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Abstract: In recent years, the volume of spatial data has rapidly grown, so it is crucial to process them
in an efficient manner. The level of parallel processing in big data platforms such as Hadoop and
Spark is determined by partitioning the dataset. A common approach is to split the data into chunks
based on the number of bytes. While this approach works well for text-based batch processing, in
many cases, it is preferable to take advantage of the structured information contained in the dataset
(e.g., spatial coordinates) to plan data partitioning. In view of the huge amount of data and the
impossibility of quickly establishing partitions, this paper designs a method for approximate partition
boundary solving, which divides the data space into multiple non-overlapping symmetric bins and
samples each bin, making the probability density of the sampling set bounded by the deviation of the
probability density of the original data. The sampling set is read into the memory at one time for
calculation, and the established partition boundary satisfies the partition threshold-setting. Only a
few boundary adjustment operations are required, which greatly shortens the partition time. In this
paper, the method proposed in the paper is tested on the synthetic dataset, the bus trajectory dataset,
and six common spatial partitioning methods (Grid, Z-curve, H-curve, STR, Kd-tree, and R*-Grove)
are selected for comparison. The results show that the symmetric bin sampling method can describe
the spatial data distribution well and can be directly used for partition boundary division.

Keywords: approximate partition boundaries; error bounded sampling; probability density function

1. Introduction

In recent years, the amount of spatial data generated by Internet of Things (IoT)
sensors, social networks, and moving vehicles has significantly increased, which has led
to many research efforts to develop processing frameworks that can handle spatial big
data, e.g., JD Urban Spatio-Temporal (JUST) [1], Spatial In-Memory Big data Analytics
(Simba) [2], SpatialHadoop [3] and others [4]. Regardless of their internal structure, all
these systems have a common and necessary first step: spatial data partitioning. These
systems partition data across machines and then process the partitions in parallel to scale
out. Research shows that spatial data partitioning methods are critical to the performance
of many spatial operations, such as load balancing, indexing, visualization, spatial join
query, and k-NN join query.

In the MapReduce computing paradigm, partitioning a dataset into independent
partitions is a critical operation, as the degree of parallelism and overall performance
directly depends on the initial partitioning technique [3]. The basis of the MapReduce
computing paradigm is to divide the input dataset into fixed-size chunks or slices, and
execute the same map task in parallel on the chunks. If all map tasks can be executed in
parallel, the total execution time depends on which map task takes longer. Therefore, when
the map tasks are well balanced, the fastest parallel execution speed can be obtained. This
means that dividing the data into chunks is the key to obtaining a well-balanced map task
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and ensuring faster execution. Common partitioning methods include hash partitioning,
range partitioning and random partitioning [5]. Hash partitioning and random partitioning
do not consider the content of the data; in the batch case the dataset is always analyzed
in its entirety, so this solution is reasonable. However, this approach is not efficient if the
dataset is analyzed using selective queries based on some attributes of the data (such as
the spatial extent of the region). Range partitioning requires a predefined set of key ranges.
However, in the big data environment, there is no set of key range statistics on the dataset,
so it is challenging to solve the partition boundary in a low-cost and accurate way.

Data skew usually comes from the physical properties of objects (e.g., the height of a
person follows a normal distribution) and hotspots in the spatial domain (e.g., urban struc-
ture spatial information follows a skewed distribution). The efficiency of these partitioning
techniques depends on the characteristics and distribution of the dataset, so choosing an
appropriate spatial partitioning technique for skewed data is an extremely challenging
problem [3,6]. The main difficulty in building partitions is to quickly find the optimal size
of each partition boundary to balance the amount of data that the partitions contain.

Obtaining precise partition boundaries requires calculating spatial datapoint locations
and quantitative relationships. Although the MapReduce computing paradigm can analyze
and process data in parallel, the huge amount of data cannot be read into memory for
calculation at one time, and frequent I/O operations will greatly affect the speed of data
partitioning; for example, the synthetic dataset is 3.26 GB in size and contains 100 million
datapoints, and it takes 47 min to calculate its precise partition boundaries. The existing
solution is to use sampling methods to randomly select small samples from the input
data to represent the overall distribution of the data, e.g., SpatialHadoop [3] and SATO
(Sample Analyze Tear Optimize) [7]. The processing step is to select a sample subset Ds

from the dataset based on a given sampling rate of α. Then, the partition boundaries are
obtained according to the data distribution of the subsets. Finally, the entire input records
are scanned in parallel, and each record is allocated to a partition according to the spatial
information of the record and the partition boundary. If the partition capacity exceeds
the expected size and the partition boundary does not cover the datapoints, the partition
boundary is adjusted. Random sampling can approximate the data distribution. However,
the overall distribution description in the worst case cannot be guaranteed, resulting in
excessive partition boundary adjustment operations, especially in the case of data skew
and data hotspots. Aiming to solve the above problems, we propose an approximate
partition boundary solution method based on histogram bucket sampling. In the sampling
process, fully considering the data distribution characteristics, a sampling set with higher
availability can be obtained, to more effectively perform fast partitioning for spatial big
data. The main contributions of this paper are summarized as follows:

• A general sampling method is proposed for partition boundary solutions.
• A partition boundary calculation method based on histogram bucket sampling is

proposed, and the rationality of this sampling method is proved. At the same time, a
framework for the approximate estimation of histogram bucket size is proposed.

