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Abstract: In this article, we consider the one-dimensional transport equation with delay and advanced
arguments. A maximum principle is proven for the problem considered. As an application of the
maximum principle, the stability of the solution is established. It is also proven that the solution’s
discontinuity propagates. Finite difference methods with linear interpolation that are conditionally
stable and unconditionally stable are presented. This paper presents applications of unconditionally
stable numerical methods to symmetric delay arguments and differential equations with variable
delays. As a consequence, the matrices of the difference schemes are asymmetric. An illustration of
the unconditional stable method is provided with numerical examples. Solution graphs are drawn
for all the problems.
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1. Introduction

Many researchers have focused on the theory of delay differential equations (DDEs)
in recent years, to cite a very few [1-3]. Only a few researchers, however, concentrated on
delay partial differential equations. We know that computing the exact solutions of DDEs
are difficult. Therefore, suitable and efficient numerical methods are required to solve such
equations. These problems arise in various fields of engineering and science, for example
mathematical modeling in control theory, mathematical biology, and climate models [4,5].
Stein [6] gave a differential-difference equation model incorporating stochastic effects due
to neuron excitation, and later [7], he generalized the model to deal with the distribution
of postsynaptic potential amplitudes. The numerical solution of mixed initial boundary
value problems for hyperbolic equations will be studied using finite difference methods.
The goal of this paper is to develop a technique for calculating the total error of a finite
difference scheme that takes into account initial approximations, boundary conditions,
and the interpolation approximation. The authors Kapil K. Sharma and Paramjeet Singh
used the numerical methodologies of Forward Time Backward Space (FTBS) and Backward
Time Backward Space (BTBS) to solve hyperbolic delay differential equations [8-12]. Finite
difference methods are useful when the functions being handled are smooth and the
difference decreases rapidly with the increasing order, as discussed in [13,14]. Numerical
methods for partial differential equations have been well studied in the literature, to
cite a few [15-20]. Numerical treatments and convergence analysis for ordinary delay
differential equations and hyperbolic partial differential equations have been studied in
the literature [21-25]. For the hyperbolic, parabolic, and elliptical differential equations,
the maximum principles were extensively studied in [26,27]. The maximum principle for a
modified triangle-based adaptive difference scheme for hyperbolic conservation laws was
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Lu =

u(0,t

addressed in [28]. The iterative method presented by Avudai Selvi and Ramanujam [29]
can be applied to the problem considered in the paper. The convergence iterates with a
suitable initial guess can be studied by the results given in [30-32].

The paper is organized as follows: The problem under consideration is given in
Section 2. Section 3 presents the maximum principle and its consequence. Section 4 presents
the propagation of discontinuities and bounds of the derivative of the solution. The condi-
tional and unconditional stable finite difference methods with linear interpolations and
their consistency are given in the Section 5. Numerical stability results and the convergence
analysis of the proposed methods are given in Section 6. A variable delay differential
equation is presented in Section 7. Section 8 presents the numerical illustration. The paper
is concluded in Section 9.

2. Problem Statement

Motivated by the works of [9-11], we consider the following problem: Find the
function u € C(D) N CV (D) such that

Lu = a—? +a3—z +bu(x,t)+cu(x —6,t) +du(x+1,t) =0, (x,t) € D, 1)
u(x, t) = ¢r(x, ), (x,t) € [=6,0] < [0,T], @)
u(x, t) = da(x, ), (x,t) € [xf/xf+77] x [0, T], ®)
u(x,0) = ug(x), x € [0, xf]. 4)

where a(x,t) > a > 0,b(x,t) > >0,7v <c(xt) <017 <d(x,t) <0,D = (O,xf] X
(0,T], 6,1 are delay arguments such that § < Xf andy > 0, Xp = mé, 1 = né for some
positive integers m and n. Further, the functions a, b, ¢, d, f, ¢1, ¢2, and u are sufficiently
differentiable on their domains. The above Equation (1) can be written as

Wy adh 4 bu(x,t) +du(x+1,t) = —cgr(x —5,1),  (x,t) €[0,8] x (0,T],
at+a3§;+bu( t) +cu(x —6,t) +du(x +1,t) =0, (x,t) € (6, x5 — 1] x (0, T], (5)
W aSh 4 bu(x,t) +cu(x —6,t) = —dgo(x +1,1t), (x,t) € (xp —1,x7] x (0,T],

= ¢1(0,1),t € [0, T], u(x,0) = ug(x), x € [0, xf], u(xs,t) = $2(x5,t). (6)

Note: If ¢(x,t) = d(x,t) and 17 = J, then the above differential equation is said to have
symmetric delay arguments [33].

