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Abstract: Inequalities play important roles not only in mathematics but also in other fields, such
as economics and engineering. Even though many results are published as Hermite–Hadamard
(H-H)-type inequalities, new researchers to these fields often find it difficult to understand them.
Thus, some important discoverers, such as the formulations of H-H-type inequalities of α-type real-
valued convex functions, along with various classes of convexity through differentiable mappings
and for fractional integrals, are presented. Some well-known examples from the previous literature
are used as illustrations. In the many above-mentioned inequalities, the symmetrical behavior
arises spontaneously.
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1. Introduction

Mathematical inequalities play a key role in understanding a range of problems in
various fields of mathematics. Among the most celebrated ones is the Hermite–Hadamard
(H-H) inequality, which made a great impact not only in mathematics but also in other
related disciplines. As mentioned by Mitrinović and Lacković [1], this inequality first
appeared in the literature through the effort of Hadamard [2]. However, the result was
first discovered by Hermite [3]. Following this fact, many researchers referred to the result
as the H-H inequality. This inequality was stated in the monograph of [4] to be the first
fundamental result for convex functions defined in the interval of real numbers with a
natural geometrical interpretation that can be applied to investigate a variety of problems.
Inequalities play important roles in understanding many mathematical concepts, such as
probability theory, numerical integration and integral operator theory. Throughout the
last century, H-H type inequalities have been considered to be among the fastest growing
fields in mathematical analysis, through which vast problems in engineering, economics
and physics have been studied [4–6]. Due to the enormous importance of these inequalities,
many extensions, refinements and generalizations of their related types have been equally
investigated [7–10]. One vital problem associated with the H-H inequality is the estimation
of the midpoint- and trapezoid-type inequalities. When the difference between the left part
of the H-H inequality and the integral of the function under study is observed, the quantity
obtained is simply called the midpoint-type inequality. Meanwhile, when such a difference
is determined with the right-hand side of the H-H inequality, here, the quantity involved is
called the trapezoid-type inequality [11,12].

Therefore, the H-H type inequalities, by which many results are studied, play impor-
tant roles in the theory of convex functions. The convexities, along with many types of their
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generalizations, including the (α, m)-convex function, (h−m)-convex function, (α, h−m)-
convex function, refined (α, h−m)-convex function and strongly (α, h−m)-convex function,
can be applied in different fields of sciences [13,14], through which many generalizations of
the H-H inequality for varying types of convexities have been studied. Other extensions
of the H-H inequality include the formulation of problems related to fractional calculus, a
branch of calculus dealing with derivatives and integrals of a non-integer order [15–17].

This paper is aimed at introducing the H-H inequality to a new researcher in the
field. Thus, we present basic facts on some integral inequalities, fractional inequalities
of the H-H type and their constructions via various convexity classes. Some important
theorems associated with these inequalities are also discussed, along with some well-known
examples to ease the beginner’s understanding of the basic concepts of these inequalities.
Even though the information presented in this review article can be found in separate
studies on inequalities, obtaining a single work combining these results remains elusive.
Thus, the sections of this review are chosen to simplify problems related to H-H inequalities.

Therefore, this review is organized in the following order. In Section 2, we present the
preliminaries, comprising some basic definitions and theorems on fractional calculus and
convex functions. The proof and example of an H-H inequality along with its geometrical
representation are described in Section 3. Section 4 describes the generalizations of an H-H
inequality involving different types of convex functions. In Section 5, we present several
integral inequalities for differentiable convexity, including midpoint-type and trapezoid-
type inequalities. Section 6 is devoted to the generalization of the inequalities presented
in Section 5 using fractional integrals. In Section 7, we describe the application to special
means using the results presented in the previous sections. Meanwhile, Section 8 presents
the applications to a quadrature formula. Section 9 is devoted to the conclusion.

2. Preliminaries

In the following, we will give some necessary definitions and mathematical prelimi-
naries of fractional calculus theory which are used further in this paper. For more details,
one can consult [18,19]. The concept of a convex function was first introduced to elementary
calculus when discussing the necessary conditions for a minimum or maximum value of a
differentiable function. The convex function was later recognized as an active area of study
by [20]. In modern studies, a convex function is considered a link between analysis and
geometry, which makes it a powerful tool for solving many practical problems:

Definition 1 ([21]). Let V be an interval in R. A function G : V → R is said to be convex if

G(ζm1 + (1− ζ)m2) ≤ ζG(m1) + (1− ζ)G(m2) (1)

holds for all m1, m2 ∈ V and ζ ∈ [0, 1].

If the inequality in Equation (1) strictly holds for any distinct points m1 and m2, where
ζ ∈ (0, 1), then the function is said to be a strictly convex. Meanwhile, if a function −G is
convex (strictly convex), then G is concave (strictly concave).

Geometrically, a function G is convex, given that the line segment joining any two
points on the graph lies above (or on) the graph. Meanwhile, if the line segment connecting
the two points is below (or on) the graph, the function is concave.

Example 1. Given a function G : V ⊆ R→ R for any m ∈ R, we have the following examples:

i. G(m) = c1m + c2, where c1, c2 ∈ R. The function G(m) is both concave and convex on
(−∞, ∞). Thus, it is referred to as an affine.

ii. The functions G(m) = m2 and G(m) = em are both convex functions on R.
iii. G(m) = ln m is a concave function on (0, ∞).

The theory of convexity deals with large classes, such as generalized convex func-
tions on fractal sets and Godunova–Levin, s-convex and preinvex functions. Termed as
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the generalization of convexity, these play important roles in optimization theory and
mathematical programming. Therefore, we give basic definitions of the different classes of
convex functions.

The definition of generalized convex functions on fractal sets Rα(0 < α ≤ 1) is given
in [22] as follows:

Definition 2. Let G : V ⊆ R → Rα. For any m1, m2 ∈ V and ζ ∈ [0, 1], if the following
inequality

G(ζm1 + (1− ζ)m2) ≤ ζαG(m1) + (1− ζ)αG(m2)

holds, then G is called a generalized convex function on V.

The Godunova–Levin space function, denoted by Q(V), was introduced in [23]. They
noted that both the positive monotone and positive convex functions belong to Q(V). Due
to the importance of this function, we present it as follows:

Definition 3 ([24]). A non-negative function G : V ⊆ R → R is called a Godunova–Levin
function (denoted by G ∈ Q(V)) if

G(ζm1 + (1− ζ)m2) ≤
1
ζ
G(m1) +

1
1− ζ

G(m2) (2)

holds for all m1, m2 ∈ V and ζ ∈ (0, 1).

Example 2 ([25]). For x ∈ [m1, m2], the function

G(x) =


1, m1 ≤ x < m1+m2

2
4, x = m1+m2

2
1, m1+m2

2 < x ≤ m2

is in the class Q(V).

The Godunova–Levin function was restricted to a space called P(V) contained in
Q(V). This class was defined in [25] as follows:

Definition 4. A non-negative function G : V ⊆ R → R is called a P-function (denoted by
G ∈ P(V)) if

G(ζm1 + (1− ζ)m2) ≤ G(m1) + G(m2)

holds for all m1, m2 ∈ V and ζ ∈ [0, 1].

Therefore, all non-negative monotone and convex functions are contained in P(V).
For other Godunova–Levin results and P-functions, see [26–28].
The definition of an s-convex function in the second sense or s-Breckner convex

function is given as follows:

Definition 5 ([29]). A function G : [0, ∞)→ R is said to be s-convex in the second sense (denoted
by G ∈ K2

s ) if
G(ζ1m1 + ζ2m2) ≤ ζs

1G(m1) + ζs
2G(m2) (3)

holds for all m1, m2 ∈ [0, ∞), ζ1, ζ2 ≥ 0, ζ1 + ζ2 = 1 and 0 < s ≤ 1.