• The effectiveness of the proposed method is evaluated using six partitioning tech-
niques on synthetic and real datasets. Compared with solutions based on random
sampling, the proposed scheme can obtain approximate true partition boundaries.

The rest of this article is organized as follows. Section 2 shows the related research,
Section 3 introduces histogram bucket sampling, in Section 4 we evaluate the effectiveness
of the histogram bucket sampling method on synthetic and real datasets and, finally, the
paper is summarized in Section 5.

2. Related Work

This section reviews the related work of solving the partition boundary of spatial big
data. Partitioning is a basic operation for managing and processing big data on a cluster
in a distributed system, and sampling is a necessary step for spatial big data partitioning
operations [8]. When considering uniformly, spatially distributed data, spatial partitioning
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can be easily achieved using uniform random sampling over the entire spatial distribution
to obtain the distribution of the input dataset; conversely, for skewed datasets, this may
not be the right choice, and other sampling techniques must be applied [9]. Existing
sampling techniques are mainly based on the expansion of statistical sampling [10,11].
Spatial Hadoop experiments with random sampling [12] on seven spatial partitioning
techniques. Although the sampling time is about two minutes, due to the large number
of unsampled points, a lot of partition boundary adjustment is required, so the fixed
overhead of each map task in the MapReduce job is increased, and the efficiency is not
high, especially in the case of data skew. ST-Hadoop [6] uses random sampling to estimate
the spatial distribution of objects and how this distribution evolves over time, ST-Hadoop
uses MapReduce to scan all data records to read samples, set the sampling rate to 1% and
the maximum size to 100MB, sort the samples in chronological order, and, within each
time instance in the sample, amplify the size and number of data records associated with
each time instance by 1%. Kollios et al. [13] proposed a bias sampling technique based on
local probability density. The local density function of each point is defined by the kernel
function to calculate the sampling probability of each partition. Through the parameter α,
the sampling of uniformly distributed data or skewed distribution data can be realized;
where dense or sparse regions are oversampled in skewed distribution data, this method
facilitates clustering and outlier detection in large datasets. Yan et al. [14] proposed an
error-bounded stratified sampling method to reduce data: by using buckets to cover data,
the sampling rate of a small bucket value range is reduced, and the sampling rate of a large
bucket value range is larger. This technology has a better performance when it is used for
approximate query [15,16], and retains the characteristics of data aggregation, but there
are two problems when using data partitioning: (1) The probability of scattered data being
collected becomes low, the partition coverage rate is low, and a large number of partition
boundary adjustment operations are generated; (2) The bucket sizes are different. If the
skew of the dataset is large, some bucket sampling may have the same problem as Spatial
Hadoop. To minimize data movement, Harsh et al. [17] use sampling and histogram-based
techniques to partition keys, which combine sampling and iterative histograms to find
high-quality partitions.

From the literature analysis, sampling-based methods are preferred because they
are easy to implement and quickly obtain partitioning results, which facilitates the quick
selection of suitable partitioning techniques. This is currently the most common choice
for big data partitioning and is also integrated into most existing spatial data systems.
However, due to the inherent instability of random sampling, as shown in Figure 1, the
expression effect for sparse areas of skewed data is poor. It is obvious that random sampling
does not capture elliptical region data, so there is a large gap between the calculation of
partition boundaries and the actual partition. In this paper, we follow the sampling-based
approach and propose a new histogram bucket sampling method for fast partitioning.
The proposed histogram bucket sampling has three advantages over random sampling.
First, its sampling set covers a wide range of partitions without generating new partition
boundaries. Second, its sampling set cumulative distribution function and the original
dataset cumulative distribution function error are bounded. Second, its sampling set
cumulative distribution function and the original dataset cumulative distribution function
error are bounded, this property can make the estimated spatial distribution of the sampling
set approximately equal to the spatial distribution of the original dataset to a certain extent.
Third, the partition boundaries obtained by its sampling set do not require excessive
partition adjustment, reducing the fixed overhead of each map task in the MapReduce job.
Histogram bucket sampling is a sampling method customized for the fast partitioning of
spatial big data.
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(a)

(b) (c)

Figure 1. Partition boundaries for whole data and sample data. This demonstrates that random
sampling did not capture elliptical region points. (a) Whole data partition boundaries. (b) Random
sampling partition boundaries. (c) Histogram bucket sampling partition boundaries.

3. Symmetric Bin Sampling

In this section, we propose a new sampling method to compute partition bound-
aries. To quantify the quality of the results of the sampling-based solution in terms of the
cumulative distribution function, we define the maximum error between a given approxi-
mate cumulative distribution function G = (x1, x2) and the exact cumulative distribution
function F = (x1, x2) as follows.

Definition 1. Maximum Error. We define the maximum error between the approximate cumulative
distribution function G = (x1, x2) and the exact cumulative distribution function F = (x1, x2)
as follows.

