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Abstract: Let Γ be a graph and G 6 Aut(Γ). A graph Γ can be called G-arc-transitive (GAT) if G
acts transitively on its arc set. A regular covering projection p : Γ→ Γ is arc-transitive (AT) if an AT
subgroup of Aut(Γ) lifts under p. In this study, by applying a number of concepts in linear algebra
such as invariant subspaces (IVs) of matrix groups (MGs), we discuss regular AT elementary abelian
covers (R-AT-EA-covers) of the C13 graph.
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1. Introduction

All graphs given in this paper are assumed to be finite, connected, and simple. For a
graph Γ, we denote a set of vertices, set of edges, set of arcs, and full automorphism group
with V(Γ), E(Γ), A(Γ), and Aut(Γ), respectively. Suppose that G is a subgroup of Aut(Γ).
For a, b ∈ V(Γ), {a, b} is the edge located between a and b in Γ, and NΓ(a) denotes the set
of vertices adjacent to a in Γ (neighborhood of a).

Suppose that Γ and Γ are two graphs. We say that a graph epimorphism p : Γ −→ Γ is
covering projection if p is a local isomorphism, that is, for each v ∈ V(Γ), the restriction p
to NΓ(v) is a bijection to NΓ(p(v)), where p(v) ∈ V(Γ). We say that Γ is the covering graph
and Γ is the base graph. A permutation group G on a set ∆ is said to be semiregular if the
stabilizer Gv of v in G is trivial for each v ∈ ∆. If G is transitive, and semiregular, it is regular.
Let N be a subgroup of Aut(Γ) such that N is not transitive on V(Γ). The quotient graph
Γ/N is defined as the graph for which the vertices are the orbits of acting N on V(Γ), and
two vertices A, B ∈ V(Γ/N) are adjacent if, and only if, there exists a ∈ A and b ∈ B such
that {a, b} ∈ E(Γ). The covering graph is regular or N-covering if there is a semiregular
subgroup N of the automorphism group Aut(Γ) such that graph Γ is isomorphic to the

quotient graph
Γ
N

. If N is an elementary abelian (EA), then Γ is called an EA covering

of Γ. Given a graph Γ and a subgroup G of Aut(Γ), Γ is G-vertex-transitive (GVT), G-
edge-transitive (GET), or GAT if G is transitive on the V(Γ), E(Γ), or A(Γ), respectively.
If G = Aut(Γ) then Γ is called a VT, ET or AT graph, respectively. A subspace W of a vector
space V is said to be invariant subspace (IV) with respect to a linear transformation T if
T(W) ⊆ W. A matrix group (MG) is a group G consisting of invertible matrices over a
specified field K, with the operation of matrix multiplication.

A powerful and important tool topology and graph theory is covering techniques.
Regular covering is an active and interesting topic in algebraic graph theory. Tutte in
[1,2] studied finite cubic arc-transitives and showed that every arc-transitive graph of
degree 3 has an order of the form 2np, where n > 0 and a prime number p. Conder and
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Dobcsányi [3,4] classified the trivalent s-regular graphs up to order 2048 with MAGMA
software [5]. Cheng and Oxley classified the AT graphs of order 2p (see Table 1 in [6]).
Talebi and Mehdipoor classified cubic semisymmetric graphs of order 18pn in [7]. By using
the covering technique, s-regular graphs with order 2p2, 2p3, 4p, 4p2, 6p, 6p2, 8p, 8p2,
10p, 12p, 10p2, 14p, 16p, 28p, 36p, 44p, 52p, 66p, 68p, 76p, 22p, 22p2, 10p3, 3p2 and 6p2

were classified in [8–22]. Kosari et al. in [23] investigated new results in graphs. The
automorphism lifting problem in the context of elementary abelian covers was studied by
Malnič, Marušič and Potočnik [24]. Their results have been successfully applied in order
to classify elementary abelian covers with specific symmetric properties for a number of
small cubic or tetravalent graphs, namely, the complete graph K4 [11], the Q3 graph [12]
the Heawood graph [24], the Petersen graph [25], the Möbius–Kantor graph [26] and the
Octahedron graph [27]. Most recently, Talebi and Mehdipoor investigated semisymmetric
Zp-covers of the C20 graph [28]. In this paper, we classify R-AT-EA-covers of the C13 graph,
by using concepts of linear algebra.

Graph Γ := C13 is an AT tetravalent graph, which was defined in [29]. The order and
size of this graph are 13 and 26, respectively. See Figure 1.

Figure 1. C13 graph.