Choosing s = 1 reduces the s-convexity in the second sense to the classical convex
function on [0, ∞).

The following property that is connected to s-convex function in the second sense is
given below:
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Theorem 1 ([30]). If G ∈ K2
s , then G is non-negative on [0, ∞).

For some properties of s-convexity in the second sense, see [31–34].
Hudzik and Maligranda [30] presented the example of an s-convex function in the

second sense as follows.

Example 3. Let 0 < s < 1 and c1, c2, c3 ∈ R. When defining

G(m) =

{
c1, m = 0
c2ms + c3, m > 0

for m ∈ R+, we have

i. If c2 ≥ 0 and 0 ≤ c3 ≤ c1, then G ∈ K2
s ;

ii. If c2 > 0 and c3 < 0, then G /∈ K2
s .

As Hudzik and Maligranda mentioned that the condition ζ1 + ζ2 = 1 in Definition 5
can be replaced by ζ1 + ζ2 ≤ 1, then equivalently, the following is true:

Theorem 2 ([30]). Suppose that G ∈ K2
s . The inequality in Equation (3) holds for all c1, c2 ∈ R+

and ζ1, ζ2 ≥ 0 with ζ1 + ζ2 ≤ 1 if G(0) = 0.

The geometric description of the s-convex curve, given in the definition below, was
clearly explained in [35]:

Definition 6. A function G : V ⊆ R→ R is called s-convex in the second sense for 0 < s < 1 if
the graph of the function is below a bent chord L that is between any two points. This means that for
every compact interval W ⊂ V, the following inequality

sup
W

(L− G) ≥ sup
∂W

(L− G)

holds with a boundary ∂W.

The s-convex function of the second sense can be referred to as the limiting curve.
This differentiates the curves that are s-convex in the second sense from others which are
not. Following this, Pinheiro [35] determined the effects of the choice of s on the limiting
curve. For further results on the s-convex function in the second sense, we refer the reader
to [36–38].

The definition of the generalized s-convex function on the fractal sets is given as
follows:

Definition 7 ([22]). A function G : V ⊆ R+ → Rα is a generalized s-convex function in the
second sense on the fractal sets if

G(ζ1m1 + ζ2m2) ≤ ζαs
1 G(m1) + ζαs

2 G(m2) (4)

holds for all m1, m2 ∈ V, 0 < s ≤ 1, ζ1, ζ2 ≥ 0 and ζ1 + ζ2 = 1. This class of function is denoted
by GK2

s .

The generalized s-convex function in the second sense becomes an s-convex function
when α = 1.

One should note that the following theorems along with the example can be found
in [22]:

Theorem 3. Let G ∈ GK2
s . The inequality in Equation (4) holds for all m1, m2 ∈ R+ and

ζ1, ζ2 ≥ 0 with ζ1 + ζ2 < 1 if G(0) = 0α.
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Theorem 4. Let 0 < s < 1. If G ∈ GK2
s , then G is non-negative on [0,+∞).

Theorem 5. Let 0 < s1 ≤ s2 ≤ 1. If G ∈ GK2
s2

and G(0) = 0α, then G ∈ GK2
s1

.

Considering the properties of the generalized s-convex function in the second sense,
we present the following example.

Example 4. Let 0 < s < 1 and aα
1 , aα

2 , aα
3 ∈ Rα. For m ∈ R+, we define

G(m) =

{
aα

1 , m = 0
aα

2msα + aα
3 , m > 0.

Thus, we have the following:

i. If aα
2 ≥ 0α and 0α ≤ aα

3 ≤ aα
1 , then G ∈ GK2

s ;
ii. If aα

2 > 0α and aα
3 < 0α, then G /∈ GK2

s .

For more results related to the generalized s-convex function in the second sense on
the fractal sets, the interested reader is directed to [39,40].

In order to unify the concepts of the Godunova–Levin and P-functions, the authors
of [38] introduced the s-Godunova–Levin function as follows:

Definition 8. A function G : V ⊆ R → [0, ∞) is said to be s-Godunova–Levin (denoted by
G ∈ Qs2(V)) if

G(ζm1 + (1− ζ)m2) ≤
1
ζs G(m1) +

1
(1− ζ)s G(m2) (5)

holds for all m1, m2 ∈ V, ζ ∈ (0, 1) and 0 ≤ s ≤ 1.

Choosing s = 1 reduces the s-Godunova–Levin function to the class of Godunova–
Levin. In addition, when s = 0, we have the P-function class. Thus, we have the following:
P(V) = Q0(V) ⊆ Qs2(V) ⊆ Q1(V) = Q(V). For more results on s-Godunova–Levin
functions of convexity, we refer the reader to [41,42].

Preinvex functions are among the most important classes of generalized convex func-
tions. This concept, playing important roles in many disciplines, was proposed in [43].
Since then, preinvex functions has become an active area of study:

Definition 9 ([44]). A set V ⊆ R is called invex if there exists a function η : V × V → R
such that

m1 + ζη(m2, m1) ∈ V

holds for all m1, m2 ∈ V and ζ ∈ [0, 1].

The invex set V can also be referred to as an η-connected set:

Definition 10 ([43]). Suppose that V ⊆ R is an invex set with respect to η : V × V → R. A
function G : V → R is called preinvex with respect to η if

G(m1 + ζη(m2, m1)) ≤ (1− ζ)G(m1) + ζG(m2) (6)

holds for all m1, m2 ∈ V and ζ ∈ [0, 1].

Further generalizations can be found in [45–48].
Fractional calculus, whose application can be found in many disciplines including

economics, life and physical sciences as well as engineering, can be considered one of the
modern branches of mathematics [49–52]. Many problems of interest from these fields
can be analyzed through fractional integrals, which can also be regarded as an interesting
sub-discipline of fractional calculus. Some of the applications of integral calculus can be
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seen in the following papers [5–10], through which problems in physics, chemistry and
population dynamics were studied. The fractional integrals were extended to include
the H–H inequality [53–59]. Now, we recall some basic definitions of fractional integrals
as follows:

Definition 11. Let G ∈ L1[m1, m2]. The left- and right-hand Riemann–Liouville integrals denoted
by Jλ

m+
1
G and Jλ

m−2
G of order λ ∈ R+ are defined by

Jλ
m+

1
G(x) =

1
Γ(λ)

∫ x

m1

(x− γ)λ−1G(γ)dγ, x > m1

and

Jλ
m−2
G(x) =

1
Γ(λ)

∫ m2

x
(γ− x)λ−1G(γ)dγ, x < m2,

respectively.

If λ = 1 in the above equalities, we obtain the classic integral.
One should note that the Hadamard fractional integrals differ the Riemann–Liouville

ones, since in the former, the logarithmic functions of arbitrary exponents are included
in the kernels of the integrals. Therefore, the Hadamard fractional integrals are defined
as follows:

Definition 12 ([60]). Let λ > 0 with m− 1 < λ ≤ m, m ∈ N and m1 < x < m2. The left and
right sides of the Hadamard fractional integrals denoted by Hλ

m+
1
G(x) and Hλ

m−2
G(x) of order λ of a

function G are given as

Hλ
m+

1
G(x) =

1
Γ(λ)

∫ x

m1

(
ln

x
γ

)λ−1G(γ)
γ

dγ

and

Hλ
m−2
G(x) =

1
Γ(λ)

∫ m2

x

(
ln

γ

x

)λ−1G(γ)
γ

dγ,

respectively.

The research in [55,61–63] provides useful background and the properties of Hadamard
fractional integrals.

The following proposition is related to the Hadamard integrals:

Proposition 1 ([55]). If λ > 0 and 0 < m1 < m2 < ∞, the following relations hold:(
Hλ

m+
1

(
log

γ

m1

)β−1)
(x) =

Γ(β)

Γ(β + λ)

(
log

x
m1

)β+λ−1

and (
Hλ

m−2

(
log

m2

γ

)β−1)
(x) =

Γ(β)

Γ(β + λ)

(
log

m2

x

)β+λ−1

.

