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Abstract: The non-parametric Gaussian mixture of regressions (NPGMRs) model serves as a flexible
approach for the determination of latent heterogeneous regression relationships. This model assumes
that the component means, variances and mixing proportions are smooth unknown functions of
the covariates where the error distribution of each component is assumed to be Gaussian and
hence symmetric. These functions are estimated over a set of grid points using the Expectation-
Maximization (EM) algorithm to maximise the local-likelihood functions. However, maximizing
each local-likelihood function separately does not guarantee that the local responsibilities and
corresponding labels, obtained at the E-step of the EM algorithm, align at each grid point leading to
a label-switching problem. This results in non-smooth estimated component regression functions.
In this paper, we propose an estimation procedure to account for label switching by tracking the
roughness of the estimated component regression functions. We use the local responsibilities to
obtain a global estimate of the responsibilities which are then used to maximize each local-likelihood
function. The performance of the proposed procedure is demonstrated using a simulation study
and through an application using real world data. In the case of well-separated mixture regression
components, the procedure gives similar results to competitive methods. However, in the case of
poorly separated mixture regression components, the procedure outperforms competitive methods.

Keywords: EM algorithm; mixture models; non-parametric regressions; local-likelihood estimation;
label switching

1. Introduction

Mixture models have been extensively applied for modelling unobserved heterogene-
ity in areas such as biology and economics, among many other areas. The theoretical
aspects of mixture models are well studied [1] and a recent overview of mixture models
can be found in [2]. A class of mixture models, first introduced by Quandt [3] and further
developed by Goldfeld and Quandt [4] and Quandt and Ramsey [5], that is of particular
interest is the finite Gaussian mixture of the linear regressions (GMLRs) model. Since their
introduction, these models have received widespread use, see [6]. These models are also
extended to the generalized linear model case [7].

To relax the linearity assumption on the component regression functions and further
broaden the flexibility of the GMLRs, Huang et al. [8] proposed a finite non-parametric
Gaussian mixture of regressions (NPGMRs) model, which assumes that the component
means (regression functions), variances and mixing proportions are smooth unknown
functions of the covariates. This model also assumes that the error distribution of each
regression component is Gaussian, and hence symmetric.

The introduction of the NPGMRs model provided further impetus towards more
flexible mixture regression models. By assuming that only the component regression
functions are semi- or non-parametric, a number of interesting models were developed.
For a single covariate case, Xiang and Yao [9] showed that this parsimonious version of the
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model has more efficient estimates when the assumption is appropriate. To incorporate
more covariates while avoiding the curse of dimensionality, Wu and Liu [10], Zhang and
Zheng [11] and Zhang and Pan [12] introduced a series of semi-parametric mixture of
partial and/or additive regression models where the component regression functions are
assumed to be linear combinations of parametric and/or non-parametric functions of the
covariates. To retain the non-parametric generality of the NPGMRs model while being
immune to the curse of dimensionality, Xiang and Yao [13] introduced a semi-parametric
mixture of single index models. For more on semi- or non-parametric mixture of regressions,
we refer the reader to the comprehensive overview of Xiang et al. [14].

To estimate the non-parametric functions of the semi- or non-parametric mixture of
regression models, Huang et al. [8] developed a local-likelihood estimation [15] procedure
using the EM algorithm [16]. Non-parametric functions are usually estimated over a set
of grid points. This implies that the local-likelihood approach applies the EM algorithm
separately to maximize each local-likelihood function. Thus, the maximization of each
local-likelihood function results in a separate set of responsibilities. Huang et al. [8] noted
that these local responsibilities are not guaranteed to be the same at each grid point. In
the event of a mismatch in the responsibilities, at two or more grid points, the resulting
estimated non-parametric functions are likely to be wiggly and less smooth. This is akin to
the label-switching phenomenon when fitting Bayesian mixtures [17], and hence we refer to
the above as the label-switching problem. Thus, a direct application of the local-likelihood
estimation, as explained above, can lead to misleading inference.

As mentioned by Huang et al., the obvious way to guarantee that the local responsi-
bilities match at different grid points is to make use of a common set of responsibilities
to maximize each local-likelihood function. Thus, the idea is to determine an appropriate
global estimate of the responsibilities. To this end, Huang et al. [8] proposed estimating the
global responsibilities by an approach involving linear interpolation. This approach was
demonstrated to perform well in the case of well separated components and well chosen
initial conditions. In the absence of these desirable conditions, the approach produces un-
satisfactory results as demonstrated in our simulation study. Most of the studies reviewed
above on semi-parametric mixture of regressions employ the algorithm proposed by Huang
et al. [8]. These studies attempt to engineer the best initial conditions. The problem is
sensitivity to its initial condition which makes their algorithm likely to be trapped at the
initial condition. Moreover, since in practice we have no idea which model generated the
data, the resulting model could lead to misleading inference.