V(Γ) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}
E(Γ) = {{1, 2}, {1, 6}, {1, 9}, {1, 13}, {2, 3}, {2, 7}, {2, 10}, {3, 4}, {3, 8},
{3, 11}, {4, 5}, {4, 9}, {4, 12}, {5, 6}, {5, 10}, {5, 13}, {6, 7}, {6, 11}, {7, 8},
{7, 12}, {8, 9}, {8, 13}, {9, 10}, {10, 11}, {11, 12}, {12, 13}}.

The automorphisms of C13 graph are

δ = (2, 9, 13, 6)(3, 4, 12, 11)(5, 7, 10, 8),
σ = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13).

Then, |Aut(C13)| = 52. Aut(C13) acts transitively on V(C13), E(C13) and A(C13).
We will see by using Sage software (S-S) [30] that Aut(C13) has one AT subgroup 〈δ, σ2〉.

Let T be an ST of the C13 graph with edges

{1, 2}, {1, 6}, {1, 9}, {1, 13}, {2, 3}, {2, 7}, {2, 10}, {3, 4}, {3, 8},
{3, 11}, {4, 5}, {4, 12}.

By choosing T, we can consider in this graph a T-reduced VA, that is, the voltage
values on the arcs of tree T are the identity. The CT arcs are as follows:

γ1 = (5, 6), γ2 = (6, 7), γ3 = (7, 8), γ4 = (8, 9),
γ5 = (9, 10), γ6 = (10, 11), γ7 = (11, 12), γ8 = (12, 13), γ9 = (13, 8),
γ10 = (13, 5), γ11 = (12, 7), γ12 = (11, 6), γ13 = (10, 5), γ14 = (9, 4).
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Let Γ be a graph and N be a finite group. We denote the reverse as an arc ω with ω−1.
A voltage assignment (VA) of Γ is a function ϕ : A(Γ) → N such that ϕ(ω−1) = ϕ(ω)−1

for each arc ω ∈ A(Γ). The voltage is the value of ϕ, and N is the voltage group. The graph
Γ×ϕ N (Cov(Γ, ϕ)) obtained from a VA ϕ : A(Γ)→ N has vertex set V(Γ)×N and edge set
E(Γ)× N; then, an edge (e, g) of Γ ×N joins a vertex (ω, g) to (b, ϕ(ω)g) for ω = (a, b) ∈
A(Γ) and g ∈ N, where e = {a, b}. By considering the VA arcs, we can create a VA on
walks [31], for example the voltage on a walk W : ω1, ω2, . . . , ωn, is ϕ(ω1)ϕ(ω2) . . . ϕ(ωn).
The derived graph Γ×ϕ N is a covering of Γ. By defining (a, g′)g = (a, g′g) for any g ∈ N
and (a, g′) ∈ V(Γ×ϕ N), is an N-covering, for any a ∈ V(Γ). The reverse is also true. For a
spanning tree (ST) T of the graph Γ, a VA ϕ is called T-reduced if the voltages on the tree
arcs are the identity. If T is an arbitrary fixed ST, then Gross and Tucker [32] proved that
every regular covering Γ of a graph Γ can be obtained from a T-reduced VA of Γ. Assume
that Γ is an N-covering of Γ. [33] If τ ∈ Aut(Γ) and τ ∈ Aut(Γ) satisfy τp = pτ, where
p : Γ → Γ, then τ is a lift of τ, and τ the projection of τ. A regular covering projection
p : Γ→ Γ is VT, ET or AT if a VT, ET or AT subgroup of Aut(Γ) lifts under p.

Let Γ be a graph and W1, W2 be two walks of Γ. We show that the fundamental group
of a graph Γ is the set of all reduced walks equipped with the product W1W2 by π(Γ).
The fundamental group of Γ is called π(Γ, v) at v. In general, the fundamental group is
not a free group. Therefore, by abelianizing π(Γ, v), the first homology group HG1(Γ) is
obtained. It is not necessarily a free Z-module. Suppose that ne + ns is the minimal number
of generators of π(Γ, v), where ns is the number of semiedges and ne is the number of cotree
(CT) loops and links relative to some ST, such that HG1(Γ) ∼= Zne ×Zns

2 . [24] Observe that

HG1(Γ,Zp) ∼=
{

Zne+ns
p p = 2
Zne

p p ≥ 3.

given a connected graph Γ and a subgroup G ≤ Aut(Γ). Let T be a ST of Γ and a set of arcs
{γ1, . . . , γn} ⊆ A(Γ) include precisely one arc from each edge in E(Γ \ T). Suppose that BT
is the corresponding basis of HG1(Γ,Zp) determined by {γ1, . . . , γn}. Furthermore, denote
by G∗h = {τ∗h|τ ∈ G} ≤ GL(HG1(Γ, Zp)) the induced action of G on HG1(Γ,Zp), and let
MG ≤ Zn×n

p be the matrix representation of G∗h with respect to the basis BT . The dual
group including all transposes of matrices in MG is denoted by Mt

G.
Proposition 1 was obtained from [24], Proposition 6.3 and Corollary 6.5. This propo-

sition is very important and widely used in the presentation of R-AT-EA-covers of the
C13 graph.