3. Stability Analysis

In this section, we present the maximum principle and the stability result of the above
Problem (4) and (5).

) be any function satisfying £ >

Theorem 1. [Maximum Principle] Let € C(D) N C) (D
0) >0, x € [0,xf]. Then ¢(x,t) > O, for all

0, (x,t) € D, ¥(0,t) >0, t € [0,T], (x,
(x,t) € D.
A consequence of the above theorem is the following stability result.

Theorem 2. [Stability result] Let ¢ € C(D) N C) (D) be any function, then

lp(x,t)] < Cmax{max|tp(0 |, max|1/)(x 0)|, sup |L€¢(x,t)|}, forall (x,t) € D.
(x,t)eD
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4. Propagation of Discontinuities and Derivative Bounds

Following the procedure of [21], the propagation of the discontinuities of the solution
are presented in this section. Let us consider the differential Equations (1)—(3). It is assumed
that ¢(0,t) = u(0,t), t € [0, T]. Differentiate the equation partially with respect to x, then

lim AUxx = _uxt((xf - W)irt) - ax((xf - q)f,t)ux((Xf o U)i’t)

x—(xp—1)"~
(g — ) (g — )0~ b((xg — 1), D, 1)
—dy((xp — )" Dulay, £) = d((xp — 1) Dualxy, )
= (1))~ <<xf rz) Bu((xp — )7, 1)
bl — ), (g — 1))~ b((xg — 1), D, 1)
—dy((xp — )", Dulx 1) - ((xf 1) (x5, 1)

and
lim  auyy = _uxt((xf - 77)+rt) - ax((xf - 77)+/t)ux((xf - 77)+/t)

x—(xp—m) "
—by((xp =) ", u((xp — )" 8) = b((xp — )", Hux((xp — )", 1)
—de(xf, u((xp =) 1) —d(xf, Hux((xp — 1) ", t)
= —ux((xg =) 1) —ax((xp — )", Dux((xp — 1) 7, )
—b((xp =), Ou((xp =), 0) = b((xp =), Hua((xp — 1) 7, 8)
—de((xp =) ulxp, t) —d((xp — 1) " o (xf 1)

and

Alyy = —Uyt — Axlly — Dtk — bty — cxtt(x — 8, 1) — cux(x — 6, 1)
Hm auyy = —uy(67,8) —ax (67, )ux(67,8) — by (67, H)u(67,t) —b(6~,H)u,(67,1)

xX—0~
—cx(67,)u(07, 1) — (67, Hux(07, 1)
= —ux (07, 1) —ax (67, Hux(67, 1) —bx (57, )u(67, 1) = b(6™, ux (67, 1)]
—cx(67, )07, 1) = (67, H)1x(07, £)

and
m auyy = —uy (67,8) —ax (67, )ux (67, 8) — by (67, )u(6F,t) — b(6, Hux (67, t)
)

(
x—6t
—cx (67, H)u(07,t) — c(8T, t)uy (0T, t)
=~y (07, 1) —ay (07, ux (67, 8) — b (87, )u(6T,4) = b(67, t)ux(67,1)]
—cx (07, )p(07, ) — (67, t)ux (07, 1).

Hence, a((xg — 1)~ e ((xp = 1) 7, 1) 7 a((xp =) " Duxx((xp = 17) " )
and a(6", t)uxx (67, t) # a(d™,t)uxc (07, t). These points x; —1,xf — 217, xf —37,... and
6, 26, 35, ... are primary d1scontmu1t1es [21].

Derivative Estimates

From the given differential Equations (1)—(3), one can obtain the following bounds on
the derivative.

Lemma 1. The solution u(x,t) of (1)—(3) satisfies the following estimate

9iti
Py, )‘<c 0<i+j<2
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5. Finite Difference Methods

This section presents a mesh selection procedure and finite difference methods for
the above stated Problem (4) and (5). In the subsequent sections, we use the following;: U{.
denotes the‘ numerical sqlution at the mesh point (x;, t;), and a(x;, ;) = aé, b(x;, t;) = bf,
c(xl-, t]) = C;, d(xi, t]) = d{

5.1. Mesh Points

Let N and M be the number of mesh points in [0, xs] and [0, T], respectively. Define
Ax = m§/N and At = T/M. Then, the mesh ONM is defined as ONM = {(x;, tj)]i =
0,1,---,N,j=0,1,--- ,M}, where x; = kAx and t;, = kAt.