The Riemann–Liouville fractional integrals, along with the Hadamard’s fractional
integrals, are generalized through the recent work of [64]. These two integrals were
combined and given in a single form. The following definition [64] modifies the old
version [65] for Katugampola fractional integrals:
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Definition 13. Let [m1, m2] ⊂ R be a finite interval. The left- and right-hand Katugampola
fractional integrals of order λ > 0 for G ∈ Xp

c (m1, m2) are defined by

ρ Iλ
m+

1
G(x) =

ρ1−λ

Γ(λ)

∫ x

m1

γρ−1

(xρ − γρ)1−λ
G(γ)dγ

and
ρ Iλ

m−2
G(x) =

ρ1−λ

Γ(λ)

∫ m2

x

γρ−1

(γρ − xρ)1−λ
G(γ)dγ,

with m1 < x < m2 and ρ > 0.

Following this, the space Xp
c (m1, m2)(c ∈ R, 1 ≤ p ≤ ∞) is introduced as follows:

Definition 14 ([61]). Let the space Xp
c (m1, m2)(c ∈ R, 1 ≤ p ≤ ∞) of those complex-valued

Lebesgue measurable functions G on [m1, m2], for which ‖G‖Xp
c
< ∞, have the norm defined by

‖G‖Xp
c
=

(∫ m2

m1

|ζcG(ζ)|p dζ

ζ

)1/p
< ∞ (1 ≤ p < ∞, c ∈ R)

and, for the case p = ∞, be defined by

‖G‖X∞
c = ess sup

m1≤ζ≤m2

(ζc|G(ζ)|) (c ∈ R),

where the essential supremum |G(ζ)| stands for the essential maximum of |G(ζ)|.

If c = 1/p, Xp
c (m1, m2) reduces to Lp(m1, m2), the p-integrable function.

Important references on Katugampola fractional integrals and their applications are
suggested for further reading [66–69].

The relations among Katugampola fractional integrals, Riemann–Liouville integrals
and Hadamard integrals are given in the next theorem. The left-hand version of the relation
is considered here for its simplicity, since similar results also exist for the right-hand
operators:

Theorem 6 ([69]). Let λ > 0 and ρ > 0. Then, for x > m1, we have

i. limρ→1
ρ Iλ

m+
1
G(x) = Jλ

m+
1
G(x);

ii. limρ→0+
ρ Iλ

m+
1
G(x) = Hλ

m+
1
G(x).

Remark 1. One should note that while (i) is concerned with the Riemann–Liouville operators, (ii)
is related to the Hadamard operators.

The definitions of the conformable fractional derivative and integral were given in [70],
and we present them as follows:

Definition 15. Let G : [0, ∞)→ R. Then, the conformable fractional derivative of G of order α is
defined as

Dα(G)(r) = lim
b→0

G
(
r + br1−α

)
− G(r)

b
(7)

where G is said to be α-differentiable at r if Dα(G)(r) exists. In particular, Dα(G)(0) is defined
as follows:

Dα(G)(0) = lim
r→0+

Dα(G)(r)

and we use Gα(r) or (dα/dαr)(G) to denote Dα(G)(r).
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Definition 16. Let α ∈ (0, 1] and 0 ≤ m1 < m2. A function G : [m1, m2] → R is α-fractional
integrable on [m1, m2] if the integral∫ m2

m1

G(x)dαx :=
∫ m2

m1

G(x)xα−1dx

exists and is finite. All α-fractionals integrable on [m1, m2] are indicated by L1
α([m1, m2]).

Remark 2.

Im1
α (G)(γ) = Im1

1

(
γα−1G

)
=
∫ t

m1

G(x)
x1−α

dx

where the integral is the usual Riemann improper integral and α ∈ (0, 1].

Theorem 7. Let α ∈ (0, 1] and G : [m1, m2]→ R be continuous on [m1, m2] with 0 ≤ m1 < m2.
Then, the following is true: ∣∣Im1

α (G)(x)
∣∣ ≤ Im1

α |G|(x)

For more results on conformable integral operators, we refer the interested reader
to [71,72].

The Hölder integral inequality plays an important role in both pure and applied
sciences. Other areas applying this inequality include the theory of convexity, which can
be considered one of the active and fast-growing fields of study in mathematical science.
Thus, the Hölder’s integral inequality is described in the following theorem:

Theorem 8 ([73]). Suppose that p > 1 and 1/p + 1/q = 1. If G and K are real functions on
[m1, m2] such that |G|p and |K|q are integrable functions on [m1, m2], then the following holds:

∫ m2

m1

|G(x)K(x)|dx ≤
(∫ m2

m1

|G(x)|pdx
) 1

p
(∫ m2

m1

|K(x)|qdx
) 1

q

The other version of the Hölder integral inequality is called the power-mean integral,
which is given in the following theorem.

Theorem 9 ([24]). Suppose that q ≥ 1. Let G and K be real mappings on [m1, m2]. If |G| and
|G||K|q are integrable functions in the given interval, then the following holds:

∫ m2

m1

|G(x)K(x)|dx ≤
(∫ m2

m1

|G(x)|dx
)1− 1

q
(∫ m2

m1

|G(x)||K(x)|qdx
) 1

q

3. Hermite–Hadamard Inequality

The H-H inequality plays a vital role in the theory of convexity. This inequality esti-
mates the integral average of any convex functions through the midpoint and trapezoidal
formula of a given domain. While the midpoint formula estimates the integral from the
left, the trapezoidal formula estimates it from the right. More precisely, the classical H-H
inequality is considered as follows:

Theorem 10 ([4]). If we let G : [m1, m2] ⊆ R → R be a convex function on [m1, m2] with
m1 < m2, then the following holds:

(m2 −m1)G
(

m1 + m2

2

)
≤
∫ m2

m1

G(x)dx ≤ (m2 −m1)
G(m1) + G(m2)

2
(8)

The proof of the inequality in Equation (8) is provided here for simplicity. Though the
proof of the theorem exists, the first time Equation (8) was proven was in [7] using a similar
technique reported in [74].
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Proof. Let G be a convex function on the interval [m1, m2]. By taking ζ = 1
2 in the inequality

in Equation (1) for x, y ∈ [m1, m2], we have

G
(

x + y
2

)
≤ G(x) + G(y)

2
. (9)

By substituting x = ζm1 + (1− ζ)m2 and y = (1− ζ)m1 + ζm2 in (9), we obtain

2G
(

m1 + m2

2

)
≤ G(ζm1 + (1− ζ)m2) + G((1− ζ)m1 + ζm2). (10)

When integrating the inequality in Equation (10) with respect to ζ over [0, 1], we have

2G
(

m1 + m2

2

)
≤
∫ 1

0
G(ζm1 + (1− ζ)m2)dζ +

∫ 1

0
G((1− ζ)m1 + ζm2)dζ

=
2

m2 −m1

∫ m2

m1

G(x)dx.
(11)

In order to prove the second part of the inequality in Equation (8), we used Definition 1
for ζ ∈ [0, 1] to arrive at

G(ζm1 + (1− ζ)m2) ≤ ζG(m1) + (1− ζ)G(m2)

and
G((1− ζ)m1 + ζm2) ≤ (1− ζ)G(m1) + ζG(m2).

When the above inequalities are added, we obtain the following:

G(ζm1+(1− ζ)m2) + G((1− ζ)m1 + ζm2)

≤ ζG(m1) + (1− ζ)G(m2) + (1− ζ)G(m1) + ζG(m2).
(12)

By integrating the inequality in Equation (12) with respect to ζ over [0, 1], we have∫ 1

0
G(ζm1 + (1− ζ)m2)dζ +

∫ 1

0
G((1− ζ)m1 + ζm2)dζ

≤ [G(m1) + G(m2)]
∫ 1

0
dζ.