Proposition 1. Let T be an ST of a connected graph Γ, and let the set {γ1, γ2, . . . , γr} ⊆ A(Γ)
include precisely one arc from each CT edge. Let ϕ : A(Γ)→ Zd×1

p be a VA on Γ that is identical
on T, and let Z(ϕ) = [ϕ(γ1), ϕ(γ2), . . . , ϕ(γr)]t. Therefore, a group G ≤ Aut(Γ) lifts under
pϕ : Cov(Γ, ϕ)→ Γ if and only if the induced subspace 〈Z(ϕ)〉 is a d-dimensional(d-dime) Mt

G-IV.

The main purpose for finding all regular EA coverings of a graph is finding all IVs of
a MG. Now, we express the following theorem, which is basic for finding all IVs of MG.

Theorem 1 ((Maschke’s theorem)). Let V be a representation of the finite group G over a field F
in which |G| is invertible. Let W be an invariant subspace of V. Then, there exists an invariant
subspace W1 of V such that V = W ⊕W1 as representations.

2. R-AT-AE-Covers of the C13 Graph

In this section, we introduce all of the (connected) R-AT-EA-covers of the C13 graph
with projection p : Γ → C13. Notation Cγi is the fundamental closed walk, that is, Cγi is
one cycle of graph Γ containing exactly an arc γi of CT. Notation BT is the standard ordered
basis of HG1(C13,Zp) related to the ST T, and the arcs γi(i = 1, . . . , 14), respectively.
Here, we state Lemma 1.
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Lemma 1. Let A and B be the transposes of the matrices that indicate the linear transformations
δ∗h, and σ∗h relative to BT . Therefore

A =



0 0 0 0 0 0 0 0 0 0 1 0 0 1

0 0 0 0 −1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 1 −1

0 0 0 0 0 0 0 0 0 −1 0 0 0 1

0 0 0 1 0 0 0 0 1 0 0 0 0 0

0 0 0 −1 0 0 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 0 0 0 0 1 0 1

−1 0 0 0 0 0 0 0 0 0 0 0 0 −1

0 1 0 0 0 0 0 0 0 0 −1 0 0 −1

0 0 0 0 −1 −1 −1 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 −1 −1 0 0 0 0 0 0 −1 0 0 −1

0 0 0 0 0 0 0 −1 0 0 0 0 0 −1



B =



1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0 0 0 0 −1

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1

−1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0

−1 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0



.

Proof. By considering acting the automorphisms δ and σ on BT , we obtain the rows of
these matrices. For instance, the permutation δ maps the cycle

[5, 6, 1, 2, 3, 4, 5]

corresponding to γ1, to the cycle

[7, 2, 1, 9, 4, 12, 7].

Since the second cycle is the sum of the base cycles corresponding to γ11 and γ14,
the first row of matrix A is obtained. This is

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1).

Similar to the above, we can obtain the matrices A and B.

By using S-S , mA(t) = t4 − 1 and mH(t) = t13 − 1 are the minimal polynomials
of A and H = B2. Assume that p is a prime. ξ is a primitive 13th root of unity in Zp.
The minimal polynomial mH(x) is decomposed into irreducible factors over Zp. See the
following statements:

(t− 1)13 p = 13
(t− 1)(t− ξ)(t− ξ2)(t− ξ3)(t− ξ4)(t− ξ5)(t− ξ6)(t− ξ7)(t− ξ8)(t− ξ9)(t− ξ10)(t− ξ11)(t− ξ12) p ≡ 1mod 13
(t− 1)((t− ξ)(t− ξ3)(t− ξ9))((t− ξ2)(t− ξ5)(t− ξ6))((t− ξ4)(t− ξ10)(t− ξ12))((t− ξ7)(t− ξ8)(t− ξ11)) p ≡ 3, 9mod 13
(t− 1)((t− ξ)(t− ξ3)(t− ξ4)(t− ξ9)(t− ξ10)(t− ξ12))((t− ξ2)(t− ξ5)(t− ξ6)(t− ξ7)(t− ξ8)(t− ξ11)) p ≡ 4, 10mod 13
(t− 1)((t− ξ)(t− ξ5)(t− ξ8)(t− ξ12))((t− ξ2)(t− ξ3)(t− ξ10)(t− ξ11))((t− ξ3)(t− ξ6)(t− ξ7)(t− ξ9)) p ≡ 5, 8mod 13
(t− 1)(t12 + t11 + t10 + t9 + t8 + t7 + t6 + t5 + t4 + t3 + t2 + t + 1) p ≡ 2, 6, 7, 11mod 13
(t− 1)((t− ξ)(t− ξ12))((t− ξ2)(t− ξ11))((t− ξ5)(t− ξ8))((t− ξ6)(t− ξ7))((t− ξ4)(t− ξ9))((t− ξ3)(t− ξ10)) p ≡ −1mod13.