In this paper, an alternative estimation procedure is proposed. The procedure selects a
set of locally estimated responsibilities as the global responsibilities. This is based on an
assumption that, amidst the noise, there is at least one set of local responsibilities that is
well-behaved. The objective is to identify this well-behaved set of responsibilities. Our
approach simultaneously maximizes the local-likelihood functions using each of the local
sets of responsibilities and selects as the global set of responsibilities the estimated set
that results in the smoothest component regression functions. The proposed algorithm
works for poorly separated components and it is also independent of its initial conditions.
We demonstrate the performance of the proposed algorithm on simulated data and an
application using real world data.

Our algorithm differs from that of Huang et al. [8] in that, unlike the latter, we base
our estimate of the global responsibilities on the local responsibilities.

The rest of the paper is structured as follows: Section 2 gives the definition of the
model under consideration followed by the local-likelihood estimation procedure. We then
describe the label switching problem that arises from making use of this estimation proce-
dure and finally we present the proposed estimation procedure. Sections 3 and 4 present
a simulation study and an application on real world data, respectively, to demonstrate
the effectiveness and usefulness of the proposed algorithm, respectively. Sections 5 and 6
provide a discussion of our empirical results and then a conclusion and direction for future
research, respectively.
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2. Materials and Methods
2.1. Model Definition

Let (X, Y) be a set of random variables whose probability distribution is given by the
following conditional density function

p(y|x) =
K

∑
k=1

πk(x)Nk{mk(x), σ2
k (x)} (1)

where πk(x) is the mixing proportion function satisfying 0 < πk(x) < 1, ∑K
k=1 πk(x) = 1,

mk(x) and σ2
k (x) are the mean and variance functions, respectively, of the kth component.

These functions are assumed to be smooth unknown functions of the covariates x. The
model in expression (1) is referred to as the finite non-parametric Gaussian mixture of
regressions (NPGMRs) in which we take y to be the response and x to be a p−covariate
vector. The NPGMRs, as defined in (1), was introduced by Huang et al. [8] for the case
where p = 1, although they mentioned that the model can be applied to the case p > 1 but
will be of less use due to the curse of dimensionality. For our purpose in this paper, we also
consider the case of p = 1. Thus, for the rest of the paper we use x instead of x.

2.2. Local-Likelihood Estimation and the Label-Switching Problem

In this section, we present the local-likelihood estimation procedure via the EM algo-
rithm to estimate the NPGMRs model and demonstrate how it leads to the label-switching
problem.

2.2.1. Local-Likelihood Estimation

For a random sample of data {(xi, yi) : i = 1, 2, . . . , n}, the log-likelihood function
corresponding to the model in (1) is given by

`(·) =
n

∑
i=1

log
[ K

∑
k=1

πk(xi)N{mk(xi), σ2
k (xi)}

]
(2)

Since the functions πk(·), mk(·) and σ2
k (·) are non-parametric, we estimate them

making use of the local likelihood estimation procedure. We make use of the local constant
estimator (also known as the Nadaraya–Watson estimator). Let U = {u1, u2, . . . , uN} be
a set of N grid points in the domain of the covariate x. The local likelihood estimates of
πk(uj), mk(uj) and σ2

k (uj) are given by π̂k(uj), m̂k(uj) and σ̂2
k (uj), respectively, where the

latter maximize the following local log-likelihood function

`(πuj , σ2
uj

, muj) =
n

∑
i=1

log
[ K

∑
k=1

πk(uj)N{mk(uj), σ2
k (uj)}

]
Kh(xi − uj) (3)

where muj = (m1(uj), m2(uj), . . . , mK(uj))
ᵀ, σ2

uj
= (σ2

1 (uj), σ2
2 (uj), . . . , σ2

K(uj))
ᵀ, πuj =

(π1(uj), π2(uj), . . . , π(K−1)(uj)
)ᵀ and πK(uj) = 1−∑K−1

k=1 πk(uj) for j = 1, 2, . . . , N. Kh(z) =
K(z/h)/h is a re-scaled continuous symmetric kernel function K(·) with bandwidth h. Note
that for a given grid point u, the estimation reduces to a maximum likelihood estimation
of the vector of means, variances and mixing proportions mu, σ2

u and πu, respectively.
Once the estimation is performed over all grid points, the estimated component regression
functions can then be obtained by interpolation as shown in Figure 1b.
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(a) (b) (c)

Figure 1. The local-likelihood estimation procedure for fitting a two-component NPGMRs model:
(a) the true mixture of regressions used to generate the data (solid black curves are the component
regression curves) (b) the local likelihood estimation procedure using four grid points: the crosses
represent the component means obtained by fitting a two-component mixture of Gaussians at each
grid point. (c) the label-switching problem: at grid point u = 0.4, the estimated component means of
the two components have switched labels.

