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Abstract: This paper considers optimal design problems for the Weibull distribution, which can be
used to model symmetrical or asymmetrical data, in the presence of progressive interval censoring in
life-testing experiments. Two robust approaches, Bayesian and minimax, are proposed to deal with
the dependence of the D-optimality and c-optimality on the unknown model parameters. Meanwhile,
the compound design method is applied to ensure a compromise between the precision of estimation
of the model parameters and the precision of estimation of the quantiles. Furthermore, to make the
design become more practical, the cost constraints are taken into account in constructing the optimal
designs. Two algorithms are provided for finding the robust optimal solutions. A simulated example
and a real life example are given to illustrate the proposed methods. The sensitivity analysis is also
studied. These new design methods can help the engineers to obtain robust optimal designs for the
censored life-testing experiments.

Keywords: Weibull distribution; progressive interval censoring; Bayesian design; minimax design;
particle swarm optimization

1. Introduction

Progressive censoring is frequently employed in life-testing experiments because it
permits removing the test units at the points other than the final termination point, which
can save experiment time and/or cost. Recently, the research on progressive censoring
has grown very fast. For the relevant research progress one may refer to two important
monographs (Balakrishnan et al. [1]; Balakrishnan and Cramer [2]) and the review article
(Balakrishnan [3]). In applications, progressive type-I and type-II censoring are two impor-
tant types of progressive censoring schemes. They are usually required to continuously
observe the testing process under a given censoring scheme. However, due to the high cost
and/or possible danger, it is sometimes infeasible to carry out continuous inspection in
monitoring the test. Alternatively, an interval inspection scheme can be used, where only
the number of failures between two consecutive inspections is recorded. Combining the
concepts of the progressive censoring and the interval censoring, Aggarwala [4] developed
a progressive type-I interval censoring (PIC-I) scheme.

Since Aggarwala [4], many scholars have studied the statistical inference for PIC-I
data under various life distributions by the maximum likelihood method and/or Bayesian
method. Some of them are Xiang and Tse [5], Ng and Wang [6], Chen and Lio [7], Lin and
Lio [8], Singh and Tripathi [9], Lodhi and Tripathi [10], Budhiraja and Pradhan [11], Wu and
Chang [12], and Alotaibi et al. [13]. In addition to statistical inference, many researchers
have been focused on optimally obtaining PIC-I test plans. For more information on this
direction one can refer to, e.g., Wu et al. [14], Lin et al. [15], Lin et al. [16], Singh and
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Tripathi [9], Roy and Pradhan [17], Budhiraja and Pradhan [18], Roy and Pradhan [19], and
Wu et al. [20].

In most of the aforementioned studies on designing PIC-I test schemes, the model
parameters that appear in the design criteria are assumed to be known, usually gained from
previous studies. Designs obtained under these planning values are called locally optimal
designs. If these values are uncertain, which is usually the case, or are incorrectly specified,
then these designs may not be optimal. Therefore, it would be helpful for researchers to
obtain the optimal designs, which are robust against misspecifications of the values of the
model parameters. For the PIC-I life tests, Roy and Pradhan [17,19] proposed to employ
proper prior distributions over the entire parameter space to describe the knowledge
about the parameters. Then the designs obtained were called Bayesian optimal designs.
Unfortunately, we sometimes do not have enough information to construct such prior
distributions. In this case, the minimax method can be used to obtain robust designs.
The resulting design is often referred to as the minimax optimal design. In fact, in the
literature of experimental design, the Bayesian and minimax strategies have been widely
used to overcome the dependency of the optimal design on the unknown parameters (see,
e.g., Chaloner and Verdinelli [21], Atkinson, et al. [22], and Yue and Zhou [23]). However,
in our knowledge, these problems have not been properly addressed when designing the
reliability test.

Previous reviewed studies mainly focused on single design objective, such as estima-
tion of model parameters (e.g., Wu et al. [14]) or the qth quantile of the life distribution
or minimization of the total cost of life testing (e.g., Roy and Pradhan [19]). However,
sometimes researchers prefer to achieve a design that meets multiple objectives at the same
time. This design is called a multiple-objective design, which is robust with respect to
the design objectives. In the accelerated life test (ALT), Pan and Yang [24] proposed a
compound design criterion to obtain a dual-objective optimal design, which could make a
trade-off between the model parameter estimation and the model-based prediction. Bhat-
tacharya et al. [25] gave a new design method based on multi-criteria, taking variance
and cost factors into account in the context of the hybrid censored life-testing experiment.
Though there are some studies on robust designs in reliability life tests for multiple design
objectives, robust optimum designs for PIC-I tests have received little attention in the
literature so far.

In this paper, we study robust optimum designs for PIC-I life tests by using the
Bayesian and minimax strategies to deal with the model parameters dependency problem
and the compound design method to fulfill multiple design objectives. Two robust optimum
design criteria and two algorithms are provided to calculate robust optimum designs when
the experimental cost is taken into account. Our methods can help practitioners have easier
access to robust optimum designs when the model parameters are uncertain and there are
more than one design objective, and can be easily extended to obtain robust designs for
other test schemes.

The rest of this paper is organized as follows. Section 2 introduces the PIC-I test
plan and derives the Fisher information matrix (FIM). Section 3 provides definitions of the
Bayesian compound and the minimax compound optimality criteria for the PIC-I test plans
based on both D-optimality and c-optimality, termed BcD-optimality and McD-optimality,
respectively. Section 4 presents two optimization algorithms, i.e., mixed-integer nonlinear
optimization (MNO) and Particle swarm optimization (PSO), to derive optimal equal
spaced PIC-I test plans and general PIC-I test plans, respectively. Numerical results are
given in Sections 5 and 6 to illustrate the proposed methods. Conclusions and discussions
are made in Section 7.
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2. Preliminaries

Suppose that the lifetime T of a test product follows the Weibull distribution with the
probability density function (pdf)

f (t; η, ν) =
ν

ην
tν−1 exp

{
−
(

t
η

)ν}
, t > 0, η, ν > 0, (1)

and the cumulative distribution function (cdf)

F(t; η, ν) = 1− exp
{
−
(

t
η

)ν}
. (2)

Let Y = log(T). We can convert the Weibull distribution to the extreme value (Gumbel)
distribution given by

f (y; µ, σ) =
1
σ

exp
{

y− µ

σ
− exp

(
y− µ

σ

)}
,−∞ < µ < ∞, σ > 0, (3)

where µ = log η is the location parameter and σ = 1/ν is the scale parameter. The corre-
sponding cdf can be written as

G(y; µ, σ) = 1− exp
{
− exp

(
y− µ

σ

)}
. (4)

Assume that a PIC-I scheme is employed, where all N units are simultaneously placed
on a life test at the beginning of the experiment, and interval inspections are conducted
at time points t1, t2, . . . , tk. At the jth inspection time tj, nj failed units are observed and rj
surviving units are randomly removed from the experiment. Let qj denote the probability
that a unit fails in the jth time interval given that the failure has not occurred in an earlier
time interval, i.e.,

qj = P(yj−1 ≤ Y ≤ yj | Y ≥ yj) =
G(yj)− G(yj−1)

1− G(yj−1)
= 1− exp(hj − hj−1), (5)

where h0 = 0, hj = − exp(zj), j = 2, . . . , k with zj = (yj − µ)/σ and yj = log(tj).
Under the PIC-I test plan, the distribution of the number of failed units nj is bino-

mial, i.e.,
nj | nj−1, . . . , n1, rj−1, . . . , r1 ∼ binomial(mj, qj), (6)

where m1 = N and mj = N −∑
j−1
s=1 ns −∑

j−1
s=1 rs, j = 2, . . . , k is the number of non-removed

surviving units at the beginning of the jth inspection. Note that the number of removal
units rj is a random variable due to the randomness of the variable nj, and its value can be
computed through the predetermined percentages of the remaining survived units pj (with
pk = 1). That is, rj = (mj − nj)pj. All data collected from the PIC-I test plan are denoted by
D = {nj, rj, j = 1, . . . , k}.

Let θ = (µ, σ)T be the vector of the model parameters. Based on the data D and the
cdf given in Equation (4), the likelihood function of θ can be written as

L(θ) =
k

∏
j=1

(
mj
nj

)[
1− exp(hj − hj−1)

]nj
[
exp(hj − hj−1)

]mj−nj .

Then, the corresponding log-likelihood function is

`(θ) =
k

∑
j=1

{
log
(

mj
nj

)
+ nj log

[
1− exp(hj − hj−1)

]
+ (mj − nj)(hj − hj−1)

}
. (7)
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Therefore, the maximum likelihood estimates (MLEs) of the parameters µ and σ can
be obtained by solving the following likelihood equations:

∂`(θ)

∂µ
=

∂`(θ)

∂σ
= 0.

Furthermore, the FIM of the parameters θ can be written as

I(θ) =
(
Iµ2 Iµσ

Iµσ Iσ2

)
, (8)

where

Iµ2 =
1
σ2

k

∑
j=1

E(mj)
(hj − hj−1)

2

1− exp(hj − hj−1)
exp(hj − hj−1),

Iσ2 =
1
σ2

k

∑
j=1

E(mj)
(zjhj − zj−1hj−1)

2

1− exp(hj − hj−1)
exp(hj − hj−1),

Iµσ =
1
σ2

k

∑
j=1

E(mj)
(hj − hj−1)(zjhj − zj−1hj−1)

1− exp(hj − hj−1)
exp(hj − hj−1)

and E(mj) = NSj−1, j = 2, . . . , k. Here, S1 = 1, and Sj−1 = ∏
j−1
s=1(1− qs)(1− ps) is the

survival probability of the test unit until the time point tj−1. Under some mild regularity
conditions, the FIM is approximate to the inverse of the variance-covariance matrix of the
MLE of θ.