Symmetry 2022, 14, 1066 5 of 10

Now, it is sufficient to see A and H as matrices over the splitting field Zp(ξ). To find
〈B, H〉-IVs over Zp, every IV over Zp is a direct sum of minimal IVs over Zp(ξ). By a
straightway calculation and applying Lemma 1, we have

ker(H − ξ2 I) = 〈v1〉,
ker(H − ξ4 I) = 〈v2〉,
ker(H − ξ6 I) = 〈v3〉,
ker(H − ξ8 I) = 〈v4〉,
ker(H − ξ10 I) = 〈v5〉,
ker(H − ξ12 I) = 〈v6〉,
ker(H − ξ I) = 〈v7〉,
ker(H − ξ3 I) = 〈v8〉,
ker(H − ξ5 I) = 〈v9〉,
ker(H − ξ7 I) = 〈v10〉,
ker(H − ξ9 I) = 〈v11〉,
ker(H − ξ11 I) = 〈v12〉,
ker(H − I) = 〈v13, v14〉

where

v1 =



ξ10

ξ3+1
(ξ−1)ξ10

ξ2−ξ+1

− 1
2

(7ξ12−7ξ11+4ξ10−ξ9+ξ−4)
− 1

2 ξ3− 1
2 ξ−3−4ξ−4ξ−1+2ξ2+2ξ−2+5

−
(

ξ2 − ξ + 1
)−1

− 1
2

(7ξ12−4ξ11+ξ10−ξ2+4ξ−7)
− 1

2 ξ3− 1
2 ξ−3−4ξ−4ξ−1+2ξ2+2ξ−2+5

− ξ2−1
ξ
(

ξ10+1
)

− (ξ−1)ξ4

ξ2−ξ+1
ξ6

ξ3+1
ξ11

− ξ10+1
ξ2
(

ξ6+2 ξ3+1
)

− ξ8+ξ7+ξ6+ξ+1
ξ6

− ξ8+ξ7+ξ2+ξ+1
ξ2

ξ2

1



, v2 =



1
ξ6
(

ξ6+1
)

−

(
16 ξ12−15 ξ11+12 ξ10−8 ξ9+4 ξ8−ξ7+ξ5−4 ξ4+8 ξ3−12 ξ2+15 ξ−16

)
ξ6

3 ξ12−8 ξ11+12 ξ10−16 ξ9+20 ξ8−24 ξ7+26 ξ6−24 ξ5+20 ξ4−16 ξ3−12 ξ2−8 ξ+3

−

(
4 ξ12−ξ11+ξ9−4 ξ8+8 ξ7−12 ξ6+15 ξ5−16 ξ4+16 ξ3−15 ξ2+12 ξ−8

)
ξ6

3 ξ12−8 ξ11+12 ξ10−16 ξ9+20 ξ8−24 ξ7+26 ξ6−24 ξ5+20 ξ4−16 ξ3−12 ξ2−8 ξ+3(
ξ4 − ξ2 + 1

)−1

−
ξ6
(

ξ9−ξ7+ξ2−1
)

ξ10−ξ8+ξ6+ξ4−ξ2+1
1

−ξ7−1

(
ξ2 − ξ−2

)
−

(
ξ2−1

)
ξ8

ξ4−ξ2+1
ξ12

ξ6+1
ξ9

− ξ3

ξ6+1
−ξ4 − ξ3 − ξ2 − ξ − 1

− ξ4+ξ3+ξ2+ξ−1
ξ4

ξ4

1



,

v3 =



ξ8
(

ξ4+1
)

ξ8+2 ξ4−1

− ξ12−2 ξ11+4 ξ10−2 ξ9+2 ξ8−4 ξ7+2 ξ6−ξ5+2 ξ4−ξ3+ξ−2
ξ12−ξ11+2 ξ10−4 ξ9+2 ξ8−3 ξ7+6 ξ6−3 ξ5+2 ξ4−4 ξ3−2 ξ2−ξ+1