Let

zik =

{
1 if (xi, yi) is in the kth component
0 otherwise

(4)

and let zi = (zi1, zi2, . . . , ziK)
ᵀ. The complete data are given by {(xi, yi, zi) : i = 1, 2, . . . , n}.

The corresponding complete data local log-likelihood function is

`c(ϑu) =
n

∑
i=1

K

∑
k=1

zik

[
logπk(u) + logN{mk(u), σ2

k (u)}
]

Kh(xi − u) (5)

where ϑu = (πu, mu, σ2
u) and ϑ = (ϑu1 , ϑu2 , . . . , ϑuN )

ᵀ is a vector of all of the local parame-
ters. To maximize (5), we make use of the EM algorithm. Since the zik’s are latent variables,
in the E-step of the algorithm, at the tth iteration, we estimate each zik using its conditional

expectation, E(zik|ϑu, x, y), given the current estimate ϑ̂
(t−1)
u , for u ∈ U , defined as follows

γ
(t)
ik (u) =

π̂
(t−1)
k (u)N{m̂(t−1)

k (u), σ̂
2(t−1)
k (u)}

∑K
j=1 π̂

(t−1)
j (u)N{m̂(t−1)

j (u), σ̂
2(t−1)
j (u)}

(6)

The γ
(t)
ik (u)′s are referred to as the responsibilities. Each γ

(t)
ik (u) can be interpreted as

the probability that the ith data point is in the kth component. For a given grid point u, we
refer to the γ

(t)
ik (u)′s as the local responsibilities. In the M-step, we update ϑ̂u, for u ∈ U , by

maximizing the conditional expectation of (5) given by

Q(ϑ
(t)
u |ϑ

(t−1)
u ) =

n

∑
i=1

K

∑
k=1

γ
(t)
ik (u)[logπk(u) + logN{yi|mk(u), σ2

k (u)}]Kh(xi − u) (7)

Thus, for each grid point u ∈ U , we do a component-wise maximization of Q(·|·). The
maximization of (7) with respect to πk(u) yields

π̂
(t)
k (u) =

∑n
i=1 γ

(t)
ik (u)Kh(xi − u)

∑n
i=1 Kh(xi − u)

(8)
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The result of maximizing (7) with respect to mk(u) and σ2
k (u) is as follows

m̂(t)
k (u) =

∑n
i=1 w(t)

ik (u)yi

∑n
i=1 w(t)

ik (u)
(9)

σ̂
2(t)
k (u) =

∑n
i=1 w(t)

ik (u)(yi − m̂(t)
k (u))2

∑n
i=1 w(t)

ik (u)
(10)

where w(t)
ik (u) = γ

(t)
ik (u)Kh(xi− u). We alternate between these two steps until convergence.

After the final iteration of the EM algorithm, the resulting parameter estimates ϑ̂ can be
joined, over all the grid points, to obtain the component functions m̂k(u), π̂k(u) and
σ̂2

k (u) for k = 1, 2, . . . , K and u ∈ U . The latter can then be interpolated to obtain the
functions m̂k(xi), π̂k(xi) and σ̂2

k (xi) for all i = 1, 2, . . . , n. The above estimation procedure
is summarized in Algorithm 1.

Algorithm 1 The EM algorithm for fitting non-parametric mixtures of regression.

Step 1: (Initialization) Provide the initial values for π
(0)
k (u), m(0)

k (u) and σ
2(0)
k (u) for all

u ∈ U and k = 1, 2, . . . , K.
Step 2: (E-Step) At the tth iteration, use expression (6) to compute the local responsibilities
for each grid point u ∈ U .
Step 3: (M-Step) Let γ

(t)
k (u) = (γ

(t)
1k (u), γ

(t)
2k (u), . . . , γ

(t)
nk (u)) be a vector of local responsibil-

ities at grid point u ∈ U associated with the kth component. Compute π̂k(u), m̂k(u) and
σ̂2

k (u), for each u ∈ U and k = 1, 2, . . . , K, using expressions (8)–(10).
Step 4: Alternate between the E- and the M-Step until convergence.

2.2.2. Label-Switching Problem

Note that by independently maximizing each local log-likelihood function via the EM
algorithm, the component labels are not guaranteed to match at each grid point [8]. This
implies that the estimation procedure, as defined above, might potentially give rise to a
label switching type of phenomenon as encountered when fitting Bayesian mixtures [17].
This is because the local responsibilities obtained at a given grid point are bound to be
influenced by the local structure of that grid point. This in turn will affect the resulting
component labels.