5.2. Conditionally Stable Finite Difference Method with Piecewise Linear Interpolation

The Forward Time Backward Space (FTBS) finite difference scheme with piecewise
linear interpolation for the above Problem (5) and (6) is as follows:

VMUl : = D U] + alDy U] + U] + d] {uélp(xi +7)+ u£1+1lp+1(xi + 77)}

= _(Pl (xi _51 t])/ (xi/ t]) S (0/ (S] X [0/ T]/ (7)
e¥Mul: = Df U] + oDy U] + U] + o] [l (x; = 0) + U e (xi = 6)|

+d [u;,z,,(x,- ) AUl (i + ;7)} =0, (xit;) € (6,7 — 1) x [0,T], (8

e¥Mul = Df U] + oDy U] + bu] + o] [l (x; = 0) + U e (xi = 6)|

= —pa(xi +1,t5), (xi,t)) € [xg —1,x7] x [0, T]. ©)
ottty Ul
] —17 — -1

Where D?»Z,IZ = #, Dx Ui = #,

li(x) = % and [y 1(x) = ¥~ % Rewrite Scheme (7)-9) as

1 i i / i i i | 5/t 7 1 S 7
W =(1—alA —blanUl + daul | — At 4’1§x’ 7 i PR
Uk (x; = 6) + Uy 4 k1 (xi = 6)], i > v
—Atd] ¢2(Xi+i7,tj), ) 125/
! [u;alp(xi +1) + u{q+1lp+l (xi+m)], i<,

where v and ( are the largest and smallest integers, respectively, such that x, —é < 0 and
Xg+1 = xp.

5.3. Backward Time Backward Space Finite Difference Method with Piecewise Linear Interpolation

The Backward Time Backward Space (BTBS) finite difference scheme with piecewise
linear interpolation for the above Problem (5) and (6) is as follows:

Myl = DUl +d DU+ 0Ul + d) [u{,zp(xi 1) Uy Ly (i + ;7)}

= —¢1(x;i = 6,), (xi,t;) € (0,6] x [0, T], (10)
e¥Mul s = Dy U+ al Dy U] + bU] + o] [Ulli(xi = 6) + Ul y ey (5 = 0)|

+d [u{,lp(xl- 1)+ Uyl (i + ;7)] =0, (xi,)) € (6,xp— 1) x [0,T], (1)
e¥Mul s = DF U+ al Dy ] + bU] + o] [Ulli(xi = 6) + Uf iy (xi = 9)|

= —¢o(xi +1,t), (xi,t)) € [xf —n,x7] x [0, T]. (12)
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u —ul!

where D; U/ = Ati . Rewrite Scheme (10)~(12) as

j— j iAny-1 7=t & g
U, =(1+aA+b;At) U~ +a AU,

i .

(Wl (x; — 8) + U, la (xi — )], i > v
_ Atdj{%(?ﬁ +1,t), 12

_Atcj{(l)l(xi_(s/tj)/ igv/
CUplp(xi+1) + U Ly (xi+ 7)), i <€
where v and ¢ are the largest and smallest integers, respectively, such that x, — ¢ < 0 and
Xz +1 > X £
Note: The matrices of the above two difference schemes are asymmetric.

5.4. Consistency

Following the arguments of [10,11], we prove the consistency of the proposed schemes.
Lemma 2. Scheme (7)—(9) is consistent.
Proof. Consider Scheme (7)—(9). Let ef: = u(x;,tj) — Ulj, then

) . . . . o, xi—8<0,
¥ = Dy + sl + 8l {° o
e?{lk(xi — 5) + e;<+1lk+1 (xi — 5), x;—0>0,

. ]{0/ xi+7’]§xf/

= Si\]’Mu(xi, t]) — £u(xl-, i'])

0 i ~— 0
= (1)1‘+ - at)u(xl,t]) +a£ <Dx - ax>u(x,,t])

J 0, i<v,
! [ (xg., tj)lk(x,- —6)+ u(xk+1, tj)lk—i—l (x;j —0)] —u(x; — 4, t]‘), i>v+1,

i 0, Z Z gl
+d, ;
{[u(xp, Elp (i + 1) +u(xpir, t)lpa (i +n)] —ulxi+n,t), i < +1,

|eNMel| < C(Ax + At)

Therefore, |£§\]Mé'1| < C(Ax+ At) — 0 as Ax — 0 and At — 0, where C is con-
stant. [

Lemma 3. Scheme (10)—(12) is consistent.
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Proof. Consider Scheme (10)—(12). Lete] =u(x;,t ) LI then

0, —0 <0,
SNM] De—i—a]D e]—i—b]e]—c j - -
eklk(xi —6) +e§{+1lk+1(xi —6), x;—35>0,
~alY Xt S xp
l e]plp(xi+'7) +e]+1 pr1(Xi+1), xi +17 > x5,
= e Mu(x;, 1)) — Lu(x;, t;)

