
����������
�������

Citation: Huang, H.; Ning, Y.; Chen,

X. A Structural Credit Risk Model

Driven by the Lévy Process under

Knightian Uncertainty. Symmetry

2022, 14, 1041. https://doi.org/

10.3390/sym14051041

Academic Editors: Jian Zhou,

Ke Wang, Yuanyuan Liu and

Palle E. T. Jorgensen

Received: 23 April 2022

Accepted: 17 May 2022

Published: 19 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

A Structural Credit Risk Model Driven by the Lévy Process
under Knightian Uncertainty
Hong Huang 1,2, Yufu Ning 1,2,* and Xiumei Chen 1,2

1 School of Information Engineering, Shandong Youth University of Political Science, Jinan 250103, China;
huanghong@sdyu.edu.cn (H.H.); cxm@sdyu.edu.cn (X.C.)

2 Key Laboratory of Intelligent Information Processing Technology and Security, Universities of Shandong,
Jinan 250103, China

* Correspondence: nyf@sdyu.edu.cn

Abstract: The classic credit risk structured model assumes that risky asset values obey geometric
Brownian motion. In reality, however, risky asset values are often not a continuous and symmetrical
process, but rather they appear to jump and have asymmetric characteristics, such as higher peaks
and fat tails. On the other hand, there are real Knight uncertainty risks in financial markets that cannot
be measured by a single probability measure. This work examined a structural credit risk model
in the Lévy market under Knight uncertainty. Using the Lévy–Laplace exponent, we established
dynamic pricing models and obtained intervals of prices for default probability, stock values, and
bond values of enterprise, respectively. In particular, we also proved the explicit solutions for the three
value processes above when the jump process is assumed to follow a log-normal distribution. Finally,
the important impacts of Knightian uncertainty on the pricing of default probability and stock values
of enterprise were studied through numerical analysis. The results showed that the default probability
of enterprise, the stock values, and bond values were no longer a certain value, but an interval under
Knightian uncertainty. In addition, the interval changed continuously with the increase in Knightian
uncertainty. This result better reflected the impact of different market sentiments on the equilibrium
value of assets, and expanded decision-making flexibility for investors.

Keywords: structural credit risk model; Lévy process; Knightian uncertainty; numerical analysis

1. Introduction

Since the 2008 sub-prime mortgage crisis, global attention to credit risk has reached
an unprecedented level. So-called credit risk is the possibility that either of the borrowers
or lenders will breach the contract. The global credit storm caused the three investment
banks of Lehman Brothers, Bear Stearns, and Merrill Lynch to go bankrupt, and the
credit ratings of Portugal, Italy, Ireland, Greece, and Spain to drop below Baa. It was under
the stimulus of the financial crisis that many credit risk management tools gradually became
essential for initial dispensation. In this context, the method for constructing a reasonable
credit risk measurement model and seeking precise and efficient numerical algorithms has
become a hot issue that has attracted widespread attention. Based on the famous Black–
Scholes [1] option pricing formula, Merton [2] proposed the structured model of credit
risk in the study of asset pricing. This model aroused widespread concern in academia
and finance. At present it has been developed into a huge model system, occupying
an important position in the field of credit risk measurement. In the field of practice,
Moody’s KMV model, based on this structured model, has now become one of the most
popular credit risk management models in the