As a consequence of this likely event, the estimated functions are likely to be wiggly
and less smooth. An example is given in Figure 1c where a label switch has occurred at
grid point u = 0.4. It is clear that any solution to this problem has to guarantee that the
local responsibilities (6) match at each grid point. This can be achieved by making use of
the same responsibilities in the maximization of each local likelihood function. In essence,
we must obtain a global estimate of the responsibilities and use them to simultaneously
maximize each local likelihood function. In the next subsection, we describe our approach
to this end.

2.3. Modified Estimation Procedure

In this section we give a description of the proposed estimation procedure and its
underlying assumptions.

2.3.1. Regularity Assumptions

Before we state the proposed algorithm, we first state and discuss two regularity
assumptions that the estimation procedure will rely upon. To estimate the global responsi-
bilities, the procedure will make use of the information provided by the local responsibilities
by exploiting the following regularity assumptions:

Assumption 1. The component labels at each grid point are expected to match.
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Assumption 2. For at least one grid point u, the local responsibilities contain information about
the mixture component labels.

Assumption 1 is important for the identifiability of the model (1), for if the local
responsibilities are expected to differ at each u, model (1) will cease to be identifiable.
Moreover, recall that the responsibilities are the probabilistic estimates of the zik’s and
if we could observe the latter, each would be the same at all grid points. Therefore, the
component labels at each grid point u are expected to be similar. Assumption 2 states that
the label switches do not occur at all grid points. Given Assumption 1, we can expect at
least one set of the local responsibilities to yield smooth estimates of the non-parametric
functions. This implies that it is sufficient to have only a single grid point, where no label
switch occurs, to identify the model.

2.3.2. The Proposed Algorithm

We propose to modify the EM algorithm as given in Algorithm 1 above. Instead of
maximizing each expected complete local log-likelihood function (7) using a unique set of
responsibilities obtained at each corresponding grid point, we simultaneously maximize
all the local log-likelihood functions using the same set of responsibilities, referred to
as global responsibilities. This is similar to the approach followed by Huang et al. [8]
but differs in how the global responsibilities are calculated. Specifically, let γk(u), for
k = 1, 2, . . . , K, be a vector of local responsibilities obtained at grid point u ∈ U , using (6).
We maximize each (that is, over all elements of U ) local log-likelihood function using these
local responsibilities. We repeat this process for all the other local responsibilities obtained
at all u ∈ U so that we have as many estimates as there are grid points. For each estimation,
we join the parameter estimates at each local grid point to obtain the component regression
(mean) functions, mixing proportion functions and variance functions. An illustration is
given by Figure 1b for the component regression functions joined at the crosses. Thus, each
grid point will have associated with it a set of estimated functions given by

M(u) = {(π̂k(v), m̂k(v), σ̂2
k (v), γk(u)) : v ∈ U ; k = 1, 2, . . . , K} (11)

where u denotes that the estimated functions were estimated using the local responsibilities
obtained at grid point u. That is, for the local responsibilities γk(u), for k = 1, 2, . . . , K and
any grid point u ∈ U , the functions π̂k(v), m̂k(v) and σ̂2

k (v)) are calculated using (8)–(10),
respectively, over all v ∈ U . As a final estimate, we choose the set whose component
regression functions attains the smallest curvature among all the setsM(u) for all u ∈ U .
Recall that our main objective is to avoid wiggly and less smooth functions due to label
switching, thus by choosing the smoothest (that is, having the least curvature) functions we
are in effect choosing the least rough set of functions. By Assumption 2 we know that there
is at least one set of functionsM(u) that will yield well behaved estimated functions. Thus,
our proposed estimation procedure proceeds in three steps summarized in Algorithm 2.

The implementation of Algorithm 2 will be first to run step 1 until convergence and
consider the local responsibilities, at each grid point u ∈ U , obtained at convergence. Use
the latter in steps 2 and 3 to obtain the smoothest estimate. Notice that the responsibilities
associated with the model estimate obtained in step 3 are local as they are the original ones
obtained from step 1. Consequently, the model estimate M(D) is local. To obtain a global
estimate, we propose using the model estimate M(D) to initialize the effective algorithm
of Huang et al. and consider the obtained solution as our final estimate.
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Algorithm 2 Modified EM algorithm for fitting the NPGMRs model.
Step 1:
Perform local likelihood estimation using Algorithm 1. For each grid point u ∈ U , consider
the local responsibilities γk(u), for k = 1, 2, . . . , K, obtained at convergence.
Step 2:
For each grid point u ∈ U , use the local responsibilities, γk(u), for k = 1, 2, . . . , K, to
calculate the non-parametric mixture regression functions using (8)–(10) for all v ∈ U .
Thus obtaining the following set of non-parametric mixture of regression functions