3. Robust PIC-I Test Plan
3.1. PIC-I Test Plan

In this section, we investigate the optimal PIC-I test plan with limited cost constraint.
Generally, the PIC-I test plan consists of the total number of test units N, the number of
inspections k, the inspection time points tj, j = 1, . . . , k and the proportions of the removals
at each time point pj, j = 1, . . . , k− 1. For convenience, we denote the PIC-I test plan as ξ,
i.e.,

ξ =
{

N, tj, pj, j = 1, . . . , k, pk = 1
}

.

From the expression of the FIM given in (8), it can be easily concluded that if there is
no limit on the removal proportions pj and if the other conditions are fixed, the optimal
choices of pj(j = 1, . . . , k− 1) are zeros. Some evidences can be found in the work by Roy
and Pradhan [17,19]. However, this is not consistent with the topic discussed in this paper.
To investigate the influence of the removal proportions pj(j = 1, . . . , k) on the optimal PIC-I
test plan, we assume that the scheme of removals at each points is predetermined. Then,
the PIC-I test plan can be re-expressed as

ξ =
{

N, tj; pj, j = 1, . . . , k, pk = 1, N ∈ N+, tj ∈ R+, pj ∈ P
}

, (9)

where N+ is the set of positive integers,R+ is the set of positive natural number, P is the
set of possible values of pj and will be predetermined by the experimenter.

For practical convenience, many studies assume that the inspection time intervals
have equal lengths, say τ. Then, the inspection time points can be re-expressed as
tj = jτ, j = 1, . . . , k, k ∈ K,K = {1, 2, . . . , k�} where k� is the maximum number of inspec-
tions. In addition, the removal proportions at each inspection times can be assumed
constant, i.e., p1 = p2 = . . . = pk−1 = p ∈ P . Therefore, the design (9) can be reduced to

ξ =
{

N, k, τ; p, N ∈ N+, k ∈ K, τ ∈ R+, p ∈ P
}

. (10)
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Since the FIM I(θ) given in (8) depends not only on the parameter vector θ, but also
the design ξ, we denote I(θ) by I(ξ; θ) in what follows.

3.2. D- and c-Optimal Design Criteria

The first design criterion we considered is the D-optimality for estimating the model
parameter vector θ as efficiently as possible. The D-optimal criterion is defined as follows:

ΨD(ξ; θ) = −1
2

log | I(ξ; θ) |= −1
2

log(Iµ2Iσ2 − I2
µσ), (11)

where Iµ2 , Iσ2 , Iµσ are given in Equation (8).
Let Ξ be the set consisting of all possible designs ξ in the form of (9) or (10). The de-

sign ξ∗D, which satisfies ξ∗D = minξ∈Ξ ΨD(ξ; θ) for given θ is called a D-optimal design.
The rationality of taking use of this design criterion can be found in Atkinson et al. [22] and
has been discussed by many authors (e.g., Wu et al. [14], and Roy and Pradhan [17]).

In addition to the estimation of the model parameters µ and σ, an experimenter may
also be interested in estimating the qth quantile lifetime of the units (Roy and Pradhan [19]).
Let yq be the logarithm of the qth quantile lifetime of the units, and cq = (1, cq)T =
(1, log(− log(1− q)))T . Under the distribution (4), then yq can be written as yq = cT

q θ. By
the invariance property of the MLE and the delta method, the distribution of the estimator
ŷq is approximately normal with mean yq and variance cT

q I−1(ξ; θ)cq. To efficiently estimate
yq, the following c-optimality criterion is usually adopted:

Ψc(ξ; θ) = log
[
cT

q I−1(ξ; θ)cq

]
= log

[
(Iµ2 − 2cqIµσ + c2

qIσ2)/(Iµ2Iσ2 − I2
µσ)
]
. (12)

A design ξ∗c which minimizes Ψc(ξ; θ) for given θ and q over the design space Ξ is
called a c-optimal design.

Remark 1. The design criterion given in Equation (12) depends on the setting of q, which will
be determined based on some practical consideration. To overcome the dependence, a nonnegative
weight function W(q) satisfying

∫ 1
0 W(q)dq = 1 can be used following the idea of Kundu [26].

Then, the design criterion will be

Ψc(ξ; θ) = log
[∫ 1

0
(Iµ2 − 2cqIµσ + c2

qIσ2)/(Iµ2Iσ2 − I2
µσ)W(q)dq

]
.

To compare the optimal PIC-I test plan ξ∗L with another arbitrary test plan ξ under a
given L-optimality criterion (L ∈ {D, c}), we define the following efficiency function

EffL(ξL; ·) = exp(ΨL(ξ
∗
L; ·)−ΨL(ξ; ·)). (13)

3.3. Bayesian Compound Design Criterion

Note that the design criteria ΨD(ξ; θ) and Ψc(ξ; θ) depend not only on the design
ξ, but also on the the parameters θ. Optimal designs obtained under a perfect guess
(planning) values θt are called locally optimal designs (Chernoff [27]). Numerical results
given in Wu et al. [14] indicate that D-optimal test plans depend on the setting of the
parameters µ and σ. To reduce the risks caused by misspecifying the planning values θt,
many approaches, such as the Bayesian, minimax, adaptive, or sequential approaches have
been proposed in the literature of optimal experimental designs, see Atkinson et al. [22] for
details. However, planning robust test schemes has rarely been found in a reliability study.
Therefore, in the following part of this subsection, we apply robust design techniques
to obtain robust PIC-I test plans. To be consistent with most experiments in practical
applications, we confine ourselves on the static robust design methods, including the
Bayesian and the minimax approaches to obtain robust test plans against the uncertainty of
the parameters θ.
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In addition, even when all parameters in the D-optimality and c-optimality criteria
have the same settings, the D-optimal design ξ∗D and the c-optimal design ξ∗c are not
necessarily identical, see the numerical results listed in Table 1. To get a good test plan
that satisfies many design objectives, the compound design criterion (Cook and Wong [28])
should be a good choice. It can ensure that the optimal design has good performances for
different design purposes (Pan and Yang [24]). Therefore, considering the uncertainty of
the parameters in the model and two possible design objectives, we propose the Bayesian
compound optimality criterion (termed BcD-optimality), which is given as follows:

ΨBcD(ξ; κ) = κ
∫

Θ
ΨD(ξ; θ)p(θ)dθ+ (1− κ)

∫
Θ

Ψc(ξ; θ)p(θ)dθ, (14)

where p(θ) is the prior over the set Θ, which will be specified later, and κ is the weight
parameter reflecting the relative importance between the D-optimality and the c-optimality.
A design, ξ∗BcD, which minimizes ΨBcD(ξ; κ) over the design space Ξ is called a BcD-optimal
design. In this paper, we assume that the prior of µ is a censored normal distribution over
the interval [a, b], and its pdf is

π(µ; µ0, σ2
0 ) =

f (µ; µ0, σ2
0 )

Φ(b; µ0, σ2
0 )−Φ(a; µ0, σ2

0 )
, a ≤ µ ≤ b, σ0 > 0, (15)

where f (µ; µ0, σ2
0 ) and Φ(·; µ0, σ0) are the pdf and cdf of the normal distribution N(µ0, σ2

0 )
and µ0, σ2

0 are the hyperparameters predetermined by the experimenter. The prior of the
scale parameter σ is assumed to be a censored inverse Γ(ν0, γ0) over the interval [c, d] with
the pdf

π(σ; ν0, γ0) =
f (σ; ν0, γ0)

Γ−1(d; ν0, γ0)− Γ−1(c; ν0, γ0)
,

f (σ; ν0, γ0) =
Γ(ν0)

γν0
0

σ−(ν0+1) exp
(
−γ0

σ

)
, ν0, γ0 > 0,

where f (·; ν0, γ0) and Γ−1(·; ν0, γ0) are the pdf and cdf of the inverse Gamma distribution
Γ−1(ν0, γ0), respectively, and ν0, γ0 are the hyperparameters predetermined by the experi-
menter. Under the assumption of the priors of µ and σ being independent, the joint prior
density of µ and σ is given as

π(µ, σ) = π(µ; µ0, σ2
0 ) · π(σ; ν0, γ0), (µ, σ) ∈ Θ = [a, b]× [c, d].

In addition, when the weight κ equals 0 (or 1), then the BcD-optimal design ξ∗BcD will
reduce to Bayesian c (or D)-optimal design and be denoted as ξ∗Bc (or ξ∗BD). In the special
case that the prior has only one support point θt, the BcD-optimal design becomes the
locally cD-optimal design, which can be denoted as ξ∗cD and the corresponding design
criterion is

ΨcD(ξ; κ, θt) = κΨD(ξ; θt) + (1− κ)Ψc(ξ; θt). (16)

To deal with the integration in the Bayesian optimality criterion, we can draw Q
samples θl from the joint prior distribution π(µ, σ) and use the MCMC method to obtain
the approximation of the Bayesian optimality criterion (14) (Roy and Pradhan [17,19]), i.e.,

ΨBcD(ξ; κ) =
1
Q

Q

∑
l=1

{
−κ

2
log | I(ξ; θl) | +(1− κ) log

[
cT

q I−1(ξ; θl)cq

]}
.

