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Abstract: In this paper, we study a viscous Cahn–Hilliard equation from the point of view of
Lie symmetries in partial differential equations. The analysis of this equation is motivated by its
applications since it serves as a model for many problems in physical chemistry, developmental
biology, and population movement. Firstly, a classification of the Lie symmetries admitted by the
equation is presented. In addition, the symmetry transformation groups are calculated. Afterwards,
the partial differential equation is transformed into ordinary differential equations through symmetry
reductions. Secondly, all low-order local conservation laws are obtained by using the multiplier
method. Furthermore, we use these conservation laws to determine their associated potential systems
and we use them to investigate nonlocal symmetries and nonlocal conservation laws. Finally, we
apply the multi-reduction method to reduce the equation and find a soliton solution.

Keywords: Cahn–Hilliard equation; conservation laws; exact invariant solution; Lie symmetry
method; multi-reduction method; symmetries; potential systems; viscous equation

1. Introduction

Many nonlinear phenomena in fundamental sciences (physics, chemistry, biology, . . . ) are
conveniently modelled by nonlinear partial differential equations (PDEs). Despite a powerful
mathematical research activity carried out in recent years, the extremely diversified field of
nonlinear PDEs still has a great number of difficult problems opened.

An important difference with respect to the linear PDEs lies in the fact that there is
no general method to find explicit solutions for nonlinear PDEs. Consequently, nonlinear
PDEs are strongly connected with the development of numerical methods. However, the
application of the theory of Lie transformation groups plays an important role in nonlinear
PDEs. Essentially, the basis of this technique is that, if a PDE is invariant under a Lie group
of transformations, then a reduction in the number of independent variables exists. If the
reduced equation is an ordinary differential equation (ODE) and a solution of this equation
is found, then a solution of the original PDE can be recovered.

The Cahn–Hilliard equation, developed by John W. Cahn and John E. Hilliard, is an
equation of mathematical physics describing the process of phase separation. This equation
also appears in modelling other phenomena, such as the dynamics of two populations, the
biomedical modelling of a bacterial film, and some thin film problems [1]. Nevertheless,
many papers can be found in the literature studying physical models. For example, in [2]
the authors construct a new type of solution for a (2 + 1)-dimensional nonlinear system of
Schrödinger equations. There are also papers studying numerical solutions and comparing
them with exact solutions, such as [3] for the Korteweg–de Vries (KdV) equation.

Specifically, several papers have been published studying the Cahn–Hilliard equation.
For instance, in [4] the authors investigated different singular limits and convergence of an
initial-boundary value problem of the viscous Cahn–Hilliard equation

νut = ∆[ϕ(u)− α∆u + βut] .
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This equation is presented in a lower dimensional setting as

νut = (ϕ(u)− αuxx + βut)xx , (1)

where u = u(x, t) is the solute concentration at point x and time t, ϕ(u) is a “homogeneous
free energy”, α/2 is the gradient energy coefficient describing the contribution of the diffuse
interface to the decomposition, and ν, α, β are constants. Particularly, βutxx is named the
viscous term because of the fact that diffusion theory in physics has a second derivative
with respect to x and a viscous constant, β.

If ν = 1 and β = 0, then Equation (1) becomes the well-known Cahn–Hilliard equation,
given by

ut = (ϕ(u)− αuxx)xx .

This equation was introduced to study phase separation in binary alloy glasses and
polymers. It is a good approach to spinodal decomposition [5].

An equation related to (1) was studied in [6,7], obtaining the Lie symmetries, solutions,
and using the nonclassical method for solutions of the Cahn–Hilliard flux equation

ut + kuxxxx − ( f (u) ux)x = 0,

describing diffusion for the decomposition of a one-dimensional binary solution. This equation
is a specific case of the viscous Cahn–Hilliard Equation (1), without the viscous term.

Without loss of generality we set α = 1 in Equation (1), yielding

νut = (ϕ(u)− uxx + βut)xx . (2)

The present paper is devoted to studying Equation (2), focusing on symmetries,
conservation laws, potential systems, and exact invariant solutions.