Emax(G, F) = max
0≤x1≤∞

| G(x1, x2)

α
−F (x1, x2) | (1)

where α represents the sampling rate. Since it is difficult to directly obtain the cumulative
distribution function, the paper obtains this indirectly using the probability density function,
such as Equations (2) and (3),

F (x1, x2) =
∫∫

f (x1, x2)dx1dx2 (2)

G(x1, x2) =
∫∫

f̂ (x1, x2)dx1dx2 (3)

Given an error threshold θ, if | f̂ (x1,x2)
α − f (x1, x2) |≤ σ holds, then |

∫∫
f̂ (x1,x2)dx1dx2

α −∫∫
f (x1, x2)dx1dx2 | holds, let

∫∫
σdσ = θ, then | G(x1,x2)

α −F (x1, x2) |≤ θ holds.
When actually solving the probability density function, it is difficult to directly know

the probability density function. To estimate the probability distribution, a histogram is
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constructed using a symmetric bin process that divides the variable values into discrete
values. However, in practice, this value depends on the number of histogram bins, and
the bin width for a given data range. Drawing on this idea, the two-dimensional space is
divided into mutually disjointed bins. The bins are defined as follows:

Definition 2. Histogram Bucket. Given a dataset D, a histogram bucketHi,jis a subsets of D:

D = H1,1, . . . ,Hm,n

For eachHi,j in D and D = ∪i=m,j=n
i=1,j=1 Hi,j, ∩

i=m,j=n
i=1,j=1 Hi,j = ∅.

Approximately solve the two-dimensional probability density function using
Equations (4) and (5)

f (x1, x2) =
h(i, j)

∆xi∆yj
(4)

h(i, j) =
H(i, j)
N (5)

where f (x1, x2) is the probability density function,H(i, j) is the frequency,Hi,j is the
number of datapoints in the binH(i, j), and N is the total number of datasets. According
to Equations (4) and (5), the two-dimensional probability density function of the sampling
set is defined as Equations (6) and (7).

f s(i, j) =
hs(i, j)
∆xi∆yj

(6)

hs(i, j) =
Hs(i, j)
N (7)

where f s(x1, x2) is the probability density function of the sampling set, Hs(i, j) is the
number of sampling points for the histogram bucketHi,j.

Lemma 1. Assuming σ = 1
∆xi∆yjN τ, if ∀Hi,j ∈ D is true for | H

s(i,j)
α −H(i, j) |≤ τ, then for

∀Hi,j ∈ D, | f s(i,j)
α − f (i, j) |≤ σ constantly holds.

Proof.

| f s(i, j)
α
− f (i, j) | =| H

s(i, j)
αN∆xi∆yj

− H(i, j)
N∆xi∆yj

=
1

N∆xi∆yj
| H

s(i, j)
α

−H(i, j) |≤ σ

Sampling the histogram bucket H(i, j), the sampling rate is α, and the sampling set
Hs(i, j) = α·H(i, j) is always established under the accurate calculation result. However,
it is very time-consuming to accurately calculate the binned datapoints in a large dataset.
Therefore, it is also very important to quickly estimate the value ofH(i, j) within a certain
error range in the research of histogram bucket sampling. In addition, you need to choose
an appropriate bin size. Therefore, this paper mainly focuses on the above two aspects.

3.1. Selection of Bin Size

In our research environment, the amount of spatial data is huge, and the results
of a parametric analysis of spatial distribution are not available. Therefore, we used a
nonparametric modeling approach. In addition, as shown in Figure 2, the trajectory points
in Figure 2 are typical spatial big data, and the black dots represent the trajectory points of
the bus. It is observed that the trajectory points in low-longitude areas (such as Ganjingzi
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District) are sparse, most of the trajectory points are concentrated in the high-longitude
part, and the spatial data present a skewed distribution. The widely adopted bucket width
selection rule is to use Sturges’ rule [3] with bucket width ∆b.

∆b =
max−min

1 + dlog2 ne
where n is the total sample size, max and min represent the maximum and minimum values
of the data range, respectively. The data are assumed to be normally distributed. However,
when the data are not normally distributed, additional operations are required to address
skewness. Scott’s rule [4] is based on the gradual theory, ∆b = 3.49σn−

1
3 . This rule also as-

sumes that the data are normally distributed. Freedman and Diaconis [18] extended Scott’s
rule to give the bin width optimum ∆b for a non-normal distribution. For a set of empirical
measurements sampled from some probability distribution, the Freedman–Diaconis rule is
designed to minimize the integral of the squared difference between the histogram (that is,
the relative frequency density) and the theoretical probability distribution density.

∆b = 2(q75 − q25)n−
1
3

where q75 is the 75th quantile value of the data, q25 is the 25th quantile value of the data,
and n is the number of samples, this paper uses the Freedman–Diaconis rule to calculate the
bin length B1 and width B2 values of skewed data, such as Equations (8) and (9)

B1 = 2(xq75
1 − xq25

1 )n−
1
3 (8)

B2 = 2(xq75
2 − xq25

2 )n−
1
3 (9)

where xq75
i and xq25

i represent the 75th quantile and 25th quantile of xi(i = 1, 2).
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Figure 2. An example of data distribution diagram.