M(u) = {(π̂k(v), m̂k(v), σ̂2
k (v), γk(u)) : v ∈ U ; k = 1, 2, . . . , K} (12)

for all u ∈ U .
Step 3:
Let M = {M(u) : u ∈ U} and choose, as the final estimated non-parametric mixture
of regression functions, the subset of functions M(U ) ∈ M, where U denotes that the
functions in the set M(·) are defined over the set of values U , such that

κ = max
k

∫
U
{m̂(2)

k (v)}2dv (13)

is the smallest over all u ∈ U .
Let D = {(xi, yi) : i = 1, 2, . . . , n} the set of random sample data. To obtain the set M(D)
we, respectively, interpolate the function values in the set M(U ).

3. Simulation Study
3.1. Choosing the Bandwidth and Number of Components

To choose the bandwidth h, we make use of the multi-fold cross-validation approach
as defined in [8]. For the number of components, we use the BIC information criterion
defined as follows

−2`+ log(n)× d f (14)

where ` is the maximum log-likelihood at convergence of the EM algorithm, log(n) is a
penalty term and d f is the degrees of freedom measures by the complexity of the model
(see [8] for more details). Because the bandwidth, h, and number of components, K,
are interdependent, for our simulations and application, we make use of the following
approach to choose these tuning parameters:

(1) For each k = 1, 2, . . . , Kmax, find the best bandwidth using the cross-validation
approach, where Kmax is the largest number of components to consider.

(2) For each of the models in (1) based on the best bandwidth, choose as a final model the
one that minimizes the BIC

3.2. Initializing the Fitting Algorithm

We will make use of the following strategy to initialize the fitting algorithm:

(1) For each p = 2, 3, . . . , 5, we estimate 20 pth−degree polynomial GMLRs models.
(2) Choose the model that minimizes the BIC in (1) to initialize the model.

3.3. Performance Measures

The following are the performance measures that we will use to evaluate our proposed
estimation procedure:

(a) Root of the Average Squared Errors (RASE)

RASE2
f =

1
n

K

∑
k=1

n

∑
i=1

γik

[
fk(xi)− f̂k(xi)

]2

(15)
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where fk is a non-parametric function for the kth component and f̂k is its estimate.
(b) Maximum Absolute Error (MAE)

MAE f = max
k

max
i

γik

∣∣∣∣ fk(xi)− f̂k(xi)

∣∣∣∣ (16)

(c) Model Classification Strength
Let D be the set of observed data and z the corresponding component indicator
variable. Define M[D, z] as an n × n matrix with the ii

′
element M[D, z]ii′ = 1 if

zik = 1 and zi′ k = 1 and zero otherwise. That is, observations i and i
′

are co-members
of the same component.
Define

cs =
1

n(n− 1)

n

∑
i 6=i′=1

1
[
M[D, z]ii′ = M[D, ẑ]ii′ = 1

]
(17)

where 1[A] is an indicator function taking value one if A is true and zero otherwise.
In (17), z is the true component indicator variable and ẑ is the estimated version. That
is,

ẑij =

{
1 if γij = maxkγik

0 otherwise
(18)

Expression (17) measures the classification or allocation strength of the fitted model
akin to the prediction strength in clustering (see [18]).

(d) Coefficient of Determination (R2) We use the following to calculate the proportion of
variation in the response explained by the fitted NPGMRs model

R2 =
BSS + EWSS

TSS
= 1− RWSS

TSS
(19)

where the terms on the right hand side are as defined in Ingrassia and Punzo [19]
(e) Standard Errors and Confidence Intervals

We use the bootstrap approach to approximate the point-wise standard errors of
the estimates as well as the confidence intervals for the model parameter functions.
For a given x0 we use the estimated model to generate the corresponding y∗ ∼
∑K

k=1 π̂(x0)N{m̂k(x0), σ̂2
k (x0)}; this way we generate the bootstrap sample denoted by

{(xi, y∗i ) : i = 1, 2, . . . , n}. We generate B = 1000 such samples to produce bootstrap
fitted models to approximate the point-wise standard errors and confidence intervals.

3.4. Simulation Studies

In this section, we perform a simulation study on artificial data to demonstrate the
performance of the proposed algorithm (Algorithm 2). We will compare our proposed
method with the effective algorithm of Huang et al. [8]. For this simulation, we generate
the data from the two-component NPGMRs model given in Table 1.

Table 1. NPGMRs model generating the data.