_ 9 _ 0
= (Dt — at)u(xi, t]) —|—a£ (Dx — ax)u(x,», i’])
_d 0, i<y
! [u(x, t]-)lk(xi —6)+ u(xk+l,tj)lk+l (xj —0)] —u(x; — 4, tj),i >v+1,

0 i>(
g
’{[u(xp,t]-)lp(xi + 77) + u(po, tj)lp+1 (xi + 77)] — u(xi +7, t]'),i <C+1,
|eNMel| < C(Ax + At)

Therefore, |£§]Méf| < C(Ax+ At) - 0 as Ax — 0 and At — 0, where C is con-
stant. [

6. Numerical Stability Results

In this section, first, we consider Scheme (7)—(9).
Lemma 4. If ||a)|| + At0' < 1, where 8 = max{||b||, 2||c||,2||d||}, then Scheme (7)~(9) is stable.

Proof. The difference equations defined in (7)—(9) can be written in the following vec-
tor equation:

n+1 n
Ot =TT Appak° + (B”JrznAn+1 B l) t( Z]‘[ nﬂkcn—l)

k=1 I=1k

n
— At <D" +Y 11 An+1an_l> ,
I=1k=1
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where
B A 0 0 lf(?ﬁi?—l);) 0 ]
0 0 Y% 0 0 l};ﬁ:’&;)
_ n o«
' vl ’ lk+1(A;IC\JN—5)
: : 0 0
An = 0 0 0 ajA 0
l;(ﬁltﬁl ;) 0 0 ¥y @y A 0
liﬁfﬁl;) 0 0 0 ¥ 0
0 0 0 : 0 0
_Apn
! 00 zp(ffﬁ;) 0 afA
AR
" = (U, -, Ug)", B" = (afAUg,0,---,0)7, ¥} = (1 —alA — At))

C” = (Ciil(Pl(xl - 5/ t?’l)l C’él(Pl(xZ - 5/ tl’l)/ e /Cr/l(Pl(xl/ - 5/ tn)ror e /O)T/
D}’l = (Or e ro/d;]/l(PZ(xl + 77/ tn)/dg¢2(x2 + 77/ tn)/ te d1’}¢2(x1/ + 17/ ti’l))Tr

Let A* = max || A, ||, B* = max || B" || < ||a|||A]||T°]|, C* = max || C" ||, and D* = max ||
n n n n

D +1
D" ||, then || T} Ayrag < T 1| Apsa o I= A" and

n+1 n 1
1A <[ TT Apsas 11 T° ] +<|| B+ Y I TT Awsrx Il B |>

k=1 =1 k=1
+At<n '+ 3 1 TT Awer s [l O |)
1=1 k=1
+At<n RS PR ||>
=1 =1

< A" WO || +BF + CLAT B + At (c* + CZA*"C*) + At(D* 4 C3A*”D*)

1+l s+l

< A" HlaAl] | G0 | +Co AT a ]| [ G0 | +at(C* + CAT'CY)

+ At(D* + C3A*"D*)

n+1
(

< ao | (A* 1+ Cyllad]]) + Ha)\||) +AECH(14 CA™) + At D*(1 4+ G A™).
If ||[aA | + At0’ <1, then A* < 1and |laA|| < 1. Hence the proof. O

Lemma 5. If | 4| + At0' < 1, where 0’ = max{||b|,2/lc|,2]|d|]}, ¥ = (1+ a\ + Ath) !,
then Scheme (10)—(12) is unconditionally stable.
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Proof. The difference equations defined in (10)—(12) can be written in the following vec-
tor equation:

n—1 n—11-1 n=11-1
ar = zH) A, U0+ (B” + ZZO HAnkB"l> — At (C" +Y 11 AnJrlkCnl)

1=0 k=0

n—11-1
— At (D" +Y 11 An+1an_l> ,

1=0 k=0
where
I —Atc" X i
v atAh 0 - 0 v+1 o 0
1 2 ll(xv+1 - ‘S)
—Atc %
0 L Z P N 0 v+1
2 % L(xy41—96)
— At x
nooL. N
0 0 Y3 0 0 Le(xy —0)
— At x
0 0 0o - 0 N
lkv1(xn —0)
: 0 o 0
Al = 0 0 0 a'A 0
—Atd} x n "
L (x1 4+ 1) 0 0 b 4/ ay A 0
—Atd} x
0 o - 0 pr 0
lz(X1 + 77) v+l
0 0 0 : 0 0
—Atd? x
0 0 0 v 0 A
lp(XU + 7’]) aN
—Atd" x
0 0 0 v 0 44
L Iy (xy +17) N |

am = uy,---,ug)’, B = (aiaug,o,---,0)7, ¥ = (1+alA+ AT,
C" = (cip(x1 —6,tn), 5 (x2 — 8, tn), -+, Chpr(xy — 8,t4),0, - - - ,0)7,
Dn = (O/ e /0/d¥4’2(x1 + ;7/ tn)/d§¢2(x2 + ;7/ tn)/ e d1’;l4)2(x1/ +77/ tn))T/