3.2. Histogram Bucket Data Point Calculation

This section proposes a framework for fast computation of histogram bucketH(i, j);
by establishing a functional relationship between the spatial offset and the number of
spatial pairs, the approximate calculation of the H(i, j) value is realized within a certain
error range. A description of space offset and space pair is given below.

Given a dataset D, establish a spatial pair Sp, Sp = {(o, oi) : oi ∈ D}, the spatial
measure d, spatial offset refers to the smallest bounding rectangle (MBR) containing the
spatial pair (o, oi), MBR refers to the rectangle with the smallest perimeter L satisfying the
relationship d(o, oi) ≤ d, which is uniquely represented by θ and d. MBR with a smaller
distance is preferred. When d is equal, a smaller θ is selected when θ < π

4 , and a larger
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θ is selected when θ > π
4 . Figure 3 is an example of space pair and MBR, as shown in

Equation (10).

L = d· sin θ + d· cos θ =
√

2d sin(θ +
π

4
) (10)

x

y

dista
nce

o

O1 O2

O3

O4

O5

O2

O3

O4

O5

O1

a dataset of spatial object

pairs of spatial objects formed 

by a initial object o



Figure 3. An example of spatial pair.

Using the above concepts, define the spatial offset distribution histogram bucket,
as follows:

Definition 3. Spatially offset distribution bins (SODB). Let D be a 2D dataset with N datapoints,
given a spatial pair Sp, the spatial measure d,H is defined as a two-dimensional array of buckets,

Covering the [0, dx1
max]× [o, dx2

max] field, there are d d
x1
max
B1
e·d dx2

max
B2
e square buckets,H(i, j) is expressed

as: H(i, j) =|
{
(o, oi) ∈ Sp : (i− 1)B1 ≤ dx1(o, oi) < iB1, (i− 1)B2 ≤ dx2(o, oi) < iB2

}
|,

dx1 = d· cos θ, dx2(o, oi) = d· sin θ, all bins have the same B1 and B2 values.

A simple way to calculate SODB see Algorithm 1. Initialize the square bucket first,
then traverse the space pair to calculate the maximum value xmax

1 , xmax
2 , the minimum

value xmax
1 , xmax

2 and B1, B2 of Sp on xmax
1 , xmax

2 , get the length and width of each square
bucket, and store it in the square bucket arrayH. Then, traverse the space pair to make it
uniquely correspond to a square bucket, and finally return theH(i, j) function.

Algorithm 1: SDOB(Sp)

1 initialize histogram bucket arrayH;
2 for each si ∈ Sp do
3 calculate the maximum value of Sp on x1, x2, xmax

1 , xmax
2 , minimumxmin

1 ,
xmin

2 and B1,B2;
4 according to B1,B2, xmax

1 , xmax
2 , xmin

1 , xmin
2 value;

5 initialized binsHi,j, i = d xmax
1 −xmin

1
B1

e, j = d xmax
2 −xmin

2
B2

e,Hi,j deposit toH
6 for each si ∈ Sp do
7 if d ≤ Hi,j then
8 H(i, j)+ = 1

Result: H(i,j)

The time complexity of Algorithm 1 includes:(1) Calculate all space-to-space offset
values, namely, O(| Sp | ·costsm), where costsm represents the complexity of each space
offset calculation; (2) Sort all spatial offsets, that is, O(| Sp | · log | Sp |); (3) Initialize the
histogram bucketHi,j, namelyO(i·j); (4) Traverse the space pair and calculate theHi,j value
of each histogram bucket, that is, O(| Sp |). In general, the time complexity of this method
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is O(| Sp | ·costsm+ | Sp | · log | Sp | +i·j+ | Sp |). Obviously, when Sp is large, the time
complexity of this method is large, and cannot meet the needs of practical applications.
Therefore, this paper designs the cumulative spatial offset distribution function F (x1, x2)
to speed up the calculation of the spatial offset distribution histogram bucket, and the
distribution function returns a jump function F with respect to the spatial offset (x1, x2), as
Definition 4.

Definition 4. Cumulative Spatial Offset Distribution Function. Let D be a 2D dataset with N
datapoints, spatial pair Sp, spatial measure d. For simplicity, we assume that the spatial domain is
[0, 1]2, F : [0, 1]2 → N, in the form of:

F (x1, x2) =|
{
(o, oi) ∈ Sp : d(o, oi) ≤ MBR

}
|

The functional relationship betweenH(i, j) and F (x1, x2) is Equation (11)

H(i, j) = F (i·B1, j·B2)−F ((i− 1)·B1, j·B2)−
F (i·B1, (j− 1)·B2) +F ((i− 1)·B1, (j− 1)·B2)

(11)

A simple way to calculate CSOD is shown in Algorithm 2. First initialize the MBR
array, calculate the d value of all space pairs, and insert into the MBR array. Then, sort
from small to large according to the smallest MBR perimeter, and calculate the cumulative
spatial offset distribution function F (x1, x2).