However, the computational burden for this approximation will increase rapidly with
the sample size Q. To reduce computational burden, Foo and Duffull [29] proposed a
hypercube D-optimality criterion to optimize the logarithm of the product of the normal-
ized determinants of FIM over the set of their model parameters, which consists of the
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combinations of the 2.5th and 97.5th percentiles of the priors distributions. In this paper,
we utilize a similar idea to alleviate the computational burden, but more percentiles of the
prior parameter distribution are used to ensure the accuracy of approximation. We denote
the set of all combinations of these percentiles by ΘQ. Then

ΨBcD(ξ; κ) =
1
Q ∑

θl∈ΘQ

{
−κ

2
log | I(ξ; θl) | +(1− κ) log

[
cT

q I−1(ξ; θl)cq

]}
. (17)

3.4. Minimax Compound PIC-I Test Plan

Another popular robust design approach is the minimax method, which aims at
finding the design that minimizes the maximum values of the compound optimality
criterion over the parameters space ΘQ. Similar to the Bayesian optimality criterion,
the minimax optimality criterion (termed McD-optimality) is defined as follows:

ΨMcD(ξ; ω) = ω max
θ∈ΘQ

ΨD(ξ; θ) + (1−ω) max
θ∈ΘQ

Ψc(ξ; θ), (18)

where ω is the weight parameter similar as κ. The design ξ∗McD minimizing ΨMcD(ξ; ω)
over the design space Ξ is called a McD-optimal design. In addition, when the weight ω
equals 0 (or 1), then the McD-optimal design ξ∗McD will reduce to the minimax c-optimal
design and be denoted as ξ∗Mc (or ξ∗MD).

3.5. Cost Constraint

To make the test plan be more practical for experimenters, we take the budget of
the experiment into account at the planning stage. For the general design ξ defined in
Equation (9), we assume that there is a restriction on the total cost

C1(ξ) = NCs + kCi + tkCo ≤ C, (19)

where Cs is the cost of one test unit, Ci is the cost of one inspection, Co is the operation cost
of one unit time, and C is the total cost. For more details one can refer to Wu et al. [14].
Furthermore, for the special test plan ξ defined in (10), the cost constraint is defined
as follows:

C2(ξ) = NCs + kCi + kτCo ≤ C. (20)

4. Algorithms
4.1. Mixed-Integer Nonlinear Optimization Algorithm

In this subsection, we give an algorithm inspired by Wu et al. [14] to search for
the robust PIC-I test plan with equal inspection intervals of length τ and the constant
removal proportion p, except at the end of the experiment. The design is given in (10) and
the cost constraint is presented in (20). For clarity, we rewrite the robust design criteria
ΨBcD(ξ; κ) and ΨMcD(ξ; ω) by ΨBcD(N, k, τ; κ) and ΨMcD(N, k, τ; ω), respectively. Then,
the optimization problem can be expressed as

min ΨBcD(N, k, τ; κ) or ΨMcD(N, k, τ; ω)

s.t. C2(ξ) = NCs + kCi + kτCo ≤ C, (21)

N ∈ N+, τ ∈ R+, k ∈ K.

Since C2(ξ) ≤ C, we have N ≤ (C− (kCi + kτCo))/Cs ≤ (C− Ci)/Cs. Thus, the up-
per bound of N is obtained. Because the D-optimality and c-optimality are decreasing
functions of N, we substitute N by its upper bound (C− (kCi + kτCo))/Cs in the design
criteria. Furthermore, for a given value of N, we have k ≤ (C− NCs)/Ci ≤ (C− Cs)/Ci.
Then the upper bound of k is min{(C − Cs)/Ci, k�}. Similarly, we can obtain the upper
bound of τ, τ ≤ (C− Cs − kCi)/(kCo) for a given k. Therefore, the algorithm to solve the
optimization problem (21) is given in Algorithm 1.
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Algorithm 1 MNO Algorithm.

1: Set the values of the cost parameters Cs, Ci, Co, C; the maximum number of inspection
k�; the removal proportion p; the region of the model related parameters Θ; the hyper-
paramters in the priors for Bayesian optimality criterion; the weight parameter κ or
ω.

2: Compute the upper bound of the number of inspections

k̃ = min
{[

C− Cs

Ci

]
, k�
}

,

where [y] denotes the greatest integer less than or equal to y.
3: Set k = 2.
4: Calculate the upper bound of the length of inspection interval

τk =
C− Cs − kCi

kCo
.

5: For a given k, by the optimization method, such as the PSO algorithm or the grid
method, if the minimum length of the inspection interval is to be considered due to
practical constraints, find the solution τ∗k to the problem

τ∗k = arg min
τ∈[0,τk ]

ΨBcD(N(k, τ), k, τ; κ) or ΨMcD(N(k, τ), k, τ; ω),

where N(k, τ) = (C− (kCi + kτCo))/Cs.
6: Set k = k + 1. If k ≤ k̃ go to Step 4, else go to Step 7.
7: Find the optimal design ξ∗ = {N∗, k∗, τ∗} such that

ΨBcD(N∗, k∗, τ∗; κ) = min
1≤k≤k̃

ΨBcD(N(k, τ∗k ), k, τ∗k ; κ) or

ΨMcD(ξ
∗) = min

1≤k≤k̃
ΨMcD(N(k, τ∗k ), k, τ∗k ; ω).

8: Output the optimal test plan ξ∗ = {N∗, k∗, τ∗}.

4.2. Particle Swarm Optimization Algorithm

In Section 4.1, we have considered a special case of the PIC-I test plan and give an
algorithm to obtain the robust test plan. However, the procedure depends on the cost
function and the assumption of equal length of inspection interval and the same removal
proportion. In this subsection, we give an algorithm to solve the general design problem
defined as follows:

min ΨBcD(ξ; κ) or ΨMcD(ξ; ω)

s.t. C1(ξ) ≤ C, (22)

N ∈ N+, pi ∈ P , 0 ≤ t1 ≤ t2 ≤ . . . ≤ tk, ti ∈ (0, tmax).

The concrete form of the design ξ has been given in (9). From the definition of the
cost function C1(ξ) in (19), we have N ≤ (C− kCi − tkCo)/Cs. The information given in (8)
implies that more test units will provide more information. Therefore, we substitute N in
(8) by the supreme value (C− kCi − tkCo)/Cs to solve the optimization problem (22). Then,
the optimality criterion ΨBcD(ξ) or ΨMcD(ξ) is a function of pi, ti, which are all continuous
variables. To solve this continuous optimization problem with constraints, we use the
PSO algorithm, which is a population based stochastic optimization method inspired by
the social behavior of birds flocking or fish schooling. It was introduced by Eberhart
and Kennedy [30], improved by many authors to deal with all kinds of optimization
problems. It has shown high efficiency in finding optimal points in various disciplines



Symmetry 2022, 14, 1047 9 of 21

(Poli et al. [31], Ruidas et al. [32,33]). The PSO algorithm is derivative-free. There are
few tuning parameters required of the algorithm and the knowledge of good solutions
is retained by all particles, and particles in the swarm share information between, which
makes the algorithm easily escape from local minima and converge at a fast rate. Recently,
different versions of PSO have been used to solve all kinds of optimal design problems (see
Chen et al. [34], Zhou et al. [35], and Liu et al. [36]). In the following we give a summary of
the PSO algorithm for completeness. For the sake of brevity and clarity, we vectorize the
design ξ and denote it by X = [t1, t2, . . . , tk], and by f (X) denote the optimality criterion
function ΨBcD(ξ; κ) or ΨMcD(ξ, ω). The optimization problem (22) is rewritten as

min f (X)

s.t. C2(X)− C ≤ 0,

0 ≤ t1 ≤ t2 ≤ . . . ≤ tk, ti ∈ (0, tmax), 0 < k < k�. (23)

Here, ui, i = 1, 2 are real random numbers between 0 and 1, Pi is the best candidate
solution found for the ith particle, Pg is the best candidate solution for the entire population
particles, and α, αi, i = 1, 2 are the user defined coefficients which respectively control the
inertia, the exploitive, and the explorative attributes of the particle motion.