−
ξ5
(

ξ9−ξ6−ξ2+1
)

ξ8+2 ξ4−1

−
(

ξ6 − ξ3 + 1
)−1

−

(
ξ10+ξ6−ξ4−1

)
ξ4

ξ8+2 ξ4−1

−
ξ7
(

ξ9−ξ7−ξ3+1
)

ξ8+2 ξ4−1
ξ7
(

ξ9−ξ6−ξ2+1
)

ξ8+2 ξ4−1
− 1(

ξ4+1
)

ξ4

ξ6

− ξ2

ξ4+1

− ξ11+ξ8+ξ5+ξ3+1
ξ5

− ξ11+ξ8+ξ6+ξ3+1
ξ6

ξ6

1



, v4 =



ξ2
1+ξ(

ξ7 − ξ6 + ξ5 − ξ4 + ξ3 − ξ2 + ξ − 1
)

ξ2

−
ξ5
(

ξ5−1
)

1+ξ

−
ξ
(

ξ4+1
)

1+ξ

ξ4−ξ3+ξ2−ξ+1
ξ4

−

(
ξ2+1

)(
ξ5−ξ4+ξ−1

)
ξ4

ξ5−1
ξ (1+ξ)

1
ξ (1+ξ)

ξ5

− ξ12+1
ξ5
(

ξ2+2 ξ+1
)

− ξ11+ξ9+ξ7+ξ5+1
ξ5

− ξ11+ξ6+ξ4−ξ2+1
ξ6

ξ8

1



,
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v5 =



1
ξ2
(

ξ2+1
)

−

(
ξ3−1

)
ξ8

ξ2+1

−

(
ξ3−1

)
ξ5

ξ2+1

−

(
ξ11+ξ5+ξ3+1

)
ξ2

ξ4+2 ξ2+1(
ξ11−ξ10−ξ8+1

)
ξ2

ξ4+2 ξ2+1(
ξ3−1

)
ξ7

ξ2+1(
ξ3−1

)
ξ4

ξ2+1
ξ4

ξ2+1
ξ3

− ξ

ξ2+1

− ξ9+ξ5+ξ4+ξ−1
ξ4

− ξ9+ξ8+ξ5+ξ4+1
ξ5

ξ10

1



, v6 =



1
ξ5
(

ξ5+1
)

− ξ−1
ξ6
(

ξ5+1
)

− ξ−1
ξ7
(

ξ5+1
)

−

(
ξ8+ξ6+ξ+1

)
ξ5

ξ10+2 ξ5+1

−

(
ξ12−ξ8+ξ7−1

)
ξ5

ξ10+2 ξ5+1

−

(
19 ξ12−15 ξ11+8 ξ10−8 ξ8+15 ξ7−19 ξ6+20 ξ5−20 ξ4+20 ξ3−20 ξ2+20 ξ−20

)
ξ5

ξ10−4 ξ9+8 ξ8−12 ξ7+16 ξ6−18 ξ5+16 ξ4−12 ξ3+8 ξ2+4 ξ+1
(ξ−1)ξ10

ξ5+1
ξ10

ξ5+1
ξ

−
ξ
(

ξ7−ξ6+ξ5−ξ4+ξ3−ξ2+ξ−1
)

ξ9−ξ8+ξ7−ξ6+ξ5+ξ4−ξ3+ξ2−ξ+1

− ξ10+ξ7+ξ4+ξ3−1
ξ4

− ξ10+ξ7+ξ6+ξ3+1
ξ6

ξ12

1



,

v7 =



ξ10

ξ5+1
(ξ−1)ξ10

ξ5+1
ξ−1

ξ2
(

ξ5+1
)

−
ξ5
(

ξ6−ξ5+ξ4−ξ3+ξ2−ξ+1
)

ξ4−ξ3+ξ2−ξ+1

− ξ5(ξ−1)
ξ5+1

−

(
20 ξ12−20 ξ11+20 ξ10−20 ξ9+20 ξ8−19 ξ7+15 ξ6−8 ξ5+8 ξ3−15 ξ2+19 ξ−20

)
ξ5

ξ10−4 ξ9+8 ξ8−12 ξ7+16 ξ6−18 ξ5+16 ξ4−12 ξ3+8 ξ2+4 ξ+1

− (ξ−1)ξ7

ξ5+1
1

ξ5
(

ξ5+1
)

ξ12

−
ξ
(

ξ7−ξ6+ξ5−ξ4+ξ3−ξ2+ξ−1
)