Algorithm 2: CSOD(Sp)

1 Initialize an array of minimum bounding rectangles MBR;
2 for each si ∈ Sp do
3 add d(o, oi) to MBR;
4 sort MBR;
5 calculate F (x1, x2);

Result: F (x1, x2)

The time complexity of Algorithm 2 is as follows: (1) Calculate all space-to-space offset
values, that is, O(| Sp | ·costsm), where costsm represents the complexity of each spatial
offset calculation; (2) Sort all spatial offsets, that is, O(| Sp | · log | Sp |); (3) Calculate
the cumulative spatial offset distribution F (x1, x2), that is, O(| Sp |. In general, the time
complexity of this method is O(| Sp | ·costsm+ | Sp | · log | Sp | + | Sp |). Obviously, this
method is less practical when Sp is large.

In the big data environment, it is difficult to calculate the value of F (x1, x2) quickly.
Therefore, an approximate cumulative spatial offset distribution function with bounded
error is designed in this paper to replace the F (x1, x2) value to speed up the sampling
process, suppose the approximation is F̂ (x1, x2), as Definition 5.

Definition 5. Approximate Cumulative Spatial Offset Distribution Function. Given a set of space
pairs Sp and a distance measure d and a fault tolerance threshold δ, Approximate cumulative spatial
offset distribution returns a jump function with respect to spatial offset (x1, x2), F : [0, 1]2 → N:

| F̂ (x1, x2)−F (x1, x2) |≤ δ

For the calculation of F̂ (x1, x2), we use the Euclidean distance-based upper and lower
boundary calculation method in the paper, as in Equations (12) and (13), keep θ unchanged,
and the upper and lower boundaries of d are dU(o, oi) and dL(o, oi).

d(o, oi) ≤
√

2((µ0 − µ0i )
2 + (σ0 + σx)2) = dU(o, oi) (12)
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d(o, oi) ≥
√

2((µ0 − µ0i )
2 + (σ0 + σx)2) = dL(o, oi) (13)

We define the upper and lower boundary functions FU(x1, x2) and F L(x1, x2).

F L(x1, x2) =|
{
(o, oi) ∈ Sp : dU(o, oi) ≤ MBR

}
|

FU(x1, x2) =|
{
(o, oi) ∈ Sp : dL(o, oi) ≤ MBR

}
|

Lemma 2. If dL(o, oi) ≤ d(o, oi) ≤ dU(o, oi), then F L(x1, x2) ≤ F (x1, x2) ≤ FU(x1, x2)
constant established.

Proof.

S =
{
(o, oi) ∈ Sp : d(o, oi) ≤ MBR

}
,SL =

{
(o, oi) ∈ Sp : dL(o, oi) ≤ MBR

}
When dL(o, oi) ≤ d(o, oi) exists, SL(x1, x2) ∈ S(x1, x2). Thence F L(x1, x2) =| SL(x1, x2) |≤
F (x1, x2) =| S(x1, x2) |, the same can be proved F (x1, x2) ≤ FU(x1, x2).

Lemma 3. Knowing the upper and lower boundary functions, let F̂ (x1, x2) = αF L(x1, x2) +
(1− α)FU(x1, x2). If FU(x1, x2)−F L(x1, x2) ≤ 2δ and α = 1

2 , | F̂ (x1, x2)−F (x1, x2) |≤ δ
constantly holds.

Proof.

| F̂ (x1, x2)−F (x1, x2) | =| αF L(x1, x2) + (1− α)FU(x1, x2)−F (x1, x2) |
=| α[F L(x1, x2)−F (x1, x2)] + (1− α)[FU(x1, x2)−F (x1, x2)] |
≤ α | F L(x1, x2)−F (x1, x2) | +(1− α) | FU(x1, x2)−F (x1, x2) |
= α[F (x1, x2)−F L(x1, x2)] + (1− α)[FU(x1, x2)−F (x1, x2)]

= −αF L(x1, x2) + (2α− 1)F (x1, x2) + (1− α)FU(x1, x2)

Let α = 1
2 , then | F̂ (x1, x2)−F (x1, x2) |= FU(x1,x2)−F L(x1,x2)

2 , So only need FU(x1, x2)−
F L(x1, x2) ≤ 2δ, then | F̂ (x1, x2)−F (x1, x2) |≤ δ is established.

According to Equation (2) and Definition 4, we define the approximate spatial offset
distribution histogram bucket as follows.

Definition 6. Approximate Spatial Offset Distribution Histogram Buckets. Given a set of space
pairs Sp and a distance measure d and a fault tolerance threshold τ, a histogram bucket with length
B1 and width B2, approximate cumulative spatial offset distribution returns a function over bucket
(i, j) such that

| Ĥ(i, j)−H(i, j) |≤ τ

For i ∈ [1,B1], j ∈ [1,B2] is always true.