In the nineteenth century, Sophus Lie started to investigate the continuous groups
of transformations leaving invariant the differential equations. By using the invariance
condition, he developed what is now named the symmetry analysis of differential equations.
The original idea was creating a general theory for the integration of ODEs, as E. Galois
and N. Abel did for algebraic Equations [8]. This theory allows to obtain solutions of
differential equations in an algorithmic way. Since 1960, researchers started to apply the
methods of symmetry analysis of differential equations to find solutions of any problem of
mathematical physics.

Lie’s theory of symmetry analysis of differential equations is based on the invariance
of a differential equation under a transformation of independent and dependent variables.
This transformation generates a local group of point transformations with a diffeomorphism
on the space of independent and dependent variables, that enables to map solutions of the
equation to other solutions. Specifically, by using the Lie symmetry method, symmetries
can be used to find exact invariant solutions.

A very important result of symmetry in physics and in mathematics is the existence of
conservation laws. In 1918, Emmy Noether proved her well-known theorem connecting
continuous symmetries and conservation laws. Furthermore, in [9] Anco and Bluman gave
a general algorithmic method to find all local conservations laws for PDEs with any number
of independent and dependent variables, called the multiplier method. The main advantage
of this method is that does not require the use or existence of a variational principle and
reduces the computation of conservation laws to solving a system of determining equations,
similar to that for obtaining symmetries.

Conservation laws describe the time evolution of certain conserved quantities in phys-
ical models, such as mass, momentum, energy, and electric charge. Among its applications,
it is important to point out the detection of the integrability and the existence, uniqueness,
and stability of solutions of differential equations. Some papers have been published over
the past few decades computing conservation laws by using the multiplier method. For
instance, in [10–12] the authors apply the multiplier method to different types of wave
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equations in order to find conservation laws. In [13] a dispersive equation based on the
well-known KdV equation is studied obtaining as well conservation laws by the application
of this method. In the same way, conservation laws are determined in [14] for a general
nonlinear diffusion-reaction equation.

In relation with the symmetry reductions, for any ODE arising from a symmetry
reduction in an equation, which possesses a Lagrangian, the corresponding conservation
law of the equation will similarly reduce to a first integral of the ODE. This happens as a
consequence of a general result for symmetry reduction in Euler–Lagrange PDEs [15–17].
In addition, by applying the multi-reduction method [18], all first integrals arising from
symmetry invariant conservation laws can be found directly, by using the symmetry.

In this work, we solve a group classification problem for Equation (2), by studying dif-
ferent expressions of function ϕ(u) for which Lie symmetries are admitted. The symmetry
groups are found through consistent applications of the Lie group formalism. Furthermore,
we determine all low-order local conservation laws of Equation (2) by using the multiplier
method. Moreover, we study their corresponding potential systems to obtain nonlocal
symmetries and nonlocal conservation laws. Additionally, the original PDE is reduced to
ODEs through symmetry reductions and by using the multi-reduction method, an exact
invariant solution is found.

This article is structured as follows. Firstly, in Section 2, we classify the Lie symmetries
admitted by Equation (2) and calculate the symmetry transformation groups, depending
on ϕ(u). In Section 3, we apply the multiplier method to Equation (2) in order to find
all low-order conservation laws and we also study the potential systems to find nonlocal
symmetries and nonlocal conservation laws. In addition, in Section 4 the multi-reduction
method is applied to reduce the equation and obtain an exact invariant solution. Finally, in
Section 5, we give some final concluding remarks on the results.

