 1.505052082 1.505073495 1.05442 1.432404521 1.432497282 0.738476
0.7 1.627529538 1.627531694 1.35406 1.578063673 1.578094808 1.07951 1.497587424 1.497717706 0.710192
0.8 1.699081273 1.699084244 1.40223 1.644954933 1.644997540 1.0023 1.557040327 1.557215916 0.676451
0.9 1.763575490 1.763579356 1.44504 1.705114628 1.705169916 1.11635 1.610291023 1.610517519 0.63744
1.0 1.820382425 1.820387216 1.48219 1.757998450 1.758066925 1.12781 1.656928567 1.657208637 0.593784
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4.3. Example 3

Consider another nonlinear time-fractional KG problem

D℘
q ϑ(ε, q)− D2

εϑ(ε, q) + ϑ(ε, q)− ϑ3(ε, q) = 0, (29)

with the initial condition

ϑ(ε, 0) = − sech(ε). (30)

According to the idea of YHPTM, we can obtain the following relation

∞

∑
i=0

piϑi(ε, q) = sech(ε) + p

(
Y−1

[
v℘
{
Y
( ∞

∑
i=0

pi ∂2ϑi
∂q2 −

∞

∑
i=0

piϑi +
∞

∑
i=0

piϑ2
i

)}])
,

when the coefficients of like powers of p are compared, we obtain

p0 = ϑ0(ε, q) = ϑ(ε, 0),

p1 = ϑ1(ε, q) = Y−1

[
v℘
{
Y
(∂2ϑ0

∂q2 − ϑ0 + ϑ3
0

)}]
,

p2 = ϑ2(ε, q) = Y−1

[
v℘
{
Y
(∂2ϑ1

∂q2 − ϑ1 + 3ϑ2
0ϑ1

)}]
,

p3 = ϑ3(ε, q) = Y−1

[
v℘
{
Y
(∂2ϑ2

∂q2 − ϑ2 + 3ϑ0ϑ2
1 + 3ϑ2

0ϑ2

)}]
,

...

with help of Equation (30), we gain the iterations successively ϑi(ε), i = 1, 2, 3, · · · , as follows:

ϑ0(ε, q) =− sech(ε),

ϑ1(ε, q) =− q℘

Γ(1 + ℘)

(
2 sech(ε)− 3 sech3(ε)

)
,

ϑ2(ε, q) =− q2℘

Γ(1 + 2℘)

(
3 sech(ε)− 34 sech3(ε)− 18 sech5(ε)

)
,

ϑ3(ε, q) =− q3℘

Γ(1 + 3℘)

(
64 sech3(x)− 288 sech5(ε) + 240 sech7(ε)

)
,

...

Thus, the approximate solution can be obtained by:

ϑ(ε, q) =− sech(ε)− q℘

Γ(1 + ℘)

(
2 sech(ε)− 3 sech3(ε)

)
− q2℘

Γ(1 + 2℘)

(
3 sech(ε)− 34 sech3(ε)− 18 sech5(ε)

)
− q3℘

Γ(1 + 3℘)

(
64 sech3(ε)− 288 sech5(ε) + 240 sech7(ε)

)
+ · · ·

Figure 5a–d indicates the physical behavior of the obtained solution at ε ∈ [−2, 2]
and q ∈ [0, 0.1]. From these figures, it can be observed that with increase in the value of ℘,
the approximate solution graph comes close to the exact exact solution at ℘ = 1. In Figure 6,
we have plotted the graph of ϑ(ε, q) at different fractional orders of ℘ = 0.25, 0.50, 0.75, 1
and ε ∈ [0, 2π] with different values of q. We compared our graphical results obtained
by YHPTM, which converges to the exact solution very rapidly with a small amount of q
compared to [38] at ℘ = 1.
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(a) (b)

(c) (d)

Figure 5. The surface solution of ϑ(ε, q) with respect to ε and q for distinct values of ℘. (a) surface
solution of ϑ(ε, q) when ℘ = 0.25; (b) surface solution of ϑ(ε, q) when ℘ = 0.50; (c) surface solution
of ϑ(ε, q) when ℘ = 0.75; (d) surface solution of ϑ(ε, q) when ℘ = 1.

℘=0.25

℘=0.50

℘=0.75

HPTM at ℘=1

1 2 3 4 5 6
ε

5

10

q

ϑ (ε, q)

Figure 6. Plot of ϑ(ε, q) for different values of ℘.

5. Conclusions

In this study, YHPTM has been utilized to achieve an approximate solution of nonlin-
ear time-fractional KG equations. We demonstrate some illustrations to show the validity
of the method, which reveals that the obtained findings are satisfactory. It is important to
note that in order to improve the accuracy, a greater number of iterations with excessive
order of p are required. The best advantage of YHPTM is that it generates the approximate
solution in a quickly convergent power series form. As a result, this strategy can be adopted
to elucidate a wide classification of nonlinear challenges in science and engineering with
no need for linearization, discretization or perturbation. The proposed strategy has the
privilege of being able to tackle linear and nonlinear time-fractional KG problems simul-
taneously. Mathematica package 11.0.1 has been operated for the graphical analysis as
well as for the computations in this paper. We recommend the readers to consider this
problem for the Atangana–Baleanu fractional derivative and many others in the place of
the Caputo–Fabrizio operator.
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