5. Numerical Example

In this section, we present a numerical example to illustrate the applications of the
proposed robust design methods. As in the study by Wu et al. [14], we use the algorithm
given by Aggarwala [4] to generate data with n = 20, k = 5, τ = 2, η = 5, ν = 2 and
the predetermined removed proportions (p1, . . . , p5) = (0, 0.2, 0.3, 0.4, 1). Then the cor-
responding parameters in model (4) become µ = log 5, σ = 1/2. The generated data are
presented in Table 2. Based on the data, we easily obtain the MLEs of µ and σ, µ̂ = 1.8454
and σ̂ = 0.5091, and their standard errors sµ̂ = 0.1329 and sσ̂ = 0.1157, respectively.
To use the Bayesian or minimiax design criteria, we assume that the range of the values
of µ and σ are [a, b] = [µ̂− sµ̂, µ̂ + sµ̂] and [c, d] = [σ̂ − sσ̂, σ̂ + sσ̂], respectively. The hy-
perparameters in the censored normal distribution N(µ0, σ2

0 ) are µ0 = 1.8 and σ0 = 0.2,
respectively. Similarly, the hyperparameters in the censored inverse distribution Γ−1(ν0, γ0)
are assumed to be ν0 = 27 and γ0 = 13, respectively, which implies that the mean of
Γ−1(ν0, γ0) is 0.5 and the variance is 0.01. The cost parameters are assumed as follows:
Cs = $80/unit, Ci = $3, Co = $2.5/10 h, and C = $6000. In our numerical results, the set
ΘQ = {(µith, σjth), i, j = 0, 1, . . . , 10}, where µith is the ith quantile of π(µ; µ0, σ2

0 ) and
σjth is the jth quantile of π(σ; ν0, γ0), which are used to obtain the approximation of the
BcD-optimality criterion in (14) or to calculate the McD-optimality criterion in (18). We set
q = 0.1 in the BcD- and McD-optimal design criteria. Since the McD-optimal PIC-I test
plans are very similar to their corresponding BcD-optimal ones, then we do not show the
numerical McD-optimal PIC-I test plans in what follows to save space. We will give some
concluding remarks in Section 6. The R codes, written to obtain the results in this paper,
can be obtained from the authors upon request.

5.1. Locally Optimal PIC-I Test Plans

By Algorithm 1, we first compute the locally D- and c-optimal equal spaced (ES) PIC-I
test plans (denoted as ξ∗D and ξ∗c , respectively) at the planning values µ = log 5 and σ = 1/2
when the removal proportions are p = 0.1 and p = 0.3, respectively.
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p = 0.1 : ξ∗D : N = 74, k = 7, τ = 1.9261, ΨD = −5.6620,

EffD(ξ
∗
BD) = 0.9834, EffD(ξ

∗
MD) = 0.9735,

ξ∗c : N = 74, k = 5, τ = 1.7235, Ψc = −3.5486,

Effc(ξ
∗
Bc) = 0.9872, Effc(ξ

∗
Mc) = 0.9911. (24)

p = 0.3 : ξ∗D : N = 74, k = 5, τ = 2.7647, ΨD = −5.3891,

EffD(ξ
∗
BD) = 0.9609, EffD(ξ

∗
MD) = 0.9485,

ξ∗c : N = 74, k = 3, τ = 2.6525, Ψc = −3.4414,

Effc(ξ
∗
Bc) = 0.9622, Effc(ξ

∗
Mc) = 0.9824. (25)

In Equations (24) and (25), we also present the efficiencies of the Bayesian and minimax
D- and c-optimal test plans with Θ = Θ1, which will be defined later. These efficiencies
indicate that these robust designs perform well.

To assess the influence of the settings of the parameters µ and σ and the design criteria,
the optimal PIC-I test plans under different parameters settings and removal proportions
for different design criteria are computed, which are shown in Table 1. Comparing with
the optimal test plans presented in Equations (24) and (25), we find that the settings of
the planning values will have a great impact on the final designs, especially when the
uncertainty of µ and σ encountered in the design stage becomes great—so do the removal
proportions and design criteria. The efficiencies of the c- and D-optimal designs relative to
the D- and c-optimal designs are also shown in Table 1. These efficiencies imply that the
design purposes will have an effect on the finial designs. In addition, for some planning
values, the c-optimal test plans can be very inefficient, whereas the D-optimal test plans
perform well under the c-optimality in all cases considered here.

Table 1. Locally optimal PIC-I test plans for different removal proportions p, planning values of θ,
and design criteria.

p µ σ
D-Optimality c-Optimality

N k τ kτ ΨD EffD(ξ∗c ) N k τ kτ Ψc Effc(ξ∗D)

0.1 µ̂− sµ̂ σ̂− sσ̂ 74 6 2.0121 12.0724 −6.1284 0.9079 74 4 1.9860 7.9439 −4.0028 0.9975
0.1 µ̂− sµ̂ σ̂ + sσ̂ 74 9 2.1483 19.3346 −5.1970 0.9272 74 6 1.7824 10.6944 −3.1115 0.9882
0.1 µ̂ + sµ̂ σ̂− sσ̂ 74 6 2.6201 15.7203 −6.1268 0.9076 74 4 2.5874 10.3497 −4.0018 0.9970
0.1 µ̂ + sµ̂ σ̂ + sσ̂ 73 9 2.7913 25.1220 −5.1945 0.8753 74 5 2.4145 12.0724 −3.1102 0.9873
0.3 µ̂− sµ̂ σ̂− sσ̂ 74 4 3.0280 12.1120 −5.8608 0.9886 74 3 3.0755 9.2264 −3.8758 0.9981
0.3 µ̂− sµ̂ σ̂ + sσ̂ 74 6 3.1140 18.6839 −4.9051 0.9493 74 4 2.6947 10.7789 −3.0115 0.9835
0.3 µ̂ + sµ̂ σ̂− sσ̂ 74 4 3.9453 15.7813 −5.8592 0.9888 74 3 4.0074 12.0222 −3.8746 0.9977
0.3 µ̂ + sµ̂ σ̂ + sσ̂ 74 6 4.0537 24.3223 −4.9027 0.9499 74 4 3.5113 14.0454 −3.0101 0.9828

0.1 µ̂− 2sµ̂ σ̂− 2sσ̂ 74 6 1.4656 8.7933 −6.7534 0.9369 74 4 1.5798 6.3191 −4.6350 0.9969
0.1 µ̂− 2sµ̂ σ̂ + 2sσ̂ 73 11 1.8835 20.7189 −4.8260 0.8784 74 6 1.4889 8.9334 −2.7718 0.9797
0.1 µ̂ + 2sµ̂ σ̂− 2sσ̂ 74 6 2.4859 14.9152 −6.7508 0.9361 74 4 2.6829 10.7315 −4.6332 0.9961
0.1 µ̂ + 2sµ̂ σ̂ + 2sσ̂ 73 10 3.2318 32.3185 −4.8203 0.8794 74 6 2.5223 15.1340 −2.7691 0.9770
0.3 µ̂− 2sµ̂ σ̂− 2sσ̂ 74 3 3.1648 9.4943 −6.4923 0.3398 74 2 4.2754 8.5508 −4.4716 0.9275
0.3 µ̂− 2sµ̂ σ̂ + 2sσ̂ 74 7 2.7790 19.4529 −4.5149 0.9059 74 4 2.2228 8.8912 −2.6749 0.9630
0.3 µ̂ + 2sµ̂ σ̂− 2sσ̂ 74 2 5.4124 10.8248 −6.4900 0.3398 74 2 7.2750 14.5501 −4.4691 0.9287
0.3 µ̂ + 2sµ̂ σ̂ + 2sσ̂ 73 6 4.7729 28.6373 −4.5095 0.9078 74 4 3.7753 15.1014 −2.6723 0.9595

Table 2. Progressively type-I interval-censored samples.

i 1 2 3 4 5

ni 2 4 6 2 1
ri 0 2 1 1 1
pi 0 0.2 0.3 0.4 1

5.2. Bayesian Optimal PIC-I Test Plans

To obtain optimal PIC-I test plans that fulfill multiple design purposes, we compute
cD-optimal compound designs for different weights κ, planning values θ, and removal
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proportions p. Some of the results are given in Table 3. The designs with κ = 0 and
κ = 1 correspond to locally c- and D-optimal designs, respectively. From the table, we
find that the optimal number of units remains constant, which is determined by the cost
parameters, as we will discuss later. The results in Table 3 show us that cD-optimal designs
depend on the planning values of θ, the weight κ, and the removal proportion p. With the
increase of the removal proportion p, the number of inspections will decrease, but the
length of the inspection interval will increase. The duration of the experiment will increase
when the weight approaches 1. In addition, efficiencies of the cD-optimal designs with
different κ to the locally D- and c-optimal designs imply that the cD-optimal designs can
perform very well in most cases. However, in some special cases, such as p = 0.3 and
µ = µ̂ − 2sµ̂, σ = σ̂ − 2sσ̂, the cD-optimal compound designs are very sensitive to the
change of the weight parameter κ. Furthermore, with the increase of κ, the optimal number
of inspections will increase or remain constant, and the duration for the design with κ = 1
is always larger than that of the design with κ = 0. To choose a proper value of the
weight κ, we suggest using the efficiency lines plot. Figure 1 gives an illustrating example
where efficiencies of the cD-optimal compound designs for different κ to the locally D- and
c-optimal designs are calculated and presented in a triangle or circle. Then, the horizontal
coordinate of the intersection point of these two lines may be the best choice of κ.
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Figure 1. Efficiency lines of cD-optimal compound designs for different weights κ when the planning
values are µ = µ̂− 2sµ̂, σ = σ̂− 2sσ̂ and the removal proportion is p = 0.3.

In Table 4, we show BcD-optimal PIC-I test plans for different weights and removal
proportions when the sets of the planning values are Θ1 = [µ̂− sµ̂, µ̂ + sµ̂]× [σ̂− sσ̂, σ̂ + sσ̂]
and Θ2 = [µ̂− 2sµ̂, µ̂ + 2sµ̂]× [σ̂− 2sσ̂, σ̂ + 2sσ̂], respectively. Comparing the designs with
p = 0.1 and p = 0.3, we find that when the removal proportion increases, the number
of inspections will decrease and the lengths of the inspection time intervals will increase.
Designs with Θ = Θ1 and Θ = Θ2 indicate that when the uncertainty of the planning
values increase, the numbers of inspections tend to increase or remain constant, the lengths
of the inspection intervals tend to decrease, and the durations of the optimal designs
will become longer for most cases. Furthermore, we also compute the efficiencies of the
BcD-optimal designs relative to the BD-optimal designs (κ = 1) and to the Bc-optimal
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designs (κ = 0) by the formula given in (13), in which BD- and Bc-optimality criteria
are considered, respectively and then presented them in columns 8 (or 15) and 9 (or 16),
respectively. By these efficiencies, the robust weights can be determined by the plot of
efficiency lines, similar as we have shown in the cD-optimal compound designs.