Thus, the following equation completes the proof:

2
m2 −m1

∫ m2

m1

G(x)dx ≤ G(m1) + G(m2)

The H-H inequality is geometrically described in [21], and we have summarized it
as follows.

The area under the graph of G on [m1, m2] is between the areas of two trapeziums.
While the area of the first trapezium is formed by the points of coordinates (m1,G(m1)),
(m2,G(m2)) with the x-axis, that of the second trapezium is formed by the tangent to the
graph of G at

(
m1+m2

2 ),G
(

m1+m2
2

))
with the x-axis.

An example of the H-H inequality is given as follows.

Example 5 ([75]). If we choose G = ex with x ∈ R, the H-H inequality yields

e(m1+m2)/2 <
em2 − em1

m2 −m1
<

em1 + em2

2
,
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for m1 < m2 in R.

For more examples of the H-H inequality, see [4,76].
The importance of the H-H inequality is that each of its two sides is characterized by a

convex function. The necessary and sufficient condition for a continuous function G to be
convex on (m1, m2) is given in the following theorem:

Theorem 11 ([77]). Let G be a continuous function on (m1, m2). Then, G is convex if

G(x) ≤ 1
2z

∫ x+z

x−z
G(ζ)dζ, (13)

for m1 ≤ x− z ≤ x ≤ z + k ≤ m2.

It can be shown that the inequality in Equation (13) is equivalent to the first part of
Equation (8) when G is continuous on [m1, m2] [4].

The second part of the inequality in Equation (8) can be applied as a convexity criterion
in the following theorem:

Theorem 12 ([78]). Let G be a continuous function on [m1, m2]. Then, G is convex if

1
a2 − a1

∫ a2

a1

G(x)dx ≤ G(a1) + G(a2)

2
,

for all m1 < a1 < a2 < m2.

4. H-H-Type Inequalities for Various Classes of Convexities

Since different classes of convexity exist, many authors are committed to the improve-
ments and generalizations of H-H inequalities for various types of convex functions. Thus,
in this section, we review some generalizations of H-H inequalities involving different
convex functions whose definitions were already given in Section 2.

Dragomir et al. [25] established the two inequalities from Equation (8), which hold for
classes Q(V) and P(V) as the Godunova–Levin and P-functions, respectively:

Theorem 13 ([25]). Let m1, m2 ∈ V with m1 < m2 and G ∈ L1[m1, m2]. If G ∈ Q(V), then

G
(

m1 + m2

2

)
≤ 4

m2 −m1

∫ m2

m1

G(x)dx (14)

and
1

m2 −m1

∫ m2

m1

φ(x)G(x)dx ≤ G(m1) + G(m2)

2

hold, where φ(x) = (m2−x)(x−m1)
(m2−m1)2 and x ∈ V.

In this sense, since the constant 4 is the best possible choice in Equation (14), it cannot
be changed with any smaller constants:

Theorem 14 ([25]). Let m1, m2 ∈ V with m1 < m2 and G(x) ∈ L1[m1, m2]. If G ∈ P(V), then

G
(

m1 + m2

2

)
≤ 2

m2 −m1

∫ m2

m1

G(x)dx ≤ 2[G(m1) + G(m2)] (15)

holds.

For more H-H-type inequalities via classes Q(V) and P(V), see [79–81].
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A variant of H-H-type inequalities via an s-convex function in second sense was
proposed by Dragomir and Fitzpatrick [31]:

Theorem 15. Suppose that G : R+ → R+ is an s-convex function in the second sense, where
0 < s ≤ 1, m1, m2 ∈ R+ and m1 < m2. If G(x) ∈ L1[m1, m2], then the following holds:

2s−1G
(

m1 + m1

2

)
≤ 1

m2 −m1

∫ m2

m1

G(x)dx ≤ G(m1) + G(m2)

s + 1
(16)

The constant 1
s+1 is most possible in the second part of the inequality in Equation (16).

We refer the reader to [82,83] for more results connected to H-H-type inequalities via an
s-convex function in the second sense.

Moreover, Dragomir and Fitzpatrick [31] also defined the following mapping that is
closely related to Equation (16):

Theorem 16. If we let G(x) : [m1, m2] → R be an s-convex function in the second sense on
[m1, m2] such that G(x) ∈ L1[m1, m2], and H : [0, 1]→ R, then

H(ζ) =
1

m2 −m1

∫ m2

m1

G
(

ζx + (1− ζ)
m1 + m2

2

)
dx

holds for ζ ∈ [0, 1].

The properties of the mapping H are given as follows:

i. H ∈ K2
s on [0, 1];

ii. H ≥ 2s−1G(m1+m2
2 ).

These properties are the generalization of some results from [84]. Additionally, for
more properties of mappings associated with H-H inequalities, see [85–90].

Another new H-H-type inequality for the preinvex function was given by Noor [91]
as follows:

Theorem 17. If we let G : V = [m1, m1 + η(m2, m1)] → (0, ∞) be a preinvex function on V◦

with m1 < m1 + η(m2, m1), m1, m2 ∈ V◦ and G ∈ L1[m1, m2], then

G
(

2m1 + η(m2, m1)

2

)
≤ 1

η(m2, m1)

∫ m1+η(m2,m1)

m1

G(x)dx ≤ G(m1) + G(m2)

2
. (17)

Remark 3. In Theorem 17, if we take η(m2, m1) = m2 −m1, then the inequality in Equation (17)
reduces to Equation (8).

5. H-H-Type Inequalities for Differentiable Functions

An interesting problem in Equation (8) that attracts many researchers is the determi-
nation of two bounds of quantities in Equations (18) and (19), given as follows:∣∣∣∣ 1

m2 −m1

∫ m2

m1

G(x)dx− G
(

m1 + m2

2

)∣∣∣∣ (18)∣∣∣∣G(m1) + G(m2)

2
− 1

m2 −m1

∫ m2

m1

G(x)dx
∣∣∣∣. (19)

While Equation (18) estimates the difference between the left and middle parts of
Equation (8), the quantity in Equation (19) estimates the difference between the middle
and right parts of Equation (8). The quantity in Equation (18) is called the midpoint-type
inequality. Meanwhile, the quantity in Equation (19) is named the trapezoid-type inequality.
Recently, different integral inequalities were obtained through differentiable convexity.
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The following result, given by Dragomir and Agarwal [11], can be used to estimate a new
bound in Equation (19):

Lemma 1. If we let G : V ⊆ R → R be a differentiable function on V◦, m1, m2 ∈ V◦ with
m1 < m2 and G ′ ∈ L1[m1, m2], then the following identity holds:

G(m1) + G(m2)

2
− 1

m2 −m1

∫ m2

m1

G(x)dx =
m2 −m1

2

∫ 1

0
(1− 2ζ)G ′(ζm1 + (1− ζ)m2)dζ.