Lemma 4. Given τ = 4δ, suppose F̂ (x1, x2) is the return result of the input dataset D and the

distance measure d, Ĥ(i, j) can be calculated by F̂ (x1, x2) in time complexity O(d d
x1
max
B1
e · d dx2

max
B2
e)

Proof. First prove that | Ĥ(i, j)−H(i, j) |≤ τ. According to Equation (6), the approximate
spatial offset distribution histogram bucket Ĥ(i, j) is transformed into

Ĥ(i, j) = F̂ (i·B1, j·B2)− F̂ [(i− 1)·B1, j·B2]− F̂ [i·B1, (j− 1)·B2]

+ F̂ [(i− 1)·B1, (j− 1)·B2]
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| Ĥ(i, j)−H(i, j) | =| F̂ (i·B1, j·B2)− F̂ [(i− 1)·B1, j·B2]− F̂ [i·B1, (j− 1)·B2]

+ F̂ [(i− 1)·B1, (j− 1)·B2]−F (i·B1, j·B2)−F [(i− 1)·B1, j·B2]

−F [i·B1, (j− 1)·B2] +F [(i− 1)·B1, (j− 1)·B2] |
=|
{
F̂ (i·B1, j·B2)−F (i·B1, j·B2)

}
+
{
F [(i− 1)·B1, j·B2]− F̂ [(i− 1)·B1, j·B2]

}
+
{
F [i·B1, (j− 1)·B2]− F̂ [i·B1, (j− 1)·B2]

}
+
{
F̂ [(i− 1)·B1, (j− 1)·B2]−F [(i− 1)·B1, (j− 1)·B2]

}
≤ 4δ = τ

The time complexity analysis: we derive Ĥ(i, j) from the computational complexity of

F̂ (x1, x2). Computing Ĥ(i, j) requires i from 1 to d d
x1
max
B1
e and j from 1 to d dx2

max
B2
e, a nested for

loop is executed; therefore, the time complexity is O(d d
x1
max
B1
e · d dx2

max
B2
e).

3.3. Sampling

The histogram bucket Ĥ(i, j) is uniformly sampled according to the value ofHi,j, and
the sampling rate is α, thenHs(i, j) = α · Ĥ(i, j). Thence,

| H
s(i, j)
α

−H(i, j) | =| H
s(i, j)
α

− Ĥ(i, j) + Ĥ(i, j)−H(i, j) |

≤| H
s(i, j)
α

− Ĥ(i, j) | + | Ĥ(i, j)−H(i, j) |= τ

Therefore, the histogram bucket sampling according to the approximate spatial offset
distribution not only satisfies Equation (1), but also improves the sampling efficiency.

4. Experiments

In this section, the experimental verification of the method of the paper will be carried
out. The experimental setup is described in Section 4.1. In Section 4.2, a case study is
conducted with a real bus trajectory dataset to demonstrate the applicability of ACSOD
and ASODB. In Section 4.3, the accuracy of approximate solutions for ACSOD and ASODB
is investigated, respectively. In Section 4.4, the Emax(G, F) values of the random sampling
method and the method of this paper are compared on synthetic datasets and real datasets,
respectively. Finally, in Section 4.5, synthetic and real datasets are used to evaluate the
effectiveness of approximating partition boundaries.

4.1. Setting

Dataset Settings. The dataset consists of a synthetic dataset and a trajectory dataset.
The size of the synthetic dataset is 3.67 GB and contains a total of 1,000,000 datapoints. The
range [0,1] is skewed randomly. The trajectory dataset is 34.8 GB, contains 311,194,034 records.

Baseline methods. We evaluate the performance of the following two methods:
Random sampling: random sampling-based solutions randomly pick datapoints and

compute an approximate cumulative distribution function with a fixed sampling rate α.
Histogram Bucket Sampling: Error-bounded bin sampling is presented in Section 3.
Table 1 is the test value of sampling rate α, error threshold θ and partition capacity

size for scalability evaluation.

Table 1. Parameter settings.

Parameter Test Value

sampling rate α 2%, 4%, 6%, 8%, 10%
error threshold θ 1%, 2%, 3%, 4%, 5%

size 1 MB, 2 MB, 3 MB, 4 MB, 5 MB
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All methods are implemented in Python and Java. The performance of our method
was measured using six common spatial partitioning techniques: Grid, Z-curve, H-curve,
Kd-tree, STR [6], R*-Grove [13]. The single-threaded experiment (written in Python) runs
on a PC with an Intel Core i7 4.20GHz processor and 32 GB of memory. The distributed
experiments (written in Java) were run on a cluster of five machines with an Intel(R) Xeon(R)
CPU E5-2620 2.40 GHz processor, 4 GB RAM, and runs Ubuntu 16.04.01 with Hadoop 2.7.7.

4.2. Accuracy Assessment

In this section, we will select a set of real trajectory datasets for experimental research
to verify the applicability of ACSOD and ASODB under the bin sampling method, and
demonstrate the advantages of the histogram bucket sampling method compared to the
random sampling method that was previously used. In the process of processing these data,
we will better show how to use histogram bucket sampling method to solve the limitations
of using random sampling method for spatial big data partition processing; this results
in better performance on data partition processing problems. To measure and compare
the accuracy of two different sampling techniques in the experiments, we introduce a fault
tolerance threshold indicator. When other data in the control experiments are the same, the
fault tolerance thresholds of ACSOD and ASODB are compared using the two sampling
methods. These were used to evaluate the applicability of ACSOD and ASODB and the
accuracy of histogram bucket sampling.