Table 3. cD-optimal PIC-I test plans for different weights κ, different removal proportions p, and the
different planning values θ.

p κ
µ = log 5, σ = 0.5 µ = µ̂ − 2sµ̂ , σ = σ̂ − 2sσ̂

N k τ kτ ΨcD EffD(ξ∗cD) Effc(ξ∗cD) N k τ kτ ΨcD EffD(ξ∗cD) Effc(ξ∗cD)

0.1 0.0 74 5 1.7235 8.6174 −3.5486 0.9359 1.0000 74 4 1.5798 6.3191 −4.6350 0.9369 1.0000
0.1 74 7 1.7453 12.2173 −3.7574 0.9961 0.9976 74 5 1.5582 7.7908 −4.8458 0.9981 0.9990
0.2 74 7 1.7762 12.4334 −3.9686 0.9974 0.9973 74 5 1.5587 7.7933 −5.0575 0.9981 0.9990
0.3 74 7 1.8025 12.6172 −4.1800 0.9983 0.9971 74 5 1.5590 7.7951 −5.2693 0.9981 0.9990
0.4 74 7 1.8254 12.7781 −4.3915 0.9989 0.9967 74 5 1.5593 7.7964 −5.4810 0.9981 0.9990
0.5 74 7 1.8460 12.9219 −4.6031 0.9993 0.9964 74 6 1.5021 9.0127 −5.6929 0.9998 0.9975
0.6 74 7 1.8646 13.0523 −4.8148 0.9996 0.9960 74 6 1.4936 8.9619 −5.9049 0.9999 0.9974
0.7 74 7 1.8817 13.1720 −5.0265 0.9998 0.9957 74 6 1.4858 8.9146 −6.1170 0.9999 0.9973
0.8 74 7 1.8975 13.2828 −5.2383 0.9999 0.9953 74 6 1.4785 8.8709 −6.3291 1.0000 0.9972
0.9 74 7 1.9123 13.3858 −5.4501 1.0000 0.9949 74 6 1.4717 8.8305 −6.5413 1.0000 0.9970
1.0 74 7 1.9261 13.4827 −5.6620 1.0000 0.9946 74 6 1.4656 8.7935 −6.7534 1.0000 0.9969

0.3 0.0 74 3 2.6524 7.9573 −3.4414 0.9312 1.0000 74 2 4.2754 8.5508 −4.4716 0.3398 1.0000
0.1 74 4 2.6559 10.6235 −3.6342 0.9932 0.9986 74 3 2.5149 7.5447 −4.6388 0.9246 0.9704
0.2 74 4 2.6845 10.7380 −3.8285 0.9945 0.9984 74 3 2.4851 7.4553 −4.8361 0.9262 0.9701
0.3 74 5 2.6693 13.3467 −4.0233 0.9992 0.9969 74 3 2.4346 7.3038 −5.0338 0.9295 0.9689
0.4 74 5 2.6839 13.4197 −4.2183 0.9994 0.9968 74 3 3.0484 9.1453 −5.2371 0.9920 0.9361
0.5 74 5 2.6982 13.4909 −4.4134 0.9996 0.9967 74 3 3.0973 9.2918 −5.4455 0.9972 0.9323
0.6 74 5 2.7121 13.5604 −4.6084 0.9998 0.9965 74 3 3.1230 9.3690 −5.6545 0.9989 0.9304
0.7 74 5 2.7257 13.6285 −4.8036 0.9999 0.9963 74 3 3.1392 9.4175 −5.8638 0.9996 0.9292
0.8 74 5 2.7390 13.6950 −4.9987 0.9999 0.9960 74 3 3.1503 9.4510 −6.0732 0.9999 0.9284
0.9 74 5 2.7520 13.7600 −5.1939 1.0000 0.9958 74 3 3.1585 9.4755 −6.2827 1.0000 0.9279
1.0 74 5 2.7648 13.8238 −5.3891 1.0000 0.9955 74 3 3.1648 9.4943 −6.4923 1.0000 0.9275

Table 4. BcD-optimal PIC-I test plans for different weights κ and different removal proportions p
when the sets of the planning values are Θ = Θ1 and Θ = Θ2 , respectively.

p κ
Θ1 Θ2

N k τ kτ ΨBcD EffBD(ξ∗BcD) EffBc(ξ∗BcD) N k τ kτ ΨBcD EffBD(ξ∗BcD) EffBc(ξ∗BcD)

0.1 0.0 74 5 2.1731 10.8654 −3.5759 0.9360 1.0000 74 6 2.0791 12.4747 −3.6117 0.9673 1.0000
0.1 74 7 2.1752 15.2266 −3.7842 0.9942 0.9977 74 7 2.1093 14.7654 −3.8200 0.9894 0.9989
0.2 74 7 2.2187 15.5306 −3.9950 0.9959 0.9974 74 8 2.1187 16.9493 −4.0297 0.9966 0.9976
0.3 74 7 2.2559 15.7910 −4.2059 0.9970 0.9970 74 8 2.1503 17.2027 −4.2399 0.9975 0.9973
0.4 74 7 2.2885 16.0192 −4.4169 0.9978 0.9966 74 8 2.1789 17.4312 −4.4503 0.9981 0.9969
0.5 74 8 2.2654 18.1234 −4.6283 0.9994 0.9955 74 8 2.2048 17.6381 −4.6607 0.9986 0.9965
0.6 74 8 2.2880 18.3039 −4.8397 0.9996 0.9952 74 9 2.1921 19.7287 −4.8714 0.9996 0.9953
0.7 74 8 2.3091 18.4726 −5.0511 0.9998 0.9949 74 9 2.2116 19.9047 −5.0821 0.9998 0.9950
0.8 74 8 2.3289 18.6311 −5.2626 0.9999 0.9945 74 9 2.2299 20.0691 −5.2929 0.9999 0.9947
0.9 74 8 2.3476 18.7806 −5.4742 1.0000 0.9942 74 9 2.2470 20.2229 −5.5038 1.0000 0.9944
1.0 74 8 2.3653 18.9221 −5.6858 1.0000 0.9938 74 9 2.2630 20.3672 −5.7146 1.0000 0.9941

0.3 0.0 74 3 3.3461 10.0384 −3.4621 0.9323 1.0000 74 4 3.1924 12.7695 −3.4840 0.9817 1.0000
0.1 74 4 3.3257 13.3029 −3.6553 0.9906 0.9994 74 5 3.2009 16.0044 −3.6769 0.9960 0.9987
0.2 74 5 3.3230 16.6148 −3.8494 0.9986 0.9976 74 5 3.2300 16.1501 −3.8712 0.9969 0.9986
0.3 74 5 3.3438 16.7190 −4.0442 0.9990 0.9974 74 5 3.2584 16.2922 −4.0656 0.9976 0.9983
0.4 74 5 3.3641 16.8204 −4.2392 0.9993 0.9973 74 5 3.2860 16.4299 −4.2601 0.9982 0.9980
0.5 74 5 3.3838 16.9191 −4.4341 0.9995 0.9971 74 5 3.3126 16.5628 −4.4547 0.9987 0.9976
0.6 74 5 3.4031 17.0154 −4.6291 0.9997 0.9969 74 5 3.3381 16.6903 −4.6494 0.9990 0.9972
0.7 74 5 3.4219 17.1094 −4.8242 0.9998 0.9966 74 5 3.3624 16.8121 −4.8441 0.9993 0.9967
0.8 74 5 3.4403 17.2013 −5.0193 0.9999 0.9963 74 6 3.3533 20.1196 −5.0391 0.9999 0.9950
0.9 74 5 3.4582 17.2911 −5.2144 1.0000 0.9960 74 6 3.3739 20.2431 −5.2341 1.0000 0.9946
1.0 74 5 3.4758 17.3789 −5.4096 1.0000 0.9957 74 6 3.3936 20.3614 −5.4292 1.0000 0.9941

5.3. Influence of the Cost Parameters

In order to investigate the influence of the cost parameters on the final robust optimal
PIC-I test plans, we change the cost parameters over the sets Cr ∈ {4000, 6000, 8000},
Cs ∈ {70, 80, 90}, Ci ∈ {2, 3, 5}, Co ∈ {1, 2.5, 4} and compute the optimal test plans using
Algorithm 1. The results for BcD-optimal designs with p = 0.3 are presented in Table 5.
The ranges of the planning values are Θ = Θ1. It is observed from Table 5 that the number
of units will increase with an increase of the budget C, but decrease with the increase of the
cost of one test unit Cs. The test plans are insensitive to the values of the cost parameter of
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one inspection Ci. However, the number of inspections or the duration of the experiment
will decrease or remain constant with the increase of the cost operation Co. Under different
cost parameters, we also list the efficiencies of the BcD-optimal designs to the locally
optimal design with the planning values µ = log 5 and σ = 0.5. These efficiencies indicate
that the performances of the robust BcD-optimal designs are actually quite insensitive to
the cost parameters.