Let A" = max || Ay [, B = max | B < [ GIAIIG°), C* = max || € |, and
D" = max || D" | then | T3 Au 1< TR I Ay 1= A
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n—1 n—1  1-1
|UMijmkMMW+Qm|+2wnmkwwlO
k=0 =0

=0

k
n—1 1-1
+Af<|| C" I+ I TTAn— I C*! ||>

I=0 k=0

I=0 k=0

n—1 [1-1
+Af<|| D" |+ Y I TT Au—x Illl D™ ||>
< A" | T || +B* + A" B + At(c* + CZA*"C*) n At(D* 4 C3A*"D*)
<A”|a| +|| H |1 T° | +C A *"H || 1a | +Af(C* +C2A*”C*)

+ At(D* L CGAY'D )
-0 ot ﬂ/\ ﬂ/\ % «t % i
<||a’y (A (1+C1||?||)+H?|I +AtC (14 CA* )+ At D*(1+ G3A™).

If ||% || + At0’ < 1,then A* < 1and ||%| < 1. Hence the proof. [

Convergence Analysis

Theorem 3. Let u and Uj be the exact solution and numerical solution defined by (1)—(3) and
(7)~(9), respectively. Then, |u(x;, t;) — U]\ < C(N"Y4 MY, forall i,j.

Proof. Lete = u(xj, tj) — ll ul (i, ) = u(xg, ) e (x; — 6) + u(Xjes1, £) legr (i — 6),
ull (xj, ;) = u(xp, t; )l (x; +17) (xp+1,t])lp+1(xl +17) where k > 0, p > 0 such that
Xj =06 € (X, Xpy1), Xi + 11 € (xp, xpy1) and T(x;, ;) = Ei\] Mu(xl, t;) — Lu(x;,t;). Then,

T(x;,t) = (& — &7 Mu(x;, t;)

d 0
(g — D u(xi, t7) + a(x;, tj)(g — Dy )u(xi, t;)
+ c(x;, t) 0. isv,
v u(xi—é,t]-)—u(xl,t)l>v
0, i>7,
M ){”(szr’?f t) —ul (xi, t7),i < ¢
d d
TG )] < 1= Dy i )|+ s )] (o — Dy e 1)
‘Hc(xlr )||”(xzr ) (xut])|
+ ‘d xl/ ||u(xl/ t]) - un(xi/ t])|

<CN'4+cM'+CN2<CN'+cML

Note that e{) =0, forall j, e? =0, forall iand |£§]Mef| < CN-14+CM~1. We have
lel| <CN~1+CM™!, forall i,j. Hence the proof. [

Theorem 4. Let u and Uj be the exact solution and numerical solution defined by (1)—(3) and
(10)—(12), respectively. Then, [u(x;, t;) — U]| < C(N"Y4 MY, forall i,j.



Symmetry 2022, 14, 1046

10 0of 18

Proof. Let eg = u(x;,tj) — U{, ul(x;, ti) = u(xp, t)(x; — 0) + u(xppr, t) kg1 (x; = 9),
ull (xi,t7) = u(xp, t))lp(x; + 1) + u(xpy1, £7)lp41(x; + 1) where k > 0, p > 0 such that
Xj — 0 € (X, Xky1), X +1 € (xp, xpy1) and T(x;, t;) = Qé\]’Mu(xi, t;) — Lu(x;,t;). Then,

T(xi, t]) = (2,2 — Q)u(xi, t])
= (Dt_ — ;’t)u(xi, t]') +a(x;, t]') (D; — aax>u(xi, tj)

+c(x;, fj){o' i S,V .
u(x; —o,t) —u (x;,t;),i >v
+d(x;, t]-){o’ i Zf .
u(x; +1,t) —u(x;,t),i < ¢

(D7 — Lyulxi )

+ el fu(x; = 8,)) — u' (xi, )| + A |u(x; + 1, £7) — ulT (x;, 1))
<CN!'4+CcM14+CN2<CN14+cML

j
+|“i|

_ 0
TG )] < (D = gt )

Note thate) = 0, forall j, e =0, forall iand [2Y™e]| < CN~! + CM~1. We have
|e§| < CN-'4CM™!, forall i,j. Hence the proof. [