Functions
Component (k)

1 2

πk(x) exp(0.5x)/{1 + exp(0.5x)} 1− π1(x)
mk(x) a− sin(2πx) cos(3πx)
σk(x) 0.6 exp(0.5x) 0.5 exp(−0.2x)
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The covariate x ∼ Uni f orm(0, 1), where Uni f orm(α, β) denotes a uniform distribution
with parameters α and β. The constant a controls the degree of separation between the
components, ranging from a = 1 poorly separated to a = 3 well separated components. The
different scenarios are shown in Figure 2. We will generate 500 samples of sizes n = 200,
400 and 800 and take a 100 grid points chosen evenly from the support of the covariate
x. The simulation results are given in Table 2. The table gives the average and standard
deviation of two of the performance measures over the 500 simulations. We can see from the
table that when a is small, proposed algorithm gives better results and as the components
become more separated, that is as a increases, the performance of the proposed algorithm
and the effective algorithm is similar. The rest of the performance measures (not given) lead
to the same observation. This shows that the proposed algorithm is most effective when
the components are not well separated. This might be due to the difficulty of choosing
an appropriate initial state when the components are not well separated. Moreover, this
is likely to be a challenge for the effective algorithm since for this algorithm the E-step
estimates (global responsibilities) are more dependent on the initial state compared to the
proposed algorithm. This is because the latter uses all the local responsibilities from the
E-step; it is thus less sensitive to its initial state. This is largely due to the possible mismatch
in the component labels at each grid point which may allow the global responsibilities
and ultimately the non-parametric estimates to be independent of its the initial state. This
highlights the advantage of taking into account the local responsibilities to obtain the
global responsibilities. We demonstrate this phenomena through simulation, where the
algorithms are initialized at an inferior state. We use the same sampling setting as above,
with a = 2 and n = 400. We record the average and standard deviation of RASEm and
number of times the algorithm couldn’t escape the initial state, denoted as ntrap. Table 3
gives the results. All 500 simulations were initialized from the model with the component
regression functions given as in Figure 3 and the other two functions initialized at their
true functions. As can be seen from the table, the effective algorithm was trapped at its
initial state 325 times out of 500, whereas the proposed algorithm was trapped only once.

Table 2. Average (and standard deviation) of the performance measures for 500 samples.

Scenario

a = 1 a = 2 a = 3

RASEm R2 RASEm R2 RASEm R2

n = 200

Proposed Algorithm 0.3604 (0.0849) 69.7196 (5.0879) 0.2546 (0.0683) 77.7391 (3.6825) 0.2026 (0.043) 86.2399 (2.0393)

Effective Algorithm 0.4339 (0.1374) 68.7144 (5.4797) 0.299 (0.1723) 77.3533 (4.0877) 0.2122 (0.0743) 86.2229 (2.1173)

n = 400

Proposed Algorithm 0.3018 (0.0678) 69.1957 (3.7468) 0.1929 (0.0427) 77.7333 (2.6144) 0.1545 (0.0296) 86.3577 (1.2879)

Effective Algorithm 0.3987 (0.1359) 67.7125 (4.0693) 0.2132 (0.0696) 77.3875 (2.7089) 0.157 (0.0396) 86.3374 (1.3074)

n = 800

Proposed Algorithm 0.2533 (0.0494) 68.9866 (2.7873) 0.1485 (0.0278) 77.8396 (1.9831) 0.059 (0.0119) 86.3538 (0.9668)

Effective Algorithm 0.3905 (0.1502) 67.3622 (3.3621) 0.1671 (0.0439) 77.5533 (2.0859) 0.1197 (0.0305) 86.3476 (0.9778)

Next, we demonstrate the performance of the bootstrap procedure for calculating the
standard errors of the estimates. This demonstration is based on the scenario with a = 2,
the results are shown in Figure 4 only for the component mean functions for different
sample sizes. The grid points u = 0.1, 0.2, . . . , 0.9 were used. The plots give the point-wise
standard deviations of the estimates over 500 samples which represents the true standard
errors (SD) at the grid points, as labelled on the graph. The results show slight over- and
under-estimations; however, the procedure works well as it shows that the SD are within



Symmetry 2022, 14, 1058 10 of 16

two standard errors of the estimated point-wise bootstrap standard errors (SE). This can be
observed on the plot which shows that all the SDs are within the error bars, the latter were
calculated as the approximate 95% point-wise bootstrap confidence intervals. The bootstrap
procedure works similarly for both the variance and mixing proportion functions.

Table 3. Evaluating the sensitivity of the proposed algorithm to its initial state.

Algorithm RASEm ntrap

Proposed Algorithm 0.1944 (0.0445) 1
Effective Algorithm 0.2539 (0.0715) 325

(a) a = 1 (b) a = 2 (c) a = 3

Figure 2. Plots of the component regression functions for the three scenarios of the two-component
NPGMRs model.