ξ9−ξ8+ξ7−ξ6+ξ5+ξ4−ξ3+ξ2−ξ+1

− ξ10+ξ7+ξ6+ξ3+1
ξ6

− ξ10+ξ7+ξ4+ξ3−1
ξ4
ξ
1



, v8 =



ξ4

ξ2+1(
ξ3−1

)
ξ4

ξ2+1(
ξ3−1

)
ξ7

ξ2+1

−
ξ2
(

ξ8+1
)

ξ2+1

−
ξ2
(

ξ3−1
)

ξ2+1

−

(
ξ3−1

)
ξ5

ξ2+1

−

(
ξ3−1

)
ξ8

ξ2+1
1

ξ2
(

ξ2+1
)

ξ10

− ξ

ξ2+1

− ξ9+ξ8+ξ5+ξ4+1
ξ5

− ξ9+ξ5+ξ4+ξ−1
ξ4

ξ3

1



,

v9 =



1
(1+ξ)ξ

−
(

ξ7 − ξ6 + ξ5 − ξ4 + ξ3 − ξ2 + ξ − 1
)

ξ4(
ξ5−1

)
ξ4

1+ξ

−

(
ξ12+ξ9+ξ8+1

)
ξ

ξ2+2 ξ+1

−

(
ξ4−1

)
ξ9

ξ9−ξ5−1(
ξ2+1

)(
ξ5−ξ4+ξ−1

)
ξ3

−

(
ξ4−1

)
ξ6

ξ9−ξ5−1
ξ2

1+ξ

ξ8

− ξ12+1
ξ5
(

ξ2+2 ξ+1
)

− ξ11+ξ6+ξ4−ξ2+1
ξ6

− ξ11+ξ9+ξ7+ξ5+1
ξ5

ξ5

1



, v10 =



ξ9
(

ξ4+1
)

ξ8+2 ξ4−1
2 ξ12−ξ11+ξ9−2 ξ8+ξ7−2 ξ6+4 ξ5−2 ξ4+2 ξ3+4 ξ2+2 ξ−1

ξ12−ξ11+2 ξ10−4 ξ9+2 ξ8−3 ξ7+6 ξ6−3 ξ5+2 ξ4−4 ξ3−2 ξ2−ξ+1

−
ξ7
(

ξ9−ξ7−ξ3+1
)

ξ8+2 ξ4−1

− ξ6

ξ6−ξ3+1(
ξ9−ξ7−ξ3+1

)
ξ4

ξ8+2 ξ4−1

−
ξ5
(

ξ9−ξ6−ξ2+1
)

ξ8+2 ξ4−1
ξ5
(

ξ9−ξ7−ξ3+1
)

ξ8+2 ξ4−1
ξ8

ξ4−1
ξ6

− ξ2

ξ4+1

− ξ11+ξ8+ξ6+ξ3+1
ξ6

− ξ11+ξ8+ξ5+ξ3+1
ξ5

ξ7

1



,
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v11 =



ξ12

ξ6+1

−

(
15 ξ12−12 ξ11+8 ξ10−4 ξ9+ξ8−ξ6+4 ξ5−8 ξ4+12 ξ3−15 ξ2+16 ξ−16

)
ξ6

3 ξ12−8 ξ11+12 ξ10−16 ξ9+20 ξ8−24 ξ7+26 ξ6−24 ξ5+20 ξ4−16 ξ3−12 ξ2−8 ξ+3

−

(
12 ξ12−15 ξ11+16 ξ10−16 ξ9+15 ξ8−12 ξ7+8 ξ6−4 ξ5+ξ4−ξ2+4 ξ−8

)
ξ6

3 ξ12−8 ξ11+12 ξ10−16 ξ9+20 ξ8−24 ξ7+26 ξ6−24 ξ5+20 ξ4−16 ξ3−12 ξ2−8 ξ+3

− ξ4

ξ4−ξ2+1

−

(
ξ9−ξ6+ξ2−1

)
ξ6

ξ12+2 ξ6+1
ξ2−1(

ξ4−ξ2+1
)

ξ2(
ξ2−1

)
ξ7

ξ4−ξ2+1
1

ξ6
(

ξ6+1
)

ξ4

− ξ3

ξ6+1

− ξ4+ξ3+ξ2+ξ−1
ξ4

−ξ4 − ξ3 − ξ2 − ξ − 1
ξ9

1



, v12 =



ξ6

ξ3+1

− (ξ−1)ξ4

ξ2−ξ+1
− 1

2 (ξ12−ξ4+4ξ3−7ξ2+7ξ−4)