Table 5. BcD-optimal PIC-I test plans for different cost parameters C, Cs, Ci, Co and weight parameters
κ/ω when the removal proportion is p = 0.3 and Θ = Θ1.

κ C Cs Ci Co N k τ kτ ΨBcD EffD(ξ∗BcD) Effc(ξ∗BcD)

0 4000 80 3 2.5 49 3 3.3415 10.0244 −3.0538 0.9924 0.9962
6000 74 3 3.3461 10.0384 −3.4621 0.9917 0.9963
8000 99 3 3.3485 10.0454 −3.7512 0.9913 0.9963
6000 70 3 2.5 85 3 3.3461 10.0384 −3.5956 0.9917 0.9963

80 74 3 3.3461 10.0384 −3.4621 0.9917 0.9963
90 66 3 3.3461 10.0384 −3.3443 0.9917 0.9963

6000 80 2 2.5 74 3 3.3461 10.0384 −3.4626 0.9915 0.9963
3 74 3 3.3461 10.0384 −3.4621 0.9917 0.9963
5 74 3 3.3461 10.0384 −3.4611 0.9920 0.9963

6000 80 3 1.0 74 4 3.2950 13.1801 −3.4649 0.9956 0.9966
2.5 74 3 3.3461 10.0384 −3.4621 0.9917 0.9963
4.0 74 3 3.3405 10.0216 −3.4596 0.9923 0.9962

0.5 4000 80 3 2.5 49 5 3.3742 16.8709 −4.0238 0.9892 0.9896
6000 74 5 3.3838 16.9191 −4.4341 0.9900 0.9914
8000 99 5 3.3886 16.9432 −4.7242 0.9904 0.9923
6000 70 3 2.5 84 5 3.3838 16.9191 −4.5677 0.9900 0.9914

80 74 5 3.3838 16.9191 −4.4341 0.9900 0.9914
90 66 5 3.3838 16.9191 −4.3164 0.9900 0.9914

6000 80 2 2.5 74 5 3.3838 16.9192 −4.4350 0.9902 0.9917
3 74 5 3.3838 16.9191 −4.4341 0.9900 0.9914
5 74 5 3.3838 16.9190 −4.4325 0.9897 0.9907

6000 80 3 1.0 74 5 3.3953 16.9767 −4.4384 0.9907 0.9930
2.5 74 5 3.3838 16.9191 −4.4341 0.9900 0.9914
4.0 73 5 3.3723 16.8615 −4.4299 0.9893 0.9898

1 4000 80 3 2.5 49 5 3.4664 17.3321 −4.9992 0.9847 0.9864
6000 74 5 3.4758 17.3789 −5.4096 0.9856 0.9883
8000 99 5 3.4805 17.4023 −5.6997 0.9860 0.9892
6000 70 3 2.5 84 5 3.4758 17.3789 −5.5431 0.9856 0.9883

80 74 5 3.4758 17.3789 −5.4096 0.9856 0.9883
90 66 5 3.4758 17.3789 −5.2918 0.9856 0.9883

6000 80 2 2.5 74 5 3.4758 17.3790 −5.4104 0.9858 0.9886
3 74 5 3.4758 17.3789 −5.4096 0.9856 0.9883
5 74 5 3.4758 17.3788 −5.4079 0.9853 0.9876

6000 80 3 1.0 74 5 3.4870 17.4348 −5.4140 0.9863 0.9899
2.5 74 5 3.4758 17.3789 −5.4096 0.9856 0.9883
4.0 73 5 3.4646 17.3229 −5.4052 0.9849 0.9867

5.4. Optimal General PIC-I Test Plans

In this subsection, we consider the solution to the general problem given in (22).
The model and values of the model parameters are the same as those described in the
previous subsections. We use the PSO algorithm (Algorithm 2) to compute all general PIC-I
test plans. Noting from the results in the previous tables that lengths of the inspection
intervals are no more than 5, we then limit the lengths of the inspection intervals to the range
of 0 to 10 in the PSO algorithm. The optimal PIC-I test plans are calculated for different
design criteria and removal proportions. During the computation, we start Algorithm 2
by first setting k = 2, calculate the k-point optimal inspection time points ti and then the
optimal size of test units N, and increase k by 1 until the optimality criterion function does
not decrease or arrives at the maximum inspection time kmax, see Algorithm 2 for details.
We use the solutions obtained using the L-BFGS-B method as the initial values of the PSO
algorithm. During the computation, we find that the design criterion is a convex function of
k. See Figure 2 for an illustration. For the sake of saving space, we provide only the results
with p = 0.3. Table 6 shows the locally D- and c-optimal PIC-I test plans for different
number of inspections k and the values of their corresponding design criteria. Table 7
shows the BcD-optimal PIC-I test plans with different κ when the regions of parameters are
Θ = Θ1 and Θ = Θ2, respectively. In Tables 6 and 7, the optimal test plans are shown in
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bold. Looking at these tables we can see that the number of time points of every optimal PIC-
I test plan does not exceed 10, which is very similar to its corresponding equispaced design.
In Table 7, the efficiencies of k points BcD-optimal designs relative to their corresponding
locally ones given in Table 6 are also given in the last two columns. The results indicate
that the BcD-optimal test plans can perform very well in most situations, especially when
the planning values are in the prior regions. Finally, to investigate the influence of the cost
parameters on the optimal test plans, the BcD-optimal designs are also calculated under
different combinations of the cost parameters, and the results for p = 0.3 are presented in
Table 8. Similar conclusions to their corresponding ES designs can be drawn from the table.
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Figure 2. Plots of ΨBcD with k inspection time points and p = 0.3 for different weights κ and
parameters space Θ.

Table 6. Locally D- and c-optimal general PIC-I test plans for different numbers of inspections with
µ = log 5, σ = 0.5 and p = 0.3.

k N Inspection Times ΨD/Ψc

2 74 (2.612, 8.067) −5.3216
3 74 (2.547, 7.214, 9.929) −5.4120

D-opt 4 74 (2.521, 6.961, 9.235, 11.333) −5.4308
5 74 (2.514, 6.896, 9.066, 10.767, 12.455) −5.4344
6 74 (2.512, 6.881, 9.029, 10.644, 12.002, 13.207) −5.4346
7 74 (2.512, 6.879, 9.025, 10.629, 11.948, 12.999, 13.434) −5.4341

2 74 (3.154, 5.554) −3.4366
c-opt 3 74 (2.970, 4.886, 6.724) −3.4581

4 74 (2.934, 4.761, 6.216, 7.603) −3.4610
5 74 (2.928, 4.741, 6.140, 7.252, 8.083) −3.4609
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Algorithm 2 PSO Algorithm.

1: Set the values of the cost parameters Cs, Ci, Co, C; design space related parameters k�, pj;
the set of values of the parameters β, Θ; the hyperparamters in the priors for Bayesian
optimality criterion; the weight parameter κ or ω.

2: Set k = 2.
3: Find the k-point optimal design ξ∗k by PSO.

3.1: Initialize particles. Initialize n random particles Xk
i and velocities Vk

i , i = 1, . . . , n.
Calculate the fitness values f (Xk

i ). Determine local and global best positions Pk
i

and Pk
g .

3.2: Repeat until the stopping criterion is met.

3.2.1: Calculate particle velocity according the following equation

Vk
i = αVk

i + α1u1(Pk
i − Xk

i ) + α2u2(Pk
g − Xk

i ).

3.2.2: Update the variable vector Xk
i according the following equation

Xk
i = Xk

i + Vk
i .

3.2.3: Calculate fitness values f (Xk
i ).

3.2.4: Update best positions Pk
i and Pk

g .

3.3: Output ξ∗k = arg min f (Xk) with gbestk = f (ξ∗k ).

4: Set k = k + 1. If k ≤ k� or if the other stop rule is not satisfied, go to Step 3, else go to
Step 5.

5: Output ξ∗ = {N∗, arg mink f (ξ∗k )} with gbest = f (ξ∗).

Table 7. BcD-optimal general PIC-I test plans for different numbers of inspections with p = 0.3 and
Θ = Θi, i = 1, 2.