Figure 3. Initial component regression functions.
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Figure 4. Bootstrap standard errors: plots of the estimated point-wise bootstrap standard errors at
the grid points (shown by the bullet) for the estimated mean function of component 1 (left panel) and
component 2 (right panel) for sample sizes n = 200 (top panel), n = 400 (middle panel) and n = 800
(bottom panel). The error bars represent the approximate 95% point-wise bootstrap confidence
intervals at the grid points. We also plot the point-wise standard errors (shown by the cross) obtained
as the standard deviation of 500 estimates at the grid points.
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4. Application

In this section, we demonstrate the usefulness of our proposed algorithm on real data.

4.1. Problem and Data Description

The data consist of the per capita CO2 emissions (in metric tons) and the per capita
GNP (in US$) (on a log base e scale) for a sample of 145 countries for the year 1992. For
a given country, the first measure gives the estimated amount of CO2 emitted by each
resident during the year, whereas the second measure gives the total value of goods and
services produced by each resident. The data were extracted from the World Development
Indicators database of the World Bank Group. The data are plotted in Figure 5a. Each data
point on the figure is labelled by the corresponding country’s code, for example ZAF is
South Africa and CZE is Cezch Republic. Hurn et al. [7] had a similar dataset for the year
1996 and they identified a two-component mixture regression structure consisting of two
groups of countries. They further mentioned that the identification of these groups “...may
help to clarify on which development path they are embarking”. They fitted a GMLRs
model on their dataset.

(a) Scatter plot of the CO2 against GNP (b) Initial component regression functions

(c) Fitted model using the proposed algorithm (d) Fitted model using the effective algorithm

Figure 5. Application data and fitted NPGMRs model: (a) scatter plot of the data, (b) initial compo-
nent regression functions, (c) fitted K = 2 component NPGMRs model using proposed algorithm
and (d) using the algorithm in Huang et al. The dotted curves give the point-wise 95% bootstrap
confidence intervals obtained using 5000 bootstrap samples.
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4.2. Modelling and Results

We fit the NPGMRs to the data set plotted in Figure 5a and identify the best model for
K = 1, 2, . . . , 5 being the model that minimises the BIC. We also fit the GMLRs model. We
use the procedure outlined above (Section 3.1) to choose the bandwidth for each K. The
resulting BIC values are presented in Table 4 and we can clearly see that the BIC favours
a two-component (K = 2) NPGMRs model. Figure 5c plots the estimated model. The
components were identified by hard classification. We can see from the figure that, for the
year 1992, for one group of countries (shown in red points), which includes the United Arab
Emirates (ARE), a higher income per capita corresponded with a higher quantity of CO2
emitted per capita. On the other hand, for the other group of countries (shown in blue),
which includes Switzerland (CHE), a higher income per capita corresponded with a lower
quantity of CO2 emitted per capita. Furthermore, for the latter group of countries, the
increase in CO2 per capita seems to have reached a peak as it plateaus beyond an income
per capita of about US$ 22,027 (given by e10).

The fitted model was compared with the model obtained with the effective algorithm
of Huang et al. The fitted model using the latter algorithm is given in Figure 5d. Notice
that the fitted model has a different interpretation of the data but the model based on
the proposed algorithm is the best model as seen from Table 5. A closer look at the fitted
component regression functions in Figure 5d reveals that the fitted functions have the same
form as the component regression functions used to initialize the algorithm, see Figure 5b.
This is a further indication of the effective algorithm’s initial state dependence. We tried to
improve on the initial state by instead running each pth-degree polynomial for 100 times
but we obtained the same initial state.

Table 4. BIC values for mixture regression models fitted on the climate data.

Model K h BIC

NPGMRs

1 0.95 770.7226
2 0.945 706.9895
3 0.945 766.3612
4 0.95 819.9092
5 0.9 916.5939

GMLRs

1 810.1633
1 811.2591
2 760.8051
3 754.7527
4 788.4389

Table 5. Performance measures for the fitted K = 2 component NPGMLRs model.