7. Variable Delay Problem and Finite Difference Method

Method (10)—(12) presented in the article can be applied to the variable delay differ-
ential equation. Motivated by the works [34,35], we consider a variable delay differen-
tial equation,

Lu = g—? + ag—z +bu(x,t) +cu(x —6(x),t) +du(x+n(x),t) =0, (x,t) € D, (13)
u(x,t) = ¢1(x,t), (x,t) € [¢1,0] x [0, T}, (14)
u(xrt) = fpz(X,f), (xrt) € [xf/ €2] X [Or T]/ (15)
u(x,0) = ug(x), x € [0,x¢], (16)

where the functions 4, b, ¢, d satisfy the conditions stated in Section 2 and x — é(x) < 0,
x+n(x) > x5 0 = min{infxe[ole] x—06(x),0} and ¢, = max{supxe[olxﬂ x+n(x),xs}.
From Theorem 2 one can prove that the solution is stable, if it exists.

A finite difference method for the above Problems (10)—(12) is as follows:

SNMUL = Dy U+ al Dy Ul 40U + U (x, ) + AU (3, 8) = 0, (17)
U = ¢1(0,t;), tj € [0, T), UY = up(x;), x; € [0, xy] (18)
where
U (2o, 1) = $1(x; = 6(x:), 1)), if x;—d(x;) € [01,0],
ir - 1 i .
! Ul (x; — 8(x;)) + Uj e (i — 6(xi)),if x; — 6(x;) € [, X1,

UH(X' t') _ ¢2'(xi + 77(xi), t]'), ‘ if x4+ 77(3(1‘) e [xf, gz],

v Uplp(xi +17(x:)) + Uy g Lpr (3 + 11(x)), 3 x5 +17(x3) € [xp, 1],
i/ Ik 1, 1p, 1y 11 are piecewise linear interpolating polynomials. Similar to Lemmas 2 and 5
and Theorem 3, one can prove the consistency, stability, and convergence of the above
Method (17) and (18). An illustrating numerical example is given in the next section.
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Algorithm for the Scheme (17) and (18)

In this section, we present the algorithm to solve the variable delay problem:
1. Define the mesh points x; and #; with mesh sizes Ax; and At;.

Let the time level t = ¢;,j = 1.
3. Ifx; —d(x;) = xrand x; + 17(x;) = x,, for some k, p, then

j At

iAg)— 1 gl
ul = (1+ajz2 +bjAL)

j—1 j i1l 17l
Ui le] U — Atjciuk — At]'diup .

4. Ifx;—0(x;) = xi for some k and x, < x; +17(x;) < x,41 for some p, then

j Bt

. _ A
ul = (1+ajzt +bjat) /

- o o
U +a lefuf — AU — Atdl UL, (x; + 1(x;)) +

u;;+1lp+1(xi +1(x;))] |-

5. Ifxp < x; —0(x;) < xgyq for some k and x; + 77(x;) = xp for some p, then

]At

Ul = (1+al5d +bla) ! o

L o ,
ul ™t +al g ul — AU (g — 8(x)) + UL g (% —

1

3(x;)) — Ai’]d{u;, .

6. Ifxp < x;—06(x;) < xpq1 and xp < x; +717(x;) < xp41, then apply scheme

j At

ul = (1+al5 +0/at) ! j 2l

- o ,
uy +a @ px: Ll] L — Dt [U (x; — 8(x;)) + Uj L (3 —

5(x;)) — Atdl[UL, (x; + 1(x;)) + U;g+1lp+1(xi +n(x:)] |-
7. Increment j = j + 1, and go to Step 2.

8. Numerical Examples

Three examples are given in this section to illustrate the numerical methods presented
in this paper. We use the half mesh principle to estimate the maximum error.

ENM — max | U/ (Ax, At) — Ul(Ax/2,At/2) |, 0<i< N, 0<j<M
L]

where U/(Ax, At) and Ul] (Ax/2,At/2) are the numerical solution at the node (x;, ;) with
mesh sizes (Ax, At) and (Ax/2,At/2), respectively. Graphs of the numerical solutions,
the numerical solution at different time levels, and the maximum pointwise error plots
are drawn.

Example 1. Consider the following first-order hyperbolic delay differential equation.