We combine histogram bucket sampling techniques as well as random sampling
techniques with existing spatial big data partitioning techniques for comparison. In the
experiment, as Tables 2 and 3, we used six different spatial big data partitioning techniques
to divide the dataset into different datasets D, then chose spatial pairs Sp in this dataset,
Sp = {(o, oi) : oi ∈ D}, solving for distance measures and minimum bounding rectangles.
The fault tolerance threshold of ACSOD and ASODB was caluclated using two different
sampling methods to measure the accuracy of the two different sampling methods. The
experiments in this section will verify the applicability of ACSOD and ASODB with two
different sampling methods—histogram bucket sampling method and random sampling
method—and calculate the fault tolerance threshold of the two using these two different
sampling methods to verify their accuracy.

Table 2. Random sampling.

Spatial Pairs Distance Fault Tolerance
Threshold MBR

ACSOD {(o, om) : om ∈ D} 36.7 0.81 (30, 36.7)
ASODB {(o, on) : on ∈ D} 34.6 0.86 (30, 34.6)

Table 3. Histogram bucket sampling.

Spatial Pairs Distance Fault Tolerance
Threshold MBR

ACSOD {(o, om) : om ∈ D} 36.7 0.97 (30, 36.7)
ASODB {(o, on) : on ∈ D} 34.6 0.95 (30, 34.6)

The above experimental data show the advantages of the histogram bucket sampling
method in ACSOD and ASODB using different spatial big data partitioning techniques for
data partitioning. In this experiment, we select spatial pairs and a fixed distance measure
in the same dataset, and the generated minimum bounding rectangles are also identical.
However, the traditional random sampling method cannot guarantee the worst-case overall
distribution description when partitioning spatial data, resulting in excessive partition
boundary adjustment operations, which reduces the fault tolerance rate of this method.
Since the sampling set of the histogram bucket sampling technology covers a wide range of
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partitions, it is not necessary to generate new partition boundaries multiple times when
processing large spatial data partitions. In addition, the partition boundaries obtained by
the histogram bucket sampling technique do not require excessive partition adjustment,
which reduces the fixed overhead of each map task in the MapReduce job to a certain
extent. Thus, the fault tolerance threshold of the histogram bucket sampling technology is
optimized, which makes the advantages of ACSOD and ASODB in the histogram bucket
sampling technology more prominent. This verifies the accuracy of the histogram bucket
sampling method.

4.3. Emax(G, F) Evalution

This section will quantify the approximation error of the bin sampling method pro-
posed in this paper by using Emax(G, F). Due to the huge amount of spatial data used in
the experiment, the availability of the parametric analysis results of the spatial distribution
is not high, and it is difficult to directly obtain the cumulative distribution function. There-
fore, we indirectly obtained the E value using the probability density function. However,
when actually solving the probability density function, it is difficult to directly know the
probability density function. Usually, a histogram was used as a non-parametric density
estimator to visualize the data and obtain various parameters and characteristics of the
underlying density. Since in practice, this value depends on the number of histogram bins,
and the bin width for a given data range. From this, we divided the two-dimensional space
into mutually disjointed bins, then sampled the histogram bucketH(i, j) with a sampling
rate of α.

For intuitive expression, the two-dimensional cumulative distribution function was
mapped on the XOZ surface. As shown in Figure 4, the sampling method in this paper is
better than the random sampling method, because Emax(

Fs

α ) = 69 < Emax(
Frs

α , F) = 110.

(a) (b)

Figure 4. Exact and approximate distribution of cumulative distribution function. (a) Random
sampling. (b) Histogram bucket sampling.

4.4. Evalution of Partition Boundary Effectiveness

In this section, we will focus on the efficiency of our method using six partitioning
techniques on different datasets. The performance of Grid, Z-curve, H-curve, Kd-tree, STR
and R*-grove partitioning techniques is compared using a partition boundary coverage, as
well as a comparison of the partition statistics. In each generated partition, the maximum
capacity does not exceed the block size (set to 2 MB and 20 MB respectively). Therefore, the
paper uses the partition load after data injection as a comparison indicator.

In the evaluation of the effectiveness of the partition boundary, the quantitative
evaluation index is the partition coverage rate:

Partition coverage =
Partition contains unsampled data

Unsampled data
·100%
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Statistics for each partition: total area of partitions, overlapping area of partitions, sum
of partition boundaries, block utilization, standard deviation of partition size.

Total area of the zone:

Q1(p) = ∑
πi∈p

bi·volume(mbbi)

where bi is the data block contained in each partition, bi = d sizei
blockSize e, partitionSizei is the

size of the i-th partition. mbbi represents the i-th partition, and volumne(mbbi) is the area
of the i-th partition.