Θ κ k N Inspection Times ΨBcD EffD(ξ∗BcD) Effc(ξ∗BcD)

Θ1 0 2 74 (3.911, 7.256) −3.4467 0.8388 0.8882
3 74 (3.700, 6.219, 8.875) −3.4764 0.8693 0.9238
4 74 (3.658, 6.020, 8.051, 10.269) −3.4811 0.8791 0.9314
5 74 (3.650, 5.983, 7.900, 9.628, 11.190) −3.4813 0.8818 0.9329
6 74 (3.650, 5.982, 7.892, 9.595, 11.047, 11.312) −3.4808 0.8816 0.9329

0.5 2 74 (3.811, 9.328) −4.3429 0.8983 0.8882
3 74 (3.540, 7.755, 11.515) −4.4152 0.9313 0.9088
4 74 (3.453, 7.255, 10.413, 13.462) −4.4335 0.9383 0.9218
5 74 (3.430, 7.122, 10.123, 12.563, 15.151) −4.4376 0.9407 0.9256
6 74 (3.424, 7.090, 10.053, 12.353, 14.409, 16.276) −4.4378 0.9414 0.9263
7 74 (3.423, 7.087, 10.046, 12.334, 14.342, 16.028, 16.511) −4.4373 0.9415 0.9263

1 2 74 (3.304, 9.810) −5.3200 0.8949 0.8700
3 74 (3.227, 8.798, 12.277) −5.4196 0.9254 0.8763
4 74 (3.193, 8.480, 11.343, 14.299) −5.4422 0.9367 0.8813
5 74 (3.183, 8.389, 11.098, 13.437, 16.036) −5.4472 0.9405 0.8829
6 74 (3.180, 8.366, 11.037, 13.234, 15.279, 17.240) −5.4476 0.9414 0.8831
7 74 (3.180, 8.363, 11.030, 13.209, 15.188, 16.899, 17.583) −5.4472 0.9415 0.8831

Θ2 0 2 74 (3.835, 7.571) −3.4431 0.8794 0.8994
3 74 (3.590, 6.233, 9.451) −3.4909 0.8914 0.9388
4 74 (3.538, 5.963, 8.319, 11.210) −3.4998 0.8963 0.9472
5 74 (3.527, 5.902, 8.074, 10.268, 12.605) −3.5010 0.8986 0.9490
6 74 (3.525, 5.892, 8.035, 10.126, 12.055, 13.172) −3.5006 0.8993 0.9492

0.5 2 74 (3.713, 8.514) −4.3305 0.9316 0.9037
3 74 (3.469, 7.312, 11.248) −4.4273 0.9320 0.9233
4 74 (3.389, 6.910, 10.013, 13.540) −4.4508 0.9390 0.9341
5 74 (3.364, 6.784, 9.666, 12.385, 15.614) −4.4566 0.9424 0.9377
6 74 (3.357, 6.750, 9.572, 12.096, 14.599, 17.120) −4.4573 0.9435 0.9384
7 74 (3.356, 6.745, 9.559, 12.055, 14.459, 16.629, 17.601) −4.4569 0.9436 0.9384
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Table 7. Cont.

Θ κ k N Inspection Times ΨBcD EffD(ξ∗BcD) Effc(ξ∗BcD)

1 2 74 (3.235, 8.905) −5.2680 0.9631 0.8940
3 74 (3.157, 7.951, 11.858) −5.4075 0.9569 0.9023
4 74 (3.120, 7.644, 10.724, 14.294) −5.4409 0.9634 0.9082
5 74 (3.106, 7.544, 10.403, 13.144, 16.511) −5.4492 0.9667 0.9103
6 74 (3.101, 7.515, 10.315, 12.851, 15.443, 18.249) −5.4506 0.9677 0.9106
7 74 (3.101, 7.510, 10.298, 12.796, 15.253, 17.559, 19.001) −5.4503 0.9679 0.9105

Table 8. BcD-optimal general PIC-I test plans for different cost parameters C, Cs, Ci, Co and weight
parameters κ when the removal proportion p = 0.3 and Θ = Θ1.

κ C Cs Ci Co N Inspection Times ΨBcD

4000 80 3 2.5 49 (3.659, 6.020, 8.035, 10.159) −3.0725
6000 74 (3.650, 5.983, 7.900, 9.628, 11.190) −3.4813
8000 99 (3.650, 5.982, 7.902, 9.658, 11.371) −3.7708
6000 70 3 2.5 85 (3.650, 5.983, 7.900, 9.628, 11.190) −3.6148

80 74 (3.650, 5.983, 7.900, 9.628, 11.190) −3.4813
0 90 66 (3.650, 5.983, 7.900, 9.628, 11.190) −3.3635

6000 80 2 2.5 74 (3.650, 5.983, 7.900, 9.628, 11.190) −3.4821
3 74 (3.650, 5.983, 7.900, 9.628, 11.190) −3.4813
5 74 (3.658, 6.020, 8.051, 10.269) −3.4798

6000 80 3 1.0 74 (3.649, 5.981, 7.908, 9.712, 11.677) −3.4842
2.5 74 (3.650, 5.983, 7.900, 9.628, 11.190) −3.4813
4.0 74 (3.659, 6.020, 8.032, 10.138) −3.4785

4000 80 3 2.5 49 (3.428, 7.115, 10.106, 12.509, 14.948) −4.0277
6000 74 (3.424, 7.090, 10.053, 12.353, 14.409, 16.276) −4.4378
8000 99 (3.425, 7.092, 10.058, 12.372, 14.478, 16.538) −4.7280
6000 70 3 2.5 84 (3.424, 7.090, 10.053, 12.353, 14.409, 16.276) −4.5714

80 74 (3.424, 7.090, 10.053, 12.353, 14.409, 16.276) −4.4378
0.5 90 66 (3.424, 7.090, 10.053, 12.353, 14.409, 16.276) −4.3200

6000 80 2 2.5 74 (3.424, 7.090, 10.053, 12.353, 14.409, 16.277) −4.4388
3 74 (3.424, 7.090, 10.053, 12.353, 14.409, 16.276) −4.4378
5 74 (3.430, 7.122, 10.123, 12.562, 15.151) −4.4359

6000 80 3 1.0 74 (3.426, 7.096, 10.068, 12.403, 14.592, 16.976) −4.4420
2.5 74 (3.424, 7.090, 10.053, 12.353, 14.409, 16.276) −4.4378
4.0 73 (3.422, 7.085, 10.042, 12.316, 14.271, 15.755) −4.4338

4000 80 3 2.5 49 ( 3.182, 8.384, 11.085, 13.392, 15.858) −5.0371
6000 74 ( 3.180, 8.366, 11.037, 13.234, 15.279, 17.240) −5.4476
8000 99 ( 3.181, 8.367, 11.042, 13.250, 15.341, 17.480) −5.7379
6000 70 3 2.5 84 ( 3.180, 8.366, 11.037, 13.234, 15.279, 17.240) −5.5812

80 74 ( 3.180, 8.366, 11.037, 13.234, 15.279, 17.240) −5.4476
90 65 ( 3.180, 8.366, 11.037, 13.234, 15.279, 17.240) −5.3299

1 6000 80 2 2.5 74 ( 3.180, 8.366, 11.037, 13.234, 15.279, 17.241) −5.4487
3 74 ( 3.180, 8.366, 11.037, 13.234, 15.279, 17.240) −5.4476
5 74 ( 3.180, 8.366, 11.037, 13.234, 15.279, 17.238) −5.4456

6000 80 3 1.0 74 ( 3.181, 8.370, 11.049, 13.277, 15.442, 17.875) −5.4521
2.5 74 ( 3.180, 8.366, 11.037, 13.234, 15.279, 17.240) −5.4476
4.0 73 ( 3.179, 8.363, 11.028, 13.201, 15.153, 16.760) −5.4433

6. A Real Life Example

In this section we consider a real data example, which contains 112 patients with
plasma cell myeloma treated at the National Cancer Institute (Carbone et al. [37]) to il-
lustrate our method. For easy reference, we reproduce this data set in Table 9. Note that
this data set has been reanalysed by many authors (see Ng and Wang [6] and Lin and
lio [8]) via different distributions and estimating methods (Balakrishnan and Cramer [2],
Ch. 18). To be consistent with the topic we investigated in this paper, we fit the data
by the Weibull distribution (1), similar as Ng and Wang [6], and the parameters are esti-
mated by the maximum likelihood method. The resulted estimates are given as follows:
µ̂ = 3.1391, σ̂ = 0.8132 and sµ̂ = 0.0841, sσ̂ = 0.0724. Similar in the simulation exam-
ple, we assume that the range of the values of µ and σ are [a, b] = [µ̂ − sµ̂, µ̂ + sµ̂] and
[c, d] = [σ̂ − sσ̂, σ̂ + sσ̂], respectively. Furthermore, we assume that the hyperparame-
ters in the prior distributions N(µ0, σ2

0 ) and Γ−1(ν0, γ0) are µ0 = µ̂, σ0 = σ̂, ν0 = σ̂2/s2
σ̂

+ 2 = 128.1588, γ0 = σ̂(σ̂2/s2
σ̂ + 1) = 103.4055. Since we have no any cost information for

the original experiment, we then assume that Cs = $60/unit, Ci = $30, Co = $25/m. There-
fore, the total cost is C = 121Cs + 9Ci + 60.5C0 = $9042.5. In BcD- or McD-optimal design
criteria, we set q = 0.5, which means that the median lifetime of survivors is of interest. In
order to compare with the original inspection scheme ξorg, we first calculate the optimal
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ES and the general PIC-I test plans, respectively, assuming that the number of inspection
times and the removal scheme are the same as in ξorg. The results for different design
criteria are shown in Tables 10 and 11, respectively. Efficiencies of ξorg under different
design criteria are also given in the last column of these tables. These results indicate that
the original inspection scheme ξorg has good robustness under different design criteria,
except general D- and c-optimal design criteria. In addition, the optimal general PIC-I test
plan has better performance than the corresponding ES test plan. Furthermore, considering
different removal proportions, p = 0 and p = 0.3, we redesign the Plasma cell myeloma
inspection scheme. Optimal robust ES and general inspection schemes for different design
criteria are shown in Tables 12 and 13, respectively. The efficiencies of the original scheme
ξorg are also listed in the last columns of these tables. These numerical results suggest
that it is important to consider the removal proportions (or dropouts) at the design stage.
The structures of robust PIC-I test schemes obtained under different design criteria may
differ substantially.

Table 9. Plasma cell myeloma survival times.