?)itl + a(x,t)g—z +bu(x,t) +c(x, Hu(x — 6,t) +d(x, )u(x +n,t) =0, (x,t) € (0,2] x (0,1], (19)

u(x,t) =0, (x,t) € [=6,0] x [0,1], u(x,t) =0, (x,t) € [xf,xr + 1] x[0,1], (20)

u(x,0) = xexp(—(4x —1)2/4)(2 —x), x € [0,2], (21)
a(x,t) = 1+2ti—+i—;x2+x4' b=2, c(x ) = —%, d(x,b) = —2

Case 1: In this case, = 1, = 1 (symmetric delay arguments). Due to the presence of the
delay term, an additional wave propagation occurs in the solutions. Numerical
solutions are plotted in Figures 1 and 2, and for different time levels, the solution
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curves are plotted in Figures 3 and 4. The maximum pointwise error using the
conditional method is given in Table 1, and for unconditional method, the errors
are given in Tables 2 and 3.

Case 2: In this case, it is assumed that § = 0.5,77 = 0.5 (symmetric delay arguments). The
numerical solution is plotted in Figure 5, and the numerical solution at different
time levels is presented in Figure 6.

Case 3: In this case, it is assumed that § = 1,7 = 0.5 (asymmetric delay arguments). The
numerical solution is plotted in Figure 7, and the numerical solution at different
time levels is presented in Figure 8.

/
1/ 7
iz
7
7 .
’/////’/’/I/,/,/,’//’;//;’/’/ﬂ//i/’f"’f
)

s
s
7
W7
i

i

Numerical Solution

7

iz
T
i
777
N 7
77
'.//4/////////////////;%
) W//////////// A
n

Numerical Solution

Figure 2. The surface plot of the U-numerical solution of Example 1 for Case 1 using BTBS.

U - Numerical Solution at Different Time Level
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——1=02| | 250
=04 | 51
——t08| |,
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35
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T
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5}
£
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z e -
h éé&sﬁswa%‘s\s\&;
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Tt reeaay ! ! 1
1.4 1.6 18 2

Figure 3. U-numerical solution of Example 1 at different time levels for Case 1 using FITBS.
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U - Numerical Solution at Different Time Level
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Figure 4. U-numerical solution of Example 1 at different time levels for Case 1 using BTBS.

Numerical Solution

Figure 5. The surface plot of the U-numerical solution of Example 1 for Case 2 using BTBS.
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Figure 7. The surface plot of the U-numerical solution of Example 1 for Case 3 using BTBS.
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Numerical solution
° o
> ©
T T
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T

o
~
T

U - Numerical Solution at Different Time Level

o

Figure 8. U-numerical solution of Example 1 at different time levels for Case 3 using BTBS.

Table 1. Case 1: Maximum error for Example 1 using the conditional method.

Nandéd=1,x7=1

M| 64 128 256 512 1024
64 2.0649 x 1072 2.1038 x 1072 5.9393 x 10'®  5.3383 x 10*  1.5500 x 10%7
128 92118 x 1073 7.4438 x 1073 7.2246 x 1073 5.8331 x 100 1.5500 x 10%7
256 43848 x 1073 3.3665 x 1073 2.6185 x 1073 24920 x 1073  3.2166 x 10%°
512 21422 x 1073 1.6116 x 1073 1.1954 x 1073 9.0767 x 10~*  8.6369 x 10~*
1024 1.0591 x 1073 7.8936 x 107* 57472 x 107%  4.1630 x 107*  3.1311 x 1074
Table 2. Case 1: Maximum error for Example 1 using the unconditional method.
Nandéd=1,y=1

M/ 64 128 256 512 1024

64 1.4105 x 1072 8.0063 x 1073  4.4119 x 1073 23598 x 103  1.2313 x 1073
128 74588 x 1073 4.3432 x 1073 24755 x 1073 13759 x 1073 7.4200 x 10~*
256 3.8463 x 1073 22792 x 1073  1.3388 x 1073 7.7517 x 107*  4.3698 x 1074
512 1.9545 x 1073 1.1713 x 1073 7.0246 x 1074 4.2111 x 107*  2.4858 x 1074
1024 9.8540 x 10°% 59423 x 10~*  3.6097 x 10~% 22166 x 10~*  1.3595 x 10~*

Table 3. Case 3: Maximum error for Example 1 using the unconditional method.
Nandé =1,y =0.5

M| 64 128 256 512 1024

64 1.9072 x 1072 13116 x 1072 82844 x 1073  4.8425 x 1073 2.6635 x 1073
128 1.0195 x 1072 72773 x 1073 4.8242 x 1073 29639 x 1073 1.7046 x 1073
256 52854 x 1073 3.8622 x 1073 2.6482 x 1073 17010 x 1073  1.0281 x 1073
512 26931 x 1073 1.9944 x 1073 1.3964 x 1073 9.2669 x 10~*  5.8580 x 10~*
1024 1.3597 x 1073 1.0140 x 1073  7.1846 x 10~%  4.8675 x 10~*  3.1818 x 10~*

Example 2. Consider the variable delay differential Equations (13)—(16).
1+ x?

where a(x, t)

14 2fx 4 2x2 + x4

b(x,t) =2, c(x,t) =

—% d(x,t) =

—%, S(x) =e%,

n(x) = /x. Figures 9 and 10 respectively present the numerical solution and the numerical
solution at different time levels.
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Numerical Solution

t-axis x-axis

Figure 9. U-numerical solution of Example 2 at different time levels using BTBS.