2. Lie Symmetries

First of all, we define an infinitesimal point symmetry as a set of vector fields corre-
sponding to the associated Lie algebra of infinitesimal symmetries, defined by

X = ξ(x, t, u)∂x + τ(x, t, u)∂t + η(x, t, u)∂u, (3)

where ξ(x, t, u), τ(x, t, u), η(x, t, u) are the infinitesimals. We recall that a point transforma-
tion group is a point symmetry of Equation (2) if, and only if, the action of the group leaves
invariant the solution space. Therefore, point symmetries are obtained by applying the
symmetry invariance condition, given by

pr(4)X(νut − (ϕ(u) + uxx − βut)xx)|E = 0,

where E is the solution space of Equation (2).
Each infinitesimal generator (3) is associated with a transformation, obtained by

solving the system of ODEs

∂x̂
∂ε

= ξ(x̂, t̂, û),
∂t̂
∂ε

= τ(x̂, t̂, û),
∂û
∂ε

= η(x̂, t̂, û), (4)

verifying the initial conditions

x̂|ε=0 = x, t̂|ε=0 = t, û|ε=0 = u, (5)

where ε is the group parameter.
Fourth-order prolongations involve a great number of calculations that can be avoided

by using a geometrical way [19,20]. Every infinitesimal point symmetry can also be ex-
pressed by its characteristic form

X̂ = η̂ ∂u, η̂ = η(x, t, u)− τ(x, t, u)ut − ξ(x, t, u)ux,
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where η̂ is called the characteristic.
Then, by applying the invariance condition

pr(4)X̂(νut − (ϕ(u) + uxx − βut)xx)|E = 0, (6)

the infinitesimal point symmetries can be determined. Here, pr(4) represents the fourth-
order prolongation of the generator X̂ defined by

pr(4)X̂ = X̂ + (Dx η̂) ∂ux + (Dtη̂) ∂ut + (D2
x η̂) ∂uxx + (D2

t η̂) ∂utt

+(D3
x η̂) ∂uxxx + (D3

t η̂) ∂uttt + (D4
x η̂) ∂uxxxx + (D4

t η̂) ∂utttt + · · · .

The symmetry determining Equation (6) splits with respect to the x-derivatives and t-
derivatives of u yielding an overdetermined linear system of equations for the infinitesimals.
Here the software Maple is used to compute the determining equations and afterwards,
functions “rifsimp”, “dsolve”, and “pdsolve” are applied to solve the system. Specifically,
“rifsimp” returns a tree with all the solution cases and then, for each solution case, function
“dsolve” is applied to find function ϕ(u) and “pdsolve” to find the infinitesimals ξ(x, t, u),
τ(x, t, u), and η(x, t, u).

The results achieved on point symmetries are classified in the following cases:

1. For ϕ(u) an arbitrary function,

X1 = ∂x, X2 = ∂t. (7)

2. For β = 0 and ϕ(u) = a(u + c)p + k, where a, c, p, k are constants, with p 6= 0, 1,
besides X1 and X2, Equation (2) admits an extra symmetry,

X1
3 = x ∂x + 4t ∂t −

(
2u

p− 1
+

2c
p− 1

)
∂u. (8)

3. For β = 0 and ϕ(u) = aepu + k, where a, p, k are constants, with p 6= 0, besides X1
and X2, Equation (2) admits an additional symmetry,

X2
3 = x ∂x + 4t ∂t −

2
p

∂u. (9)

In the above classification, ν 6= 0 and ϕ(u) is considered a nonlinear function. Next,
by solving the system of ODEs (4), with the initial conditions (5), we obtain the following
symmetry transformation groups:

1. For ϕ(u) an arbitrary function, a space-translation and a time-translation,

(x, t, u) → (x + ε, t, u),

(x, t, u) → (x, t + ε, u).

2. For β = 0 and ϕ(u) = a(u + c)p + k, where a, c, p, k are constants, with p 6= 0, 1, a
scaling and shift in u,

(x, t, u)→ (xeε, te4ε, e−
2ε

p−1 (u + c)− c).

3. For β = 0 and ϕ(u) = aepu + k, where a, p, k are constants, with p 6= 0, a dilation,

(x, t, u)→ (te4ε, xeε,−2ε

p
+ u).

In the above classification, we also consider ν 6= 0 and ϕ(u) a nonlinear function.
The notion of Lie symmetries includes point symmetries and contact symmetries for

PDEs with one dependent variable u [19–22].
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A contact symmetry comes from considering an extension of the Lie symmetry method.
For this type of symmetries, the symmetry transformation depends on x, t, u, and also on
the first-order derivatives of u. The characteristic form of the infinitesimal generator is

X̂ = P(x, t, u, ux, ut)∂u

and the corresponding infinitesimal transformation is given by

P = τ ∂t + ξ ∂x + η ∂u + ηt ∂ut + ηx ∂ux .