(− 1
2 ξ3− 1

2 ξ−3−4ξ−4ξ−1+2ξ2+2ξ−2+5)

− ξ2

ξ2−ξ+1
− 1

2 (4ξ12−ξ11+ξ3−4ξ2+7ξ−7)

(− 1
2 ξ3− 1

2 ξ−3−4ξ−4ξ−1+2ξ2+2ξ−2+5)
ξ−1(

ξ2−ξ+1
)

ξ

(ξ−1)ξ10

ξ2−ξ+1
1

ξ3
(

ξ3+1
)

ξ2

− ξ10+1
ξ2
(

ξ6+2 ξ3+1
)

− ξ8+ξ7+ξ2+ξ+1
ξ2

− ξ8+ξ7+ξ6+ξ+1
ξ6

ξ11

1



,

v13 =



−1
0
0
−1
0
0
0
−1
1
1
0
0
1
1


, v14 =



1
0
0
0
0
0
0
1
0
−1
1
1
0
0


.

By the linear transformation A, we calculate the images of vi, 1 ≤ i ≤ 14 as follows:

Av1 = −( ξ6

ξ3+1 + 1)v8,

Av2 = −( ξ12

ξ6+1 )v3,

Av3 = −( ξ9(ξ4+1)
ξ8+2 ξ4−1 + 1)v11,

Av4 = −( 1
(1+ξ)ξ

+ 1)v6,

Av5 = −( ξ4

ξ2+1 + 1)v1,

Av6 = −( ξ10

ξ5+1 + 1)v9,

Av7 = −( 1
ξ5(ξ5+1) + 1)v4,

Av8 = −( 1
ξ2(ξ2+1) + 1)v12,

Av9 = −( ξ2

1+ξ + 1)v7,

Av10 = −( ξ8(ξ4+1)
ξ8+2 ξ4−1 + 1)v2,

Av11 = −( 1
ξ6(ξ6+1) + 1)u10,

Av12 = −( ξ10

ξ3+1 + 1)v5,
Av13 = v14,
Av14 = v13.

Let V be a minimal 〈A, H〉-IV. Let

V1 = 〈v13, v14〉

and

V2 = 〈v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12〉

over the field Zp(ξ). Suppose first that V ∩ V2 = 0. Then V ≤ V1. More exactly, V ≤
〈v13, v14〉 ∩ A〈v13, v14〉. Since Av13 = v14 and Av14 = v13, we have V ≤ 〈v13, v14〉. All
one-dime subspaces of 〈v13, v14〉 are 〈v13〉 and 〈sv13 + v14〉, where s ∈ ZP. If v13 ∈ V,
then Av13 = v14 ∈ V and hence V = W1 := 〈v13, v14〉. Let sv13 + v14 ∈ V. Then,
A(sv13 + v14) = sv14 + v13 ∈ V. Since 〈sv13 + v14, sv14 + v13〉 = 〈v13, v14〉, we have
V = W1.
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Now, assume that V intersects V2 nontrivially, such that V must include one of the
minimal H-IVs in V2 that are 1-dime subspaces of the spaces 〈v1〉, 〈v2〉, 〈v3〉, 〈v4〉, 〈v6〉,
〈v5〉, 〈v8〉, 〈v7〉, 〈v9〉, 〈v10〉, 〈v12〉 and 〈v11〉. We examine the following cases.
Case I: v1 ∈ V.

Suppose that v1 ∈ V. Then, Av1 ∈ V, implying that v8 ∈ V and hence Av8 ∈ V.
Since Av8 = −( 1

ξ2(ξ2+1) + 1)v12, we have v12 ∈ V. By considering Av12, one can see that
V = W2 := 〈v1, v12, v5, v8〉.
Case II: v2 ∈ V.

Suppose that v2 ∈ V. Then Av2 = −( ξ12

ξ6+1 )v3 and hence v3 ∈ V. By noting that

Av3 = −( ξ9(ξ4+1)
ξ8+2 ξ4−1 + 1)v11, we have v11 ∈ V. Now by considering Av11, we can see

v10 ∈ V. Therefore, V = W3 := 〈v2, v3, v10, v11〉.
Case III: v3 ∈ V.

Assume that v3 ∈ V. Then, Av3 ∈ V, implying that v11 ∈ V and hence by considering

Av11, we have v10 ∈ V. Finally, by noting that Av10 = −( ξ8(ξ4+1)
ξ8+2 ξ4−1 + 1)v2, one can see that

V = W3.
Case IV: v4 ∈ V.

Let v4 ∈ V. Then, Av4 = −( 1
(1+ξ)ξ

+ 1)v6. By considering Av6, we have v9 ∈ V.