Partition overlap area:

Q2(p) = ∑
πi ,πj∈p,i 6=j

bi·bj·volume(mbbi ∩mbbj) + ∑
πi∈p

bi(bi − 1)
2

·volume(mbbi)

Total of partition boundaries:

Q3(p) = ∑
πi∈p

bi·margin(mbbi)

where margin(mbbi) is the perimeter of the i-th partition.
Block utilization:

Q4(p) = ∑ πi ∈ psizei
B·∑ πi ∈ pbi

·100%

Partition size standard deviation:

Q5(p) =

√
∑ πi ∈ p(sizei − size)2

m

where m is the number of partitions.
Figures 5 and 6 show the advantages of the histogram bucket sampling method when

using six common partitioning techniques for spatial big data partitioning on synthetic
datasets and trajectory datasets, respectively. As shown in Figure 7, since the histogram
bucket sampling method generates a wide range of data partitions when sampling the
dataset. Thus, in each partition generated by the histogram bucket sampling method,
the obtained partition coverage is much higher than that obtained using the random
sampling method. Therefore, the histogram bucket sampling method is more efficient
when processing large spatial data partitions.
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Figure 5. Comparison of six partitioning techniques for trajectory data.
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Figure 6. Comparison of 6 partitioning techniques for synthetic data.
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Figure 7. Comparison of partition coverage. (a) Synthetic data. (b) Trajectory data.
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4.5. Query Comparison

In this section, we will use a synthetic dataset and a trajectory dataset to verify the
efficiency of histogram bucket sampling. We used Grid, Z-curve, H-curve, Kd-tree, STR,
R*-Grove spatial partitioning techniques to verify the performance of the histogram bucket
sampling method in range queries. Among them, Figure 8 show the response time of
range queries using histogram bucket sampling on a synthetic dataset and a trajectory
dataset, respectively. It can be seen that as the amount of query data increases, the query
response time increases linearly. Combined with the relevant statistics in Tables 4 and 5.
The comparison found that in the initial stage, as the amount of data increased, the query
response time linearly increased. When the amount of data increases to a certain amount,
the response time of range queries using histogram bucket sampling method combined
with Grid spatial data partitioning technology tends to be stable and no longer increases,
and query efficiency can still be guaranteed.
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Figure 8. Query response time over two datasets. (a) Synthetic data. (b) Trajectory data.

Table 4. Statistics for each partition of synthetic data.

Grid Z-Curve H-Curve KD-Tree STR-Tree R*-Grove

P a 156/146/156 g 186/183/184 186/183/184 186/183/184 196/196/196 191/187/189
TA b 74.94/65.0/74.95 114.37/107.63/102.17 87.1/67.54/69.69 74.48/68.42/77.85 43.4/36.6/43 142.17/121.79/123.9
A c 242.58/199.68/242.58 176.39/184.95/131.32 51.13/42.52/38.35 32.37/29.92/34.13 1.68/0.96/1.45 182.73/147.38/127.01

TPB d 304.72/275.73/304.74 231.64/211.86/210.53 175.04/162.92/157.25 275.46/254.53/275.69 188.52/168.21/186.23 195.89/176.24/188.14
BUR e 58.43%/60.11%/57.61% 69.59%/71.95%/72.41% 70.12%/69.22%/72.69% 72.58%/71.38%/71.56% 91.08%/92.76%/91.59% 82.58%/81.95%/82.52%
SD f 6.42/6.34/6.47 0.05/0.06/0.56 0.05/0.05/0.53 0.68/0.68/0.67 0.05/0.04/0.54 0.67/0.59/0.63

a Number of partitions. b Total area of partition. c Area of overlaping partitions. d Total partition boundary.
e Block utilization ratio. f Standard deviation of partition size. g The numbers represent the results of whole data,
histogram bucket sampling, and random sampling, respectively.

Table 5. Statistics for each partition of trajectory data.

Grid Z-Curve H-Curve KD-Tree STR-Tree R*-Grove

P 38/40/41 50/50/53 50/50/53 50/50/53 64/64/64 51/51/54
TA 0.19/0.2/0.2 0.24/0.34/0.24 0.2/0.31/0.18 0.14/0.15/0.14 0.11/0.11/0.11 0.14/0.21/0.19
A 0.0/0.0/0.0 0.21/0.59.0.19 0.09/0.17/0.06 0.02/0.02/0.02 0.0/0.0/0.0 0.02/0.09/0.06

TPB 7.44/7.96/8.0 5.83/8.0/5.35 5.16/6.58/4.39 5.93/6.07/5.97 4.97/5.17/5.16 4.4/5.51/4.68
BUR 63.7%/62.47%/62.76% 81.45%/64.91%/94.71% 78.86%/67.54%/96.47% 77.63%/78.09%/81.39% 87.16%/80.61%/93.02% 82.58%/81.95%/82.52%
SD 4.95/4.87/49.87 0.02/0.02/0.16 0.02/0.02/0.17 0.7/0.7/6.56 0.01/0.02/0.17 0.05/0.06/0.52

5. Conclusions

In the MapReduce computing paradigm, partitioning a dataset into independent
partitions is a key operation, as the degree of parallelism and overall performance directly
depends on the initial partitioning technique. In this paper, we proposed a method of
solving partition boundaries based on symmetric bin sampling, which computes an ap-
proximate cumulative distribution function within a certain margin of error to generate the
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best approximate partition boundaries for the analyzed dataset. This can be applied to the
boundary solution of six commonly used partition methods. We applied it to synthetic and
real datasets and compared the performance with random sampling techniques to highlight
their differences and advantages. However, for skewed data, histogram bucket sampling
is better than random sampling, but histogram bucket sampling is computationally com-
plex. The future research directions includes how to design other sampling techniques to
further improve performance, and a partition boundary solution that supported arbitrary
data distribution. Another interesting direction is to present deep learning for partition
boundary estimation.
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