Finally, we can state that there are not any contact symmetries admitted by the viscous
Cahn–Hilliard Equation (2), with ν 6= 0 and ϕ(u) a nonlinear function.

Symmetry Reductions

Now, we use the symmetries obtained previously to compute the similarity variables
and similarity solutions, in order to reduce the viscous Cahn–Hilliard Equation (2) to ODEs.

The similarity variable and the similarity solution are found by using the
characteristic equations

dx
ξ

=
dt
τ

=
du
η

.

Hence, a reduction is obtained and substituting the variables into Equation (2), it can
be reduced to an ODE.

From the first case with the space-translation and time-translation (7), we determine a
travelling wave variable and solution for the subalgebra λX1 + X2,

z = x− λt, u = h(z), (10)

where h(z) satisfies the travelling wave reduction, given by the fourth-order nonlinear ODE

h′′′′ + λβh′′′ − ϕ′ h′′ − ϕ′′(h′)2 − λνh′ = 0. (11)

From the second case with the scaling and shift transformation in u (8), we obtain the
similarity variable and solution for the subalgebra X1

3 ,

z = x
t1/4 , u = h(z) t

1
−2p+2 − c,

where h(z) verifies the fourth-order nonlinear ODE

(p− 1)h′′′′ − ap(p− 1)hp−1h′′ − ap(p− 1)2hp−2(h′)2 +
ν(p− 1)

4
z h′ − ν

2
h = 0.

From the third case with the dilation (9), we find the similarity variable and solution
for the subalgebra X2

3 ,

z = x
t1/4 , u = h(z)− ln(t)

2p ,

where h(z) verifies the fourth-order nonlinear ODE

4ph′′′′ − 4ap2eph(h′′ + p(h′)2)− νpz h′ − 2ν = 0.

3. Low-Order Conservation Laws

Local conservation laws are continuity equations that yield basic conserved quantities
for all solutions [19,23].

A local conservation law of the viscous Cahn–Hilliard Equation (2) is a space-time
divergence expression

DtT + DxX|E = 0, (12)
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holding on the solution space E of Equation (2), where the conserved density T and the
flux X are functions of x, t, u, and its derivatives. Here Dt and Dx denote total derivatives
with respect to t and x.

Each local conservation law (12) has an equivalent characteristic form in terms of Q
that holds as an identity off of the solution space E of Equation (2). By using this identity,
a general method using multipliers was constructed to find all local conservation laws.
Specifically, this method, called the multiplier method, is reduced to solving a linear system
of determining equations, as in the Lie symmetry method [24,25].

The characteristic form of a local conservation law admitted by Equation (2), is given by

DtT + Dx(X−Ψ) = (νut − (ϕ(u) + uxx − βut)xx)Q, (13)

where Ψ|E = 0.
If (13) is evaluated on the solution space E , then it reduces to the local conservation

law, since the flux term Ψ|E = 0 is trivial, and

Q = Eu(T) (14)

is a function of x, t, u, and its derivatives, called the multiplier of the conservation law, where

Eu = ∂u − Dt∂ut − Dx∂ux + D2
t ∂utt + DtDx∂utx + D2

x∂uxx − · · ·

is the Euler operator with respect to u. This operator has the important property that
annihilates total derivatives.

The relation (14) between Q and T proves that all locally equivalent conservation laws
have the same multiplier. Hence, there is a one-to-one correspondence between multipliers
and conserved densities through the characteristic equation.

A function Q is a multiplier if, and only if,

(νut − (ϕ(u) + uxx − βut)xx)Q (15)

is a total divergence.
All multipliers can be determined by applying the Euler operator to the total diver-

gence (15), due to its property of converting to zero any total derivative. This yields the
determining equation

Eu((νut − (ϕ(u) + uxx − βut)xx)Q) = 0.