U - Numerical Solution at Different Time Level
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1202 M=250

=04

——1=06

1=0.8

0.8
t=1

°
>

Numerical solution

o
S

0.2

1.4 16 18 2

Figure 10. U-numerical solution of Example 2 at different time levels.

Example 3. Consider the following first-order hyperbolic delay differential equation.

?)—u + a(x,t)g—u +bu(x,t) +c(x, tu(x —6,t) +d(x, HHu(x+n,t) =0, (x,t) € (0,2] x (0,1], (22)

u(x,t) =t —t*+x(2—x)>2 (x,t) € [-6,0] x [0,1], (23)

u(x,t) =x(2 —x)?, (x,t) € [xp, x4+ 1] % [0,1], (24)

u(x,0) = xexp(—(4x —1)2/4)(2 — x), x € [0,2], (25)
1+ x2

1 1
¢ b=2 clx ) = —=, d(x,t) = —=.
a0t = o o el t) =—5 dlxt)=—3

Figure 11 represents the numerical solutions of this problem.

P
Y

Y

_

Numerical Solution

t-axis

Figure 11. U-numerical solution of Example 3 at different time levels using BTBS.
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9. Conclusions

In this article, we considered a one-dimensional transport equation with delay and
advance arguments. The maximum principle and stability results were proven for the
problem considered. Two finite difference methods with piecewise linear interpolation
were suggested for Problem (1)-(3). We proved that the methods are consistent and
convergent of order one in space and time. One of the methods is conditionally stable,
and the other one is unconditionally stable. The finite difference method with linear
interpolation has some advantages. If x; # 4, then one has to divided the interval
[0, x f] into N sub-intervals with different mesh sizes. If x; < x; —6 < x541 and x, <
xi + 1 < xp41, then one has to apply the interpolation of U]](, U]]f 41 and U;,, U; 4 to
approximate u(x; — 4,t;) and u(x; + 7,t;). Numerical examples are given to illustrate
the theoretical findings. The maximum pointwise errors of the examples are given in
Tables 1-4. From Table 1, one can see that Method (7)—(9) is conditionally stable, and from
Tables 2—4, Method (10)—(12) is unconditionally stable. The newly proposed finite difference
schemes with interpolation for the hyperbolic equation works not only for the constant
delay and advanced arguments, but also for the variable arguments. As an application
of the unconditionally stable method, a method for the variable delay equation is given
in (17)—(18). A numerical example for variable delay equation is given in Example 2. The
numerical solution and time level graphs are plotted in Figure 9 and Figure 10, respectively.
The proposed method is applicable to the linear equation. The same method can be applied
to some class of nonlinear equations after linearizing the given problem into a linear
problem. Further, the proposed interpolation technique can be extended to the parabolic
equation with delay arguments. As discussed in [10], for fixed J and an increasing value of
1, the impulse moves towards the left, whereas for the fixed 77 and increasing value of J,
the impulse moves towards the right; see Figures 12 and 13.

Table 4. Maximum error for Example 3 using the unconditional method.

Nandéd=1,14=1

5]

M| 64 128 256 512 1024

64 1.7895 x 1072 1.0976 x 1072 85561 x 1073 7.1527 x 1073  6.1156 x 1073

128 9.6501 x 1073 6.1582 x 103 5.0506 x 10~3  4.4504 x 1073  3.9743 x 1073

256 5.0361 x 1073 3.3007 x 1073  2.8264 x 1073 2.6236 x 1073  2.4722 x 1073

512 25753 x 1073 1.7170 x 1073 15124 x 1073 1.4658 x 1073  1.4578 x 103

1024 1.3027 x 1073 8.7668 x 107%  7.8569 x 10~* 7.8413 x 10°%  8.1491 x 10~*
| L L L L L L L

Figure 12. U-numerical solution of Example 1 at different time levels 6 = 1 and # = 0.5,0.6,0.7.
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U - Numerical Solution at Different Time Level

205

——§=06

5=0.7

Numerical solution

e,

Figure 13. U-numerical solution of Example 1 at different time levels 7 = 1 and § = 0.5,0.6,0.7.
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