Algorithm

Performance Measures

BIC
R2

Estimated Bootstrap Mean (Std) 95% (Lower) Bootstrap 95% (Upper) Bootstrap

Proposed Algorithm 706.9895 83.3556 80.7076 (6.1293) 63.8578 89.1703
Effective Algorithm 718.4571 73.8182 70.0673 (5.8218) 57.9395 80.5303

Important to point out though is that both fitted models are in agreement with the
environmental Kuznets curve (EKC) hypothesis [20]. The hypothesis states that, as a
country becomes industrialized, its carbon emissions increase faster than its income. This
environmental degradation continues up until a certain level of income. Beyond this level
of income, there is a reduction in carbon emissions. Thus, the EKC hypothesis postulates
an inverted-U shaped relationship between environmental degradation (such as carbon
emissions) and income. Assuming that all countries follow the same EKC then, at any
time for a cross section of countries representing different income groups, it should be
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observed that poor countries are yet to be industrialized and thus are at the initial stage of
the EKC, some developing countries are in the process of industrialisation and thus are at
or approaching the peak emission levels and finally developed countries are beyond the
peak. Evidence of this is easily seen in Figure 5. For one group of countries (shown in blue
points), which includes a lot of high income countries, the peak emission level is reached,
whereas for the other group (shown in red points), which has mainly low–middle income
countries, by 1992 standards, a peak is yet to be reached.

We evaluate the normality of the component error distributions using the Kolmogorov–
Smirnov (KS) goodness-of-fit test. For each component, we calculate the residuals as
γ̂ik[yi − m̂(xi)]I[γ̂ik>0.5], for k = 1, 2, . . . , K, where I[·] is an indicator function taking a value
of 1 when γ̂ik > 0.5 and 0 otherwise. Table 6 gives the results of the KS test of normality of
the two fitted component distributions based on the proposed algorithm and the effective
algorithm. The calculations were conducted using the ks.test function from the stats
package of the R programming language [21]. The normality of each of the two components
fitted by the proposed algorithm cannot be rejected. The normality of the first component
fitted by the effective algorithm is rejected and that of the second component cannot be
rejected at a 5% significance level.

Table 6. Kolmogorov–Sminorv (KS) test of normality of the two fitted component distributions.

Algorithm
Component 1 Component 2

Test Statistic p-Value Test Statistic p-Value

Proposed Algorithm 0.1622 0.3690 0.1069 0.1441
Effective Algorithm 0.2589 <0.0001 0.1733 0.0690

5. Discussion

In this paper, we propose an EM-type algorithm to simultaneously maximize the local-
likelihood functions (LLFs) when estimating the non-parametric functions of an NPGMRs
model. The performance of the proposed algorithm is demonstrated using a simulation
study and a real data problem. For illustrative purposes, our simulation study considered
only two-component NPGMRs models although the algorithm can be applied for any
number of mixture components. To see how the proposed algorithm performs for poorly
separated mixture regression components, the results show a declining estimation error as
we increase the sample size, empirically demonstrating consistency. A comparison of the
proposed algorithm with a competitive algorithm reveals some interesting points: (1) for
poorly separated mixture components, the proposed algorithm shows a better performance,
whereas for well separated components the performance of the two algorithms is similar;
(2) the proposed algorithm is independent of its initial state. This is demonstrated by
initializing both algorithms at the same inferior state and 100% of the time the proposed
algorithm escaped the initial state, whereas the competitive algorithm only managed to
escape only 35% of the time. The first point implies that our algorithm is more effective
at identifying the true mixture structure for complex mixture structures relative to the
competitive procedure. The second point implies that, for the proposed algorithm, not
much consideration should be given to the optimal choice of the initial state.

For our real data example, we considered the relationship between CO2 emissions
(as the response) and national income (as a covariate) for a group of 145 countries. The
effectiveness of the proposed algorithm was demonstrated by its ability to identify two
latent components wholly independent of the initial conditions. Using a goodness-of-fit
test, we showed that the Gaussian assumption on the component distributions of the two
fitted components, based on the proposed algorithm, is appropriate.

6. Conclusions

This paper presents a novel a EM-type algorithm to simultaneously maximize the
local likelihood functions (LLFs) when estimating the NPGMRs model. This proposal is
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made in response to a potential mismatch in the responsibilities obtained at the E-step
when the LLFs are maximized separately. The result is wiggly and less smooth estimated
non-parametric functions as shown in Figure 1c giving rise to a component label switch,
hence the label-switching problem. Less sensitivity to label switching can be achieved by
making sure that the responsibilities match at each local point. Thus, a global estimate of
the responsibilities must be obtained. The proposed algorithm takes as its estimated global
responsibilities, the local responsibilities that result in the smoothest estimated component
functions. The performance of the proposed algorithm is demonstrated using a simulation
study and a real data problem.

Although the proposed approach has some practical advantage (less sensitivity to its
initial state), it is unable to identify the true structure of more complex (overlapping or
intersecting component functions) mixture structures (an example of a complex mixture
structure can be obtained for 0 < a < 1 in our simulations). This is possibly due to the
discrete nature of our approach in the sense that one of the local responsibilities are chosen
as the global responsibilities. This in turn results in loss of information.

Thus, future research should explore the prospects of a continuous version of the
proposed algorithm. Perhaps some form of a probabilistic combination of the local respon-
sibilities can prevail over this challenge.
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