Therefore, using Lemma 1, the following theorems connected with the second part
of Equation (8) for differentiable convex functions hold:

Theorem 18. When letting G : V ⊆ R → R be a differentiable function on V◦, m1, m2 ∈ V◦

with m1 < m2 and G ′ ∈ L1[m1, m2], if |G ′| is convex on [m1, m2], then∣∣∣∣G(m1) + G(m2)

2
− 1

m2 −m1

∫ m2

m1

G(x)dx
∣∣∣∣ ≤ m2 −m1

8
[∣∣G ′(m1)

∣∣+ ∣∣G ′(m2)
∣∣]. (20)

Theorem 19. When letting G : V ⊆ R→ R be a differentiable function on V◦, m1, m2 ∈ V◦ with
m1 < m2 and G ′ ∈ L1[m1, m2]. If |G ′|q is convex on [m1, m2] for q > 1 with q(p− 1) = p, then

∣∣∣∣G(m1) + G(m2)

2
− 1

m2 −m1

∫ m2

m1

G(x)dx
∣∣∣∣ ≤ m2 −m1

2

(
1

p + 1

) 1
p
[
|G ′(m1)|q + |G ′(m2)|q

2

] 1
q

. (21)

The improvement and simplification of the aforementioned result presented in
Theorem 19 was provided by Pearce and Pec̆arić [92]:

Theorem 20. Let G : V ⊆ R→ R be a differentiable function on V◦ with m1, m2 ∈ V◦, m1 < m2
and G ′ ∈ L1[m1, m2]. If |G ′|q for q > 1, where q(p− 1) = p is convex on [m1, m2], then

∣∣∣∣G(m1) + G(m2)

2
− 1

m2 −m1

∫ m2

m1

G(x)dx
∣∣∣∣ ≤ m2 −m1

4

[
|G ′(m1)|q + |G ′(m2)|q

2

] 1
q

. (22)

Remark 4. Choosing q = 1 reduces Theorem 20 to Theorem 18. In Theorem 20, taking q = p
p−1

improves the constant given in Theorem 19 since 1
4 < 1

2(p+1)
1
p

, where p > 1.

Kirmaci [93] proved the following results that give the bounds on Equation (18) by
using the assumptions of convexity:

Lemma 2. Let G : V ⊆ R→ R be a differentiable mapping on V◦, m1, m2 ∈ V◦ with m1 < m2.
If G ′ ∈ L1[m1, m2], then we have

1
m2 −m1

∫ m2

m1

G(x)dx− G
(

m1 + m2

2

)
= (m2 −m1)

∫ 1

0
Q(ζ)G ′(ζm1 + (1− ζ)m2)dζ,

where

Q(ζ) =

 ζ, ζ ∈
[
0, 1

2

)
ζ − 1, ζ ∈

[
1
2 , 1
]
.

Theorem 21. Let G : V ⊆ R be a differentiable mapping on V◦, m1, m2 ∈ V◦ with m1 < m2. If
|G ′| is convex on [m1, m2], then we have∣∣∣∣ 1

m2 −m1

∫ m2

m1

G(x)dx− G
(

m1 + m2

2

)∣∣∣∣ 6 m2 −m1

8
(∣∣G ′(m1)

∣∣+ ∣∣G ′(m2)
∣∣). (23)
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Some new inequalities for twice-differentiable functions connected to the inequality in
Equation (8) were given by Dragomir and Pearce [4] through the following lemma:

Lemma 3. If we let G : V ⊆ R→ R be a twice-differentiable function on V◦, m1, m2 ∈ V◦ with
m1 < m2 and G ′′ ∈ L1[m1, m2], then the following holds:

G(m1) + G(m2)

2
− 1

m2 −m1

∫ m2

m1

G(x)dx =
(m2 −m1)

2

2

∫ 1

0
ζ(1− ζ)G ′′(ζm1 +(1− ζ)m2)dζ

Kirmaci et al. [12] studied a new inequality of the H-H type for differentiable mappings
involving s-convexity:

Theorem 22. Let G : V ⊂ [0, ∞) → R be a differentiable mapping on V◦ such that G ′ ∈
L1[m1, m2], where m1, m2 ∈ V with m1 < m2. If |G ′|q is s-convex on [m1, m2], where q ≥ 1 and
s ∈ (0, 1], we have∣∣∣∣G(m1) + G(m2)

2
− 1

m2 −m1

∫ m2

m1

G(x)dx
∣∣∣∣

≤m2 −m1

2

(
1
2

) q−1
q

 s +
(

1
2

)s

(s + 1)(s + 2)


1
q (∣∣G ′(m1)

∣∣q + ∣∣G ′(m2)
∣∣q) 1

q .

(24)

Barani et al. [94] generalized Lemma 1 to estimate the trapezoid type inequalities
connected with Equation (8) for a preinvex function.

Lemma 4. Suppose that G : V = [m1, m1 + η(m2, m1)] → (0, ∞) is a differentiable function,
where m1, m1 + η(m2, m1) ∈ V with m1 < m1 + η(m2, m1). If G ′ ∈ L1[m1, m1 + η(m2, m1)],
we have

1
η(m2, m1)

∫ m1+η(m2,m1)

m1

G(x)dx− G(m1) + G(m1 + η(m2, m1))

2

=
η(m2, m1)

2

[ ∫ 1

0
(1− 2ζ)G ′(m1 + ζη(m2, m1))dζ

]
.

Recently, presumably new H-H-type inequalities were established by Mehrez and
Agarwal [95], whose findings are reported in the next theorem:

Theorem 23. Suppose that G : V ⊆ R → R is a differentiable mapping on V◦, m1, m2 ∈ V◦

with m1 < m2. Let the derivative of G be G ′ : [ 3m1−m2
2 , 3m2−m1

2 ]→ R, a continuous function on
[ 3m1−m2

2 , 3m2−m1
2 ]. When letting q ≥ 1, if |G ′| is convex on [ 3m1−m2

2 , 3m2−m1
2 ], then the following

holds:∣∣∣∣ 1
m2 −m1

∫ m2

m1

G(x)dx− G
(

m1 + m2

2

)∣∣∣∣
≤ m2 −m1

8

(∣∣∣∣G ′(3m1 −m2

2

)∣∣∣∣q + ∣∣∣∣G ′(3m1 −m2

2

)∣∣∣∣q) 1
q

(25)

Almutairi and Kiliçman [8] extended Theorem 23 to an s-convex function in the second
sense as follows:

Theorem 24. Suppose that G : V ⊆ R+ → R is a differentiable mapping on V◦, m1, m2 ∈ V◦

with m1 < m2. Let the derivative of G be G ′ : [ 3m1−m2
2 , 3m2−m1

2 ]→ R, a continuous function on
[ 3m1−m2

2 , 3m2−m1
2 ]. When letting q ≥ 1, if |G ′|q is an s-convex function on [ 3m1−m2

2 , 3m2−m1
2 ] for

some fixed s ∈ (0, 1), then we have the following:
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∣∣∣∣ 1
m2 −m1

∫ m2

m1

G(x)dx− G
(

m1 + m2
2

)∣∣∣∣
≤ (m2 −m1)

(
1
8

) q−1
q
[

2− 2−s

2(s + 1)(s + 2)

] 1
q
[∣∣∣∣G ′(3m1 −m2

2

)∣∣∣∣q + ∣∣∣∣G ′(3m2 −m1
2

)∣∣∣∣q] 1
q

. (26)

6. Generalized H-H-Type Inequalities Involving Different Fractional Integrals

This section presents some results on the generalization of inequalities introduced
in Section 5. Therefore, many generalizations of H-H-type inequalities established using
fractional integrals for different classes of convexities are discussed here, since they can be
frequently used in other parts of the article. For example, the work of Sarikaya et al. [74]
was the first to present inequalities of the H-H type involving Riemann–Liouville fractional
integrals. This is given below:

Theorem 25. Suppose that G : [m1, m2]→ R is a non-negative function with 0 ≤ m1 < m2 and
G ∈ L1[m1, m2]. If G is a convex function on [m1, m2], we have

G
(

m1 + m2

2

)
≤ Γ(λ + 1)

2(m2 −m1)λ

[
Jλ
m+

1
G(m2) + Jλ

m−2
G(m1)

]
≤ G(m1) + G(m2)

2
, (27)

where λ > 0.

Remark 5. In Theorem 25, choosing λ = 1 reduces the inequality in Equation (27) to Equation (8).

Moreover, Sarikaya et al. [74] presented the following fractional integral identity:

Lemma 5. Let G : [m1, m2] → R be a differentiable function on (m1, m2) with m1 < m2. If
G ′ ∈ L1[m1, m2], then we have

G(m1) + G(m2)

2
− Γ(λ + 1)

2(m2 −m1)λ

[
Jλ
m+

1
G(m2) + Jλ

m−2
G(m1)

]
=

m2 −m1

2

∫ 1

0

[
(1− ζ)λ − ζλ

]
G ′(ζm1 + (1− ζ)m2)dζ.