The multiplier determining equation splits with respect to utt, uttx, utxx, uttxx, utxxx,
uxxxx, utxxxx, uxxxxx, utxxxxx, uxxxxxx yielding an overdetermined linear system of equations
to the multiplier Q(x, t, u, ux, ut, uxx, utx, uxxx) among with ϕ(u).

The solutions
Q(x, t, u, ux, ut, uxx, utx, uxxx)

of the determining system are all the conservation law multipliers for the viscous Cahn–
Hilliard Equation (2).

The local conservation laws of physical interest typically arise from low-order multi-
pliers. The general expression of a low-order multiplier Q, in terms of u and its derivatives,
is given by those variables that can be differentiated to determine a leading derivative of
the given PDE. The leading derivatives of Equation (2) are utxx and uxxxx.

Clearly, utxx can be obtained by differentiation of u, ut, utx, and uxxxx by differentiation
of u, ux, uxx, and uxxx. Consequently, the general form for a low-order multiplier for the
viscous Cahn–Hilliard Equation (2) is

Q(x, t, u, ux, ut, uxx, utx, uxxx).



Symmetry 2022, 14, 861 7 of 12

Therefore, we obtain as result that the low-order multipliers admitted by the viscous
Cahn–Hilliard Equation (2), with ν 6= 0 and ϕ(u) a nonlinear function, are given by

Q1 = 1, Q2 = x.

Each low-order multiplier Q corresponds to a conserved density T and flux X through
the characteristic Equation (13). All low-order local conservation laws have the general form

T(x, t, u), X(x, t, u, ux, ut, uxx, utx, uxxx).

Given a multiplier Q, we can obtain the conserved density T by using a standard method

T =
∫ 1

0
u Q(x, t, Qu, Qux, Quxx, . . . )dQ

and the flux X by using the expression

X = −D−1
x (Q(νut − (ϕ(u) + uxx − βut)xx)−

∂T
∂ux

(νut − (ϕ(u) + uxx − βut)xx)

+(νut − (ϕ(u) + uxx − βut)xx)Dx

(
∂T

∂uxx

)
+ · · · .

For the following conservation laws classification we apply the same Maple commands
used for the Lie symmetries classification. We have applied “rifsimp” to find each solution
case of the system formed by the multiplier determining equations. Afterwards, “dsolve”
and “pdsolve” have been applied to solve each solution case, finding the corresponding
multipliers. Finally, for each multiplier, we yield its conserved density T and flux X by
using the expressions defined above.

As result, we find that the low-order local conservation laws admitted by the viscous
Cahn–Hilliard Equation (2), with ν 6= 0 and ϕ(u) a nonlinear function, are the following:

1. For the low-order multiplier Q1 = 1, the low-order local conservation law is

T1 = νu,

X1 = −ϕ′(u) ux − βutx + uxxx. (16)

2. For the low-order multiplier Q2 = x, the low-order local conservation law is

T2 = νx u,

X2 = −x ϕ′(u) ux + ϕ(u)− (βutx − uxxx)x− uxx + βut. (17)

Potential Systems and Symmetries

From conservation laws, by using the corresponding conserved (potential) systems,
we can obtain potential symmetries of Equation (2).

Firstly, for the low-order conservation laws (16) and (17) admitted by the viscous
Cahn–Hilliard Equation (2), we determine their corresponding potential systems [23].

From the first low-order conservation law (16), with multiplier Q1 = 1, the potential
system is

vx − νu = 0,

vt − ϕ′(u) ux − βutx + uxxx = 0. (18)
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From the second low-order conservation law (17), with multiplier Q2 = x, the potential
system is

vx − νx u = 0,

vt − x ϕ′(u) ux + ϕ(u)− (βutx − uxxx)x− uxx + βut = 0. (19)

These potential systems yield a further potential system by substituting u for an
expression in terms of vx,

vt −
ϕ′
( vx

ν

)
vxx

ν2 − βvtxx

ν
+

vxxxx

ν
= 0 (20)

and

vt −
ϕ′
( vx

νx
)

vxx

ν2x
+ ϕ

( vx

νx

)
−
(

βvtxx

νx
− vxxxx

νx

)
x− vxxx

νx
+

βvtx

νx
= 0. (21)