Finally, by noting that Av9 = −( ξ2

1+ξ + 1)v7 and Av7 = −( 1
ξ5(ξ5+1) + 1)v4, one can see that

V = W4 := 〈v4, v6, v9, v7〉.
In the remaining cases, by considering Avi, 5 ≤ i ≤ 14, we have one of the top IVs.

Now, we use Maschke’s theorem to find all IVs. See the following lemma.

Lemma 2. All proper nontrivial 〈A, H〉-IVs on the splitting field Zp(ξ) are
W1 = 〈v13, v14〉,
W2 = 〈v1, v5, v8, v12〉,
W3 = 〈v2, v10, v3, v11〉,
W4 = 〈v4, v7, v6, v9〉,
W5 := 〈v13, v14, v1, v5, v8, v12〉,
W6 := 〈v13, v14, v2, v3, v10, v11〉,
W7 := 〈v13, v14, v6, v4, v9, v7〉,
W8 := 〈v1, v5, v8, v12, v2, v3, v10, v11〉,
W9 := 〈v1, v5, v8, v12, v4, v7, v6, v9〉,
W10 := 〈v4, v7, v6, v9, v2, v3, v10, v11〉,
W11 := 〈v13, v14, v1, v5, v8, v12, v6, v4, v7, v9〉,
W12 := 〈v13, v14, v6, v4, v9, v7, v2, v10, v3, v11〉,
W13 := 〈v13, v14, v1, v5, v8, v12, v2, v10, v3, v11〉,
W14 := 〈v1, v5, v8, v12, v4, v7, v6, v9, v2, v3, v10, v11〉.

Eventually, we delete element ξ from bases for the spaces Wi, 2 ≤ i ≤ 14. We first show
that the subspaces W2 are not 〈A, H〉-IVs over Zp where p 6≡ 1mod13. Suppose that for some
ai, bi, ci, di ∈ Zp(ξ), (a0, a1, . . . , a11, b0, b1, . . . , b11,c0, c1, . . . , c11, d0, d1, . . . , d11) 6= (0, 0, . . . , 0,

0, 0, . . . , 0, 0, 0, . . . , 0, 0, 0, . . . , 0),
11
∑

i=0
aiξ

iv1 + biξ
iv12 + ciξ

iv5 + diξ
iv8 ∈ Z14

p . By considering

the coordinates, we see there are not ai, bi, ci, di ∈ Zp such that
11
∑

i=0
aiξ

iv1 + biξ
iv12 + ciξ

iv5 +

diξ
iv8 ∈ Z14

p . It can be seen by using the same method that the remaining spaces Wi, 3 ≤
i ≤ 14 are not 〈A, H〉-IVs over Zp.

According to the above explanation, the following theorem is obtained.

Theorem 2. Let p be a prime. Suppose that Γ is an AT cover of the C13 graph, and the group G
lifts. In Figure 2, the connected R-AT-EA-p-cover of the C13 graph is introduced:
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 inv.sub ϕ(γ1) ϕ(γ2) ϕ(γ3) ϕ(γ4) ϕ(γ5) ϕ(γ6) ϕ(γ7)

〈W1〉
(

−1
1

) (
0
0

) (
0
0

) (
−1
0

) (
0
0

) (
0
0

) (
0
0

)
inv.sub ϕ(γ8) ϕ(γ9) ϕ(γ10) ϕ(γ11) ϕ(γ12) ϕ(γ13) ϕ(γ14)

〈W1〉
(

−1
1

) (
1
0

) (
1
−1

) (
0
1

) (
0
1

) (
1
0

) (
1
0

)


Figure 2. R-AT- AE-p-cover of the C13 graph.

We cannot use Maschke’s theorem for p = 2, 13 because the hypothesis does not hold.
Then, we use S-S to complete R-AT-AE-p-covers of the C13 graph.

3. Conclusions

Symmetric graphs are used in computer networks, so studying these graphs is very
important. For this reason, researchers in algebraic graph theory have been seriously
classifying these graphs and studying their properties since around the year 2000. With a
linear representation of automorphisms acting on the first homology group of the graph,
the EA covering projections of a graph can be found. Essentially, the main purpose of this
method is finding IVs of MGs over prime fields. It should be noted that applying S-S is
very effective in presenting the main result. In this paper, we classified R-AT-EA-covers of
the C13 graph. In Table 1, this cover, along with the VS on the arcs of CT, was introduced.
We plan to study R-AT- AE-covers of quintic graphs in the future. Our next purpose is to
investigate ET, semisymmetric and half-arc-transitive coverings of tetravalent graphs.
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