The identity presented in the above lemma was also used by Sarikaya when deter-
mining the trapezoid-type inequalities connected with Equation (8) for Riemann–Liouville
fractional integrals.

Theorem 26. Let G : [m1, m2]→ R be a differentiable function on (m1, m2) with m1 < m2 and
G ′ ∈ L1[m1, m2]. If |G ′| is convex on [m1, m2], then we have∣∣∣∣G(m1) + G(m2)

2
− Γ(λ + 1)

2(m2 −m1)λ

[
Jλ
m+

1
G(m2) + Jλ

m−2
G(m1)

]∣∣∣∣
≤m2 −m1

2(λ + 1)

(
1− 1

2λ

)[
G ′(m1) + G ′(m2)

]
.

(28)

Remark 6. Taking λ = 1 in Theorem 26 reduces the inequality in Equation (28) to the inequality
in Equation (20) of Theorem 18.

Zhu et al. [96] studied a new fractional integral identity for differentiable convex
mappings. The results are presented below:

Lemma 6. Let G : [m1, m2]→ R be a differentiable mapping on (m1, m2) with m1 < m2. If G ′ ∈
L1[m1, m2], then the equality for fractional integrals holds as follows:
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Γ(λ + 1)
2(m2 −m1)λ

[
Jλ
m+

1
G(m2) + Jλ

m−2
G(m1)

]
− G

(
m1 + m2

2

)
=

m2 −m1
2

[∫ 1

0
PG ′(ζm1 + (1− ζ)m2)dζ −

∫ 1

0

[
(1− ζ)λ − ζλ

]
G ′(ζm1 + (1− ζ)m2)dζ

]
,

(29)

where

P =

{
1, 0 ≤ ζ < 1

2
−1, 1

2 ≤ ζ < 1.

Using the above identity, the following result estimates the midpoint-type inequalities
related to Equation (8), which involves Riemann–Liouville fractional integrals:

Theorem 27. Let G : [m1, m2] → R be a differentiable mapping on (m1, m2) with m1 < m2. If
|G ′| is convex on [m1, m2], then the following inequality holds:∣∣∣∣ Γ(λ + 1)

2(m2 −m1)λ

[
Jλ
m+

1
G(m2) + Jλ

m−2
G(m1)

]
− G

(
m1 + m2

2

)∣∣∣∣
≤m2 −m1

4(λ + 1)

(
λ + 3− 1

2λ−1

)[∣∣G ′(m1)
∣∣+ ∣∣G ′(m2)

∣∣]. (30)

Almutair and Kiliçman [14] extended Lemma 6 and Theorem 27 for Katugampola
fractional integrals as follows:

Lemma 7. Let G : [mρ
1, mρ

2]→ R be a differentiable mapping on (mρ
1, mρ

2), where m1 < m2. The
following equality holds if the fractional integrals exist:

λρλΓ(λ + 1)
2(mρ

2 −mρ
1)

λ
[ρ Iλ

m+
1
G(mρ

2) +
ρ Iλ

m−2
G(mρ)]− G

(
mρ

1 + mρ
2

2

)

=
mρ

2 −mρ
1

2

[∫ 1

0
MG ′(ζρmρ

1 + (1− ζρ)mρ
2)dζ −

∫ 1

0

[
(1− ζρ)λ − ζρλ

]
ζρ−1G ′(ζρmρ

1 + (1− ζρ)mρ
2)dζ

]
,

(31)

where

M =

{
ζρ−1, 0 ≤ ζ < 1

ρ
√

2
−ζρ−1, 1

ρ
√

2
≤ ζ < 1.

Remark 7. If ρ = 1, then the identity in Equation (31) in Lemma 7 reduces to the identity in
Equation (29) in Lemma 6.

Theorem 28. Let G :
[
mρ

1, mρ
2

]
→ R be a differentiable mapping on (mρ

1, mρ
2) with 0 ≤ m1 < m2.

If |G ′| is convex on
[
mρ

1, mρ
2

]
, then the following inequality holds:∣∣∣∣∣∣∣

λρλΓ(λ + 1)

2
(

mρ
2 −mρ

1

)λ

[
ρ Iλ

m+
1
G
(

mρ
2

)
+ρ Iλ

m−2
G
(

mρ
1

)]
− G

(
mρ

1 + mρ
2

2

)∣∣∣∣∣∣∣
≤

mρ
2 −mρ

1
4ρ(λ + 1)

[
3 + λ− 1

2λ−1

][∣∣∣G ′(mρ
1

)∣∣∣+ ∣∣∣G ′(mρ
2

)∣∣∣]
(32)

Remark 8. Considering the inequality in Equation (32) of Theorem 28, we have the following:

i. Choosing ρ = 1 reduces the inequality in Equation (32) to the inequality in Equation (30) of
Theorem 27.
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ii. Taking ρ = 1 and λ = 1 reduces the inequality in Equation (32) to the inequality in
Equation (16) in [96], which is given as follows:∣∣∣∣ 1

m2 −m1

∫ m2

m1

G(x)dx− G
(

m1 + m2

2

)∣∣∣∣ ≤ 3(m2 −m1)

8
(∣∣G ′(m1)

∣∣+ ∣∣G ′(m2)
∣∣).

Meanwhile, Wang et al. [97] extended Lemma 5 to include a twice-differentiable
mapping:

Lemma 8. Let G : [m1, m2]→ R be a twice-differentiable function on (m1, m2) with m1 < m2. If
G ′′ ∈ L1[m1, m2], then the following holds:

G(m1) + G(m2)

2
− Γ(λ + 1)

2(m2 −m1)λ

[
Jλ
m+

1
G(m2) + Jλ

m−2
G(m1)

]
=
(m2 −m1)

2

2

∫ 1

0

1− (1− ζ)λ+1 − ζλ+1

λ + 1
G ′′(ζm1 + (1− ζ)m2)dζ

Set et al. [98] generalized Theorem 15 for fractional integrals, and the result is given
as follows:

Theorem 29. Suppose that G : [m1, m2]→ R is a non-negative function with 0 ≤ m1 < m2 and
G ∈ L1[m1, m2]. If G is an s-convex function in the second sense on [m1, m2], we have

2s−1G
(

m1 + m2

2

)
≤ Γ(λ + 1)

2(m2 −m1)λ

[
Jλ
m+

1
G(m2) + Jλ

m−2
G(m1)

]
≤
[

λ

(λ + s)
+ λβ(λ, s + 1)

]
G(m1) + G(m2)

2
,

(33)

where λ > 0 and 0 < s < 1.

The H-H inequality for Hadamard fractional integrals that was established by Wang
et al. [99] also received the attention of many researchers. This refinement is given as
follows:

Theorem 30. Suppose that G : [m1, m2] → R is a non-negative function with 0 < m1 < m2
and G ∈ L1[m1, m1]. If G is a non-decreasing convex function on [m1, m2], then the following
inequality holds:

G(
√

m1m2) ≤
Γ(λ + 1)

2(ln m2 − ln m1)λ

[
Hλ

m+
1
G(m2) + Hλ

m−2
G(m1)

]
≤ G(m2)

Mo et al. [22] provided the generalized H-H-type inequalities involving local fractional
integrals for generalized convex functions on fractal sets as follows:

Theorem 31. If we let G(x) ∈ Iα
x [m1, m2] be a generalized convex function on [m1, m2] with

m1 < m2, then the following holds:

G
(

m1 + m2

2

)
≤ Γ(1 + α)

(m2 −m1)α
m1 Iα

m2
G(x) ≤ G(m1) + G(m2)

2α
(34)

Remark 9. By choosing α = 1 in the inequality in Equation (34), we obtain the inequality in
Equation (8).