Afterwards, we classify all the potential symmetries of these potential systems.
A point symmetry of the potential systems (18) and (19), depending on u and v, is a

one-parameter Lie group of transformations on (x, t, u, v) generated by a vector field, given by

Y = ξ(x, t, u, v)∂x + τ(x, t, u, v)∂t + η(x, t, u, v)∂u + φ(x, t, u, v)∂v, (22)

which is required to leave invariant the solution space of the corresponding potential system.
The projection of a point symmetry, defined by (22), to the associated potential

Equations (20) and (21) is

Y = ξ(x, t, vx, v)∂x + τ(x, t, vx, v)∂t + η(x, t, vx, v)∂vx + φ(x, t, vx, v)∂v,

and generates a one-parameter Lie group of contact transformations on (x, t, vx, v).
A projected symmetry is a prolonged point symmetry if, and only if, ξ, τ, φ do not

depend on vx.
Each point symmetry (22) projects to a symmetry of Equation (2), defined by

X = ξ(x, t, u, v)∂x + τ(x, t, u, v)∂t + η(x, t, u, v)∂u, (23)

where v is a nonlocal function of u arising from integrating the first equation of each potential
system. Therefore, if the projected symmetry (23) presents dependence on v, then it yields a
nonlocal symmetry of Equation (2). Otherwise, the projected symmetry is a point symmetry.

As the projected symmetry does not presents dependence on v, we state that all of
the point symmetries admitted by the potential systems (18) and (19) project to point
symmetries of the viscous Cahn–Hilliard Equation (2).

In addition, all the local conservation laws of the potential systems (18) and (19) can
be determined by applying the multiplier method.

Thus, a new result is found with new nonlocal low-order conservation laws. We
can state that all the low-order conservation laws admitted by the viscous Cahn–Hilliard
potential systems (18) and (19), with ν 6= 0, are the followings:

1. From the potential system (18), the low-order multiplier Q1 = 1, with ϕ
( vx

ν

)
a nonlin-

ear function, yields the low-order conservation law

T1 = v,

X1 = −ϕ
(vx

ν

)
− β

vtx

ν
+

vxxx

ν
.
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2. From the potential system (19), the low-order multiplier Q2 = 1
x2 , with ϕ

( vx
νx
)

a
nonlinear function, yields the low-order conservation law

T2 =
v
x2 ,

X2 =
vxxx

νx2 −
2vxx

νx3 +
2vx

νx4 − β
vxt

νx2 −
ϕ( vx

νx )

x
.

These conservation laws project to nonlocal conservation laws of Equation (2), where
v =

∫
u dx.

4. Multi-Reduction Method and Exact Invariant Solution

One of the most interesting applications of symmetries is finding group-invariant
solutions of nonlinear PDEs. These solutions satisfy a reduced differential equation in fewer
variables, which are the invariants of the chosen symmetry group. In order to obtain these
group-invariant solutions in an explicit form, we need to solve the reduced differential
equation, which requires finding sufficiently many first integrals to reduce its order so that
a quadrature is obtained.

If the reduction in the PDE under this symmetry is an ODE, then the corresponding
reduction in the conserved current, or the underlying local conservation law, yields a first
integral of the ODE.

It happens that in most of the applications the considered conservation laws are
invariant under translations. In a recent paper [18], a new method has been proposed,
which main advantage is that it starts with a symmetry that reduces a PDE and then, it
finds all conservation laws invariant under the symmetry. Each one will be inherited by
the reduced differential equation. This extension is more interesting when a PDE in two
independent variables, such as Equation (2), is being reduced to an ODE, as then a set of
first integrals can be obtained allowing further reduction in the ODE.

To sum up, the idea is to apply the multi-reduction method proposed in [18] to find all
symmetry-invariant conservation laws admitted by PDE (2), which allow us to reduce the given
PDE to first integrals for the ODE, that describes the symmetry-invariant solutions of the PDE.