Interval in Months Number at Risk Number of Withdrawals

[0, 5.5) 112 1
[5.5, 10.5) 93 1
[10.5, 15.5) 76 3
[15.5, 20.5) 55 0
[20.5, 25.5) 45 0
[25.5, 30.5) 34 1
[30.5, 40.5) 25 2
[40.5, 50.5) 10 3
[50.5, 60.5) 3 2
[60.5, ∞) 0 0

Table 10. Optimal ES PIC-I test plans in the real data example when the removal scheme is the same
as that in the original design.

Design Criterion κ/ω N τ kτ ΨL EffL(ξorg)

D-opt - 132 3.5972 32.3744 −9.6813 0.8243
c-opt - 134 3.1923 28.7311 −9.6071 0.8233
BcD-opt 0.0 128 4.8029 43.2262 −5.0343 1.0001

0.5 123 5.9594 53.6349 −5.1176 1.0086
1.0 120 6.7642 60.8781 −5.2223 0.9957

McD-opt 0.0 128 4.7736 42.9627 −4.8030 1.0061
0.5 122 6.2919 56.6271 −4.8794 1.0132
1.0 118 7.3139 65.8255 −4.9846 0.9914

Table 11. Optimal general PIC-I test plans in the real data example when the removal scheme is the
same as that in the original design.

Design Criterion κ/ω N ξ ΨL EffL(ξorg)

D-opt - 134 (17.524, 19.856, 21.544, 22.897, 24.076, 25.076, 26.076, 27.076, 28.076) −9.9818 0.6103
c-opt - 134 (16.378, 18.478, 19.831, 20.831, 21.831, 22.831, 25.458, 26.458, 27.458) −9.8213 0.6646
BcD-opt 0.0 124 (1.089, 3.549, 7.295, 11.990, 19.281, 39.281, 52.830, 52.930, 53.030) −5.1580 0.8838

0.5 122 (1.239, 4.075, 8.557, 14.657, 25.349, 42.696, 57.013, 57.113, 57.213) −5.2252 0.9058
1.0 120 (1.568, 5.263, 11.588, 21.011, 34.291, 47.815, 60.597, 60.697, 60.797) −5.3025 0.9190

McD-opt 0.0 122 (0.856, 3.094, 6.782, 11.590, 19.249, 39.249, 55.940, 56.040, 56.140) −4.9486 0.8698
0.5 120 (0.981, 3.582, 8.018, 14.255, 25.322, 45.322, 62.099, 62.199, 62.299) −5.0123 0.8871
1.0 118 (1.250, 4.668, 10.974, 20.715, 36.007, 52.237, 66.919, 67.019, 67.119) −5.0858 0.8960
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Table 12. Optimal ES PIC-I test plans in the real data example.

p κ N k τ kτ ΨL EffL(ξorg)

D-opt 0 - 127 24 1.1200 26.8790 −9.9947 0.6025

0.3 - 138 4 6.2843 25.1371 −8.6852 2.2319

c-opt 0 - 129 21 1.2749 26.7728 −9.8208 0.6649

0.3 - 137 3 9.3286 27.9858 −8.8469 1.7608

BcD-opt 0 0.0 120 19 2.5650 48.7345 −5.1274 0.9112
0.5 119 17 3.2444 55.1550 −5.2181 0.9122
1.0 117 16 3.7316 59.7058 −5.3183 0.9046

0.3 0.0 134 7 4.4587 31.2107 −4.7950 1.2705
0.5 127 6 8.2476 49.4854 −4.7230 1.4966
1.0 126 4 13.1284 52.5135 −4.7846 1.5425

McD-opt 0 0.0 120 19 2.6290 49.9512 −4.9044 0.9091
0.5 117 18 3.2852 59.1339 −4.9892 0.9079
1.0 115 16 4.0608 64.9733 −5.0872 0.8947

0.3 0.0 147 3 1.3227 3.9682 −4.5884 1.2470
0.5 127 6 8.0017 48.0105 −4.4663 1.5315
1.0 125 4 14.1928 56.7714 −4.5415 1.5441

Table 13. Optimal general PIC-I test plans in the real data example.

p κ N ξ ΨL EffL(ξorg)

D-opt 0 - 133 (15.169, 17.295, 18.779, 19.956, 20.972, 21.972, 22.972, 23.972, 24.972, 25.972, 26.972) −10.0496 0.5703

0.3 - 137 (20.563, 24.384, 25.548, 26.548) −9.6097 0.8854

c-opt 0 - 133 (14.391, 16.419, 17.831, 18.935, 19.935, 20.935, 21.935, 22.935, 25.091, 26.091, 27.091) −9.8711 0.6323

0.3 - 137 (19.446, 21.483, 25.585, 26.585) −9.6065 0.8238

BcD-opt 0 0.0 123 (0.303, 1.086, 2.409, 4.305, 6.836, 10.150, 14.604, 21.274, 41.274, 53.615) −5.2035 0.8444
0.5 121 (0.400, 1.427, 3.154, 5.647, 9.058, 13.761, 20.764, 32.648, 45.421, 58.097) −5.2822 0.8556
1.0 120 (0.514, 1.826, 4.045, 7.325, 12.036, 19.010, 28.766, 39.155, 49.847, 61.535) −5.3693 0.8596

0.3 0.0 128 (4.020, 10.849, 30.849, 48.098) −4.9285 1.1117
0.5 126 (4.899, 16.739, 36.739, 52.615) −4.8890 1.2677
1.0 125 (6.771, 26.771, 46.771, 56.246) −4.9230 1.3431

McD-opt 0 0.0 122 (0.214, 0.856, 2.035, 3.832, 6.349, 9.776, 14.528, 21.800, 41.800, 56.687) −4.9936 0.8315
0.5 119 (0.275, 1.095, 2.598, 4.902, 8.192, 12.857, 19.849, 31.909, 47.622, 63.043) −5.0677 0.8393
1.0 117 (0.361, 1.432, 3.407, 6.500, 11.122, 18.163, 28.776, 41.060, 53.851, 67.732) −5.1514 0.8391

0.3 0.0 127 (3.524, 10.215, 30.215, 50.215) −4.7243 1.0189
0.5 124 (5.391, 25.391, 45.391, 57.616) −4.6739 1.2444
1.0 123 (6.215, 26.215, 46.215, 60.490) −4.6969 1.3219

7. Conclusions and Discussions

This paper considers robust optimal life testing plans under the PIC-I scheme. Based
on the D-optimality and c-optimality, both the Bayesian and the minimax compound
optimality criteria are proposed to obtain robust designs against the uncertainty of the
model parameters and the design objectives. To make the designs more practical, the cost
of the experiment at the design stage is taken into account. Two algorithms, including the
MNO algorithm and the PSO algorithm, are proposed to solve the optimization problems.
A numerical example and a real data example are provided to validate the feasibility
and effectiveness of our methods. It is easy to see that the inspection times, the length
of the inspection interval, and the experimental duration in the c- (Bc- or Mc-) optimal
ES PIC-I test plan are less than the corresponding D- (BD- or MD-) optimal PIC-I test
plan. Those in the cD- (BcD- or McD-) optimal PIC-I test plan are somewhere in between.
Increasing the removal proportion will reduce the number of the inspections and lengthen
the inspection interval. With the increase of the uncertainty of the model parameters,
the number of the inspections and the duration of the optimal PIC-I test plan tend to
increase. The MCD-optimal PIC-I test plan (not shown in the simulation example) tends to
have more inspection times and longer duration of the experimental than its corresponding
BcD-optimal test plan. Similar conclusions can be drawn for the general optimal test plan.
In addition, we should point out that the optimal PIC-I test plans depend on the budget
of the experiment. We need to carefully set the larger coefficients in the cost function,
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because they will have a big impact on the experiment. Overall, our numerical results
indicate that the proposed approaches can obtain better designs with improved robustness
for conducting PIC-I life tests to estimate the model parameters and the qth quantile of the
lifetime distribution efficiently. They also provide a coherent way to efficiently use one’s
resources. Our approaches are intuitive and can be useful to engineers.

In this paper, to approximate the Bayesian and minimax design criteria, we choose
finite percentiles of the prior parameter distributions. To improve the accuracy of these
approximations, some Monte Carlo sampling methods and advanced optimization methods
(Ruidas et al. [33]) need to be applied. This may be a topic worth studying in the future. This
paper mainly focuses on obtaining robust designs under PIC-I test schemes when the model
parameters are unknown and there are more than one design objective. However, there
are still other uncertainties that need to be considered in the design stage. For example,
many studies on designing PIC-I test plans assume that the lifetime data follow some
symmetrical or asymmetrical distribution, such as Weibull (Wu et al. [14]), lognormal
(Roy and Pradhan [17,19]), truncated normal (Lodhi and Tripathi [10]), and Exponentiated
Frech’et (Wu and Chang [12]). In fact, many symmetric and asymmetric distributions have
recently been proposed to fit lifetime data and evaluate the reliability of system (see [38–41]).
When life time data is available, many methods of hypothesis testing have been provided
to check the fitness of a given distribution (Jäntschi [42]). However, we need to point out
that the life data is not available at the design stage, so the latent lifetime distribution may
be uncertain. Therefore, it is an interesting topic to find robust designs against possible
departures from underlying model assumptions (Zhao et al. [43]). In addition, our methods
proposed in this paper can be extended to the situations of accelerated life test (Wu and
Huang [44]) or degradation life test [45].
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