Furthermore, the H-H-type inequalities for the generalized s-convex function in the
second sense on fractal sets were proposed by Mo and Sui [100]:
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Theorem 32. Suppose that G : R+ → Rα is a generalized s-convex function in the second sense
for 0 < s < 1 and m1, m2 ∈ [0, ∞) with m1 < m2. Then, for G ∈ Cα[m1, m2], the following
inequality holds:

2(s−1)α

Γ(1 + α)
G
(

m1 + m2

2

)
≤

m1 Iα
m2
G(x)

(m2 −m1)α
≤ Γ(1 + sα)

Γ(1 + (s + 1)α)
(G(m1) + G(m2)) (35)

Remark 10. When taking α = 1 in Equation (35), we obtained Equation (16).

For more results on the generalizations of H-H-type inequalities involving fractal sets
via fractional integrals, one should consult the following references [101,102].

The result in Theorem 33 involving Katugampola fractional integrals is the generaliza-
tion of the result presented earlier in Theorem 25:

Theorem 33 ([103]). Let λ > 0 and ρ > 0. Let G :
[
mρ

1, mρ
2

]
→ R be a positive function with

0 ≤ m1 < m2 and G ∈ Xp
c

(
mρ

1, mρ
2

)
. If G is also a convex function on [m1, m2], then the following

inequality

G
(

mρ
1 + mρ

2
2

)
≤ ρλΓ(λ + 1)

2
(

mρ
2 −mρ

1

)λ

[
ρ Iλ

m+
1
G
(

mρ
2

)
+ρ Iλ

m−2
G
(

mρ
1

)]
≤
G
(

mρ
1

)
+ G

(
mρ

2

)
2

(36)

holds, where the fractional integrals are considered for the function G(xρ) and evaluated at m1 and
m2, respectively.

The estimate of the difference between the right term and the middle term of the
inequality in Equation (36) is obtained using the following lemma:

Lemma 9. Suppose that G :
[
mρ

1, mρ
2

]
⊂ R+ → R is a differentiable mapping on

(
mρ

1, mρ
2

)
,

where 0 ≤ m1 < m2 and λ, ρ > 0. If the fractional integrals exist, we have

G
(

mρ
1

)
+ G

(
mρ

2

)
2

− λρλΓ(λ + 1)

2
(

mρ
2 −mρ

1

)λ

[
ρ Iλ

m+
1
G
(

mρ
2

)
+ρ Iλ

m−2
G
(

mρ
1

)]

=
mρ

2 −mρ
1

2

∫ 1

0

[
(1− ζρ)λ − ζρλ

]
ζρ−1G ′

(
ζρmρ

1 + (1− ζρ)mρ
2

)
dζ.

(37)

Theorem 34. Suppose that G :
[
mρ

1, mρ
2

]
⊂ R+ → R is a differentiable mapping on

(
mρ

1, mρ
2

)
with 0 ≤ m1 < m2. If |G ′| is convex on

[
mρ

1, mρ
2

]
, then the following inequality holds:∣∣∣∣∣∣∣

G
(

mρ
1

)
+ G

(
mρ

2

)
2

− λρλΓ(λ + 1)

2
(

mρ
2 −mρ

1

)λ

[
ρ Iλ

m+
1
G
(

mρ
2

)
+ρ Iλ

m−2
G
(

mρ
1

)]∣∣∣∣∣∣∣
≤

mρ
2 −mρ

1
2ρ(λ + 1)

(
1− 1

2λ

)[∣∣∣G ′(mρ
1

)∣∣∣+ ∣∣∣G ′(mρ
2

)∣∣∣]
(38)

Remark 11. Choosing ρ = 1 in Theorem 34 reduces the inequality in Equation (38) to the inequality
in Equation (28) in Theorem 26.

Other important results involving Katugampola fractional integrals include the work
of Mehreen and Anwar [104], who generalized Theorem 29, given as follows:
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Theorem 35. Suppose that λ > 0 and ρ > 0. Let G :
[
mρ

1, mρ
2

]
→ R be a positive function with

0 ≤ m1 < m2 and G ∈ Xp
c

(
mρ

1, mρ
2

)
. If G is also a convex function on [m1, m2], then the following

inequality holds:

2s−1G
(

mρ
1 + mρ

2
2

)
≤ ρλΓ(λ + 1)

2
(

mρ
2 −mρ

1

)λ

[
ρ Iλ

m+
1
G
(

mρ
2

)
+ρ Iλ

m−2
G
(

mρ
1

)]

≤
[

λ

(λ + s)
+ λβ(λ, s + 1)

]G(mρ
1

)
+ G

(
mρ

2

)
2

(39)

Anderson [105] provided generalized H-H-type inequalities involving conformable
fractional integrals as follows:

Theorem 36. Suppose that α ∈ (0, 1], m1, m2 ∈ R where m1 < m2, and G : [m1, m2] −→ R is
an α-fractional differentiable function such that Dα(G) is increasing. Then, we have

α

mα
2 −mα

1

∫ m2

m1

G(y)dαy ≤ G(m1) + G(m2)

2
(40)

In addition, if the mapping G is decreasing on [m1, m2], then

G
(

m1 + m2

2

)
≤ α

mα
2 −mα

1

∫ m2

m1

G(y)dαy (41)

Remark 12. If α = 1, then we clearly see that the inequalities in Equations (40) and (41) reduce to
the inequality in Equation (8).

In [106], Set et al. provided the generalized H-H-type inequalities involving con-
formable fractional integrals as follows:

Theorem 37. Let G : [m1, m2]→ R be a function with 0 ≤ a < b and f ∈ L1[m1, m2]. If G is a
convex function on [m1, m2], then the following inequality

G
(

m1 + m2

2

)
≤ Γ(α + 1)

2(m2 −m1)αΓ(α− n)
[(

Im1
α G

)
(m2) + (m2 IαG)(m1)

]
≤ G(m1) + G(m2)

2
(42)

holds, where α ∈ (n, n + 1].

Sarikaya et al. [107], presented the following H-H inequalities for conformable frac-
tional integrals:

Theorem 38. Let 0 < m1 < m2, α ∈ (0, 1),G : [m1, m2]→ R be a convex function and Jα f exist
on [m1, m2]. Then, one has

G
(

mα
1 + mα

2
2

)
≤ α

mα
2 −mα

1

∫ m2

m1

G(γα)dαγ ≤
G
(
mα

1
)
+ G(mα

2)

2
(43)

For more results on the generalization of H-H-type inequalities, we refer interested
readers to [106,108–110].

7. Applications to Special Means

The following means for positive real numbers m1, m2 ∈ R+ (m1 6= m2) exist in the
literature [4,5]:
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1. The arithmetic mean:

A(m1, m2) =
m1 + m2

2
.

2. The geometric mean:
G(m1, m2) =

√
m1m2.

3. The logarithmic mean:

L(m1, m2) =
m2 −m1

ln m2 − ln m1
, m1, m2 6= 0.

4. The generalized log mean:

Lϑ(m1, m2) =

[
mϑ+1

2 −mϑ+1
1

(ϑ + 1)(m2 −m1)

]1/ϑ

, ϑ ∈ Z \ {−1, 0}.

We note that Lϑ is monotonically increasing over ϑ ∈ R with L−1 = L. We in particular
obtained the following inequality: G ≤ L ≤ A. These special means can be frequently
applied to numerical approximations, as well as other related problems that can be obtained
in different fields. Several results that deal with special means have been reported in the
literature (see [11,111]).