In general, a travelling wave has the form

u(x, t) = h(x− λt), (24)

where λ is the travelling wave speed.
Invariance of a given PDE under the translation symmetry

X = ∂t + λ∂x, (25)

gives rise to travelling wave solutions, with z = x− λt and u = h(z) being the invariants.
Now, we focus on the conservation law of Equation (2) invariant under the translation

symmetry (25).
Specifically, the conservation law admitted by the viscous Cahn–Hilliard Equation (2),

which is invariant under the translation symmetry (25), is given by the multiplier Q = 1.
Consequently, the only conservation law admitted by the viscous Cahn–Hilliard Equation (2),
which is invariant under the translation symmetry (25), is given by (16).

Substitution of the travelling wave expression (24) into Equation (2) yields the nonlin-
ear fourth-order ODE (11).

By using the conservation law invariant under translations, we obtain the first integral

Ψ1 = h′′′ + λβh′′ − ϕ′h′ − λνh− C = 0,

where C is the integration constant.
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Thus, we obtain a double reduction to a third-order autonomous equation

h′′′ + λβh′′ − ϕ′h′ − λνh− C = 0. (26)

A way to find solutions of ODE (26) is considering a form for h(z) and using the ODE
to obtain the corresponding form for ϕ′(h).

Any function h(z) determines some corresponding function ϕ′(h). For ϕ′(h) to look
reasonably simple, h(z) is restricted to have a form such that the terms h, h′, h′′, h′′′ in
the ODE evaluate to a similar form. This method succeeds in yielding different types of
travelling wave solutions with speed λ.

It is readily apparent that this works when

ϕ′(h(z)) = k1tanh(z)2 + k2tanh(z) + k3 + k4
1

tanh(z)
+ k5

1
tanh(z)2 ,

where k1, k2, k3, k4, k5 are constants to be found.
Hence, by using Equation (26), we find h(z) = c1 + c2tanh(z)2, with

k1 = 12, k2 = −3βλ, k3 = −8, k4 = λ
(

β +
ν

2

)
, k5 = 0, c1 = −c2.

Consequently, for

ϕ′(h(z)) = 12tanh(z)2 − 3βλ tanh(z)− 8 + λ
(

β +
ν

2

) 1
tanh(z)

we find a soliton solution,
h(z) = sech(z)2,

that plays a major role in theoretical physics and propagation of waves. They are defined as
nonlinear solitary wave packets with finite amplitude and their physical interest is because
of their nature, retaining their shapes and speed when interacting with each other.

By undoing the change of variables (10), we determine a new group-invariant and
closed-form general solution

u(x, t) = sech(x− λt)2,

for

ϕ′(u) = 12tanh(x− λt)2 − 3βλ tanh(x− λt)− 8 + λ
(

β +
ν

2

) 1
tanh(x− λt)

,

depending on constants λ, ν, β.

5. Conclusions

The present paper has obtained new results in aspects, such as symmetries, conserva-
tion laws, potential systems, and exact invariant solutions for the viscous Cahn–Hilliard
Equation (2). Firstly, all Lie symmetries have been classified depending on function ϕ(u),
including Lie point symmetries, with the symmetry transformation groups, and contact
symmetries. Secondly, all low-order conservation laws have been derived obtaining con-
served quantities. Furthermore, their associated potential systems have been determined
finding nonlocal symmetries and nonlocal conservation laws. Afterwards, as an application
of the Lie point symmetries classification, symmetry reduction has been used to transform
the original fourth-order partial differential equation into ordinary differential equations.
Then, we have considered a travelling wave reduction and we have applied the multi-
reduction method yielding a third-order equation by double reduction. Finally, a soliton
solution of physical interest have been found in terms of a hyperbolic secant function.
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Some similar PDEs contained in the family of Cahn–Hilliard equations have been
previously studied. However, this complete analysis of the viscous Cahn–Hilliard equation
from the point of view of Lie symmetries and conservation laws have not been performed
before. Here, we study globally the Lie symmetries, including Lie point symmetries and
contact symmetries, and the conservation laws, with also new results from the associated
potential systems. In addition, the application of the multi-reduction method, recently
proposed, is a novel result itself yielding a new soliton solution in this work.
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