Dragomir and Agarwal [112] applied the results of Theorem 18 to establish the follow-
ing new inequalities connecting the above means:

Proposition 2. Let m1, m2 ∈ R, m1 < m2 and θ ∈ N, θ ≥ 2. Then, the following inequality
holds: ∣∣∣A(mθ

1, mθ
2

)
− Lθ(m1, m2)

∣∣∣ ≤ θ(m2 −m1)

4
A
(
|m1|θ−1, |m2|θ−1

)
Proposition 3. Let m1, m2 ∈ R, m1 < m2, and 0 /∈ [m1, m2]. Then, the following inequality
holds: ∣∣∣A(m−1

1 , m−1
2

)
− L̄−1(m1, m2)

∣∣∣ ≤ (m2 −m1)

4
A
(
|m1|−2, |m2|−2

)
Furthermore, Kirmaci [93] established an application to special means using the result

of Theorem21 as follows:

Proposition 4. Let m1, m2 ∈ R, m1 < m2 and θ ∈ N, θ > 2. Then, we obtain∣∣∣Lθ(m1, m2)− Aθ(m1, m2)
∣∣∣ 6 θ(m2 −m1)

4
A
(
|m1|θ−1, |m2|θ−1

)
One can consult the following references [113,114] for a comprehensive study on

special means.

8. Applications to the Quadrature Formula

Let G : [m1, m2]→ R be a twice-differentiable function on (m1, m2), such that G ′′(x) is
bounded on the given interval. This can be written as∥∥G ′′∥∥∞ = sup

x∈(m1,m2)

∣∣G ′′(x)
∣∣ < ∞.

The following results are referred to as the midpoint and trapezoid inequalities,
respectively: ∣∣∣∣∫ m2

m1

G(x)dx− (m2 −m1)G
(

m1 + m2

2

)∣∣∣∣ ≤ (m2 −m1)
3

24

∥∥G ′′∥∥∞ (44)
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∣∣∣∣∫ m2

m1

G(x)dx− (m2 −m1)
G(m1) + G(m2)

2

∣∣∣∣ ≤ (m2 −m1)
3

12

∥∥G ′′∥∥∞, (45)

Therefore, the integral
∫ m2

m1
G(x)dx can be approximated in terms of the midpoint

formula and the trapezoid formula, respectively:∫ m2

m1

G(x)dx ∼= (m2 −m1)G
(

m1 + m1

2

)
,

∫ m2

m1

G(x)dx ∼= (m2 −m1)
G(m1) + G(m2)

2
,

The midpoint and trapezoid inequalities can be grouped in the most important rela-
tionship: the H-H inequality (8).

Suppose that d is a partition of the interval [m1, m2] such that m1 = z0 < z1 < · · · <
zn−1 < zn = m2. Therefore, we write the following quadrature formula:∫ m2

m1

G(x)dx = Ti(G, d) + Ei(G, d), i = 1, 2,

whereby

T1(G, d) =
n−1

∑
i=0

G(zi) + G(zi+1)

2
(zi+1 − zi)

is the trapezoidal version, and

T2(G, d) =
n−1

∑
i=0
G
(

zi + zi+1

2

)
(zi+1 − zi)

stands for the midpoint version.
The remainder term E1(G, d) for the integral

∫ m2
m1
G(x)dx estimated by the trapezoidal

formula T1(G, d) satisfies

|E1(G, d)| ≤ M
12

n−1

∑
i=0

(zi+1 − zi)
3. (46)

Meanwhile, that of the midpoint formula T2(G, d) satisfies

|E2(G, d)| ≤ M
24

n−1

∑
i=0

(zi+1 − zi)
3. (47)

These remainder terms in Equations (46) and (47) can be used to estimate the error
bounds of many numerical integrations. Furthermore, the inequalities in Equations (44)
and (45) can only hold if the second derivative is bounded on the interval (m1, m2), and G is
a twice-differentiable function. This encourages many researchers to determine inequalities
with a less than or equal to one derivative.

For example, Dragomir and Agarwal [112] estimated the remainder term through one
derivative as follows:

Proposition 5. Let G be a differentiable function on Ko, m1, m2 ∈ Ko with m1 < m2. If |G ′| is
convex on [m1, m2], then the following holds:

|E(G, d)| ≤ 1
8

θ−1

∑
j=0

(
zj+1 − zj

)2(∣∣G ′(zj
)∣∣+ ∣∣G ′(zj+1

)∣∣)
≤ max{|G ′(m1)|, |G ′(m2)|}

4

n−1

∑
j=0

(
zj+1 − zj

)2
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Another important result was established by Kirmaci [93], who estimated the remain-
der term through one derivative as follows:

Proposition 6. Let G be a differentiable function on Ko, m1, m2 ∈ Ko with m1 < m2. If |G ′| is
convex on [m1, m2], then the following holds:

|E(G, d)| 6 1
8

θ−1

∑
j=0

(
xj+1 − xj

)2(∣∣G ′(xj
)∣∣+ ∣∣G ′(xj+1

)∣∣)
Thus, these estimates remain as open-ended problems when considering their wider

areas of application [11,93].

9. Conclusions

H-H-type inequalities are introduced in this article to ease the concepts for beginners
in the filed of the theory of inequality. We described some basic facts including integral
inequalities and fractional inequalities of the H-H type through various classes of convexity
so as to encourage more new research in this field of study. In order to achieve our goal,
we provided and discussed some important definitions, examples and theorems related
to the H-H inequality. For example, the formulations of H-H-type inequalities of α-type
real-valued convex functions, together various classes of convexity, were discussed in detail
in this review. Using the concept presented in this study, more results can be produced as
extensions of some basic information discussed in the review.
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74. Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Başak, N. Hermite-Hadamard’s inequalities for fractional integrals and related fractional

inequalities. Math. Comput. Model. 2012, 57, 2403–2407. [CrossRef]
75. Niculescu, C.P.; Persson, L.E. Old and new on the Hermite-Hadamard inequality. Real Anal. Exch. 2004, 29, 663–686. [CrossRef]
76. Khattri, S.K. Three proofs of the inequality. Am. Math. Mon. 2010, 117, 273–277.
77. Hardy, G.; Littlewood, J.; Polya, G. Inequalities; Cambrige University Press: New York, NY, USA, 1952; Volume 2, pp. 151–218.
78. Robert, A.W.; Varberg, D.E. Convex Functions; Academic Press: New York, NY, USA, 1973.
79. Pearce, C.E.; Rubinov, A. P-functions, quasi-convex functions, and Hadamard-type inequalities. J. Math. Anal. Appl. 1999,

240, 92–104. [CrossRef]
80. Barani, A.; Barani, S. Hermite–Hadamard type inequalities for functions when a power of the absolute value of the first derivative

is P-convex. Bull. Aust. Math. Soc. 2012, 86, 126–134. [CrossRef]
81. Kadakal, M. Some Hermite-Hadamard type inequalities for (P; m)-function and quasi m-convex functions. Int. J. Optim. Control

Theor. Appl. 2020, 10, 78–84. [CrossRef]
82. Özdemir, M.E.; Latif, M.A.; Akdemir, A.O. On some Hadamard-type inequalities for product of two s-convex functions on the

co-ordinates. J. Inequalities Appl. 2012, 2012, 21. [CrossRef]
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92. Pearce, C.E.; Pečarić, J. Inequalities for differentiable mappings with application to special means and quadrature formulae. Appl.

Math. Lett. 2000, 13, 51–55. [CrossRef]
93. Kirmaci, U.S. Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula.

Appl. Math. Comput. 2004, 147, 137–146. [CrossRef]
94. Barani, A.; Ghazanfari, A.G.; Dragomir, S.S. Hermite-Hadamard inequality for functions whose derivatives absolute values are

preinvex. J. Inequalities Appl. 2012, 2012, 247. [CrossRef]
95. Mehrez, K.; Agarwal, P. New Hermite-Hadamard type integral inequalities for convex functions and their applications. J. Comput.

Appl. Math. 2019, 350, 274–285. [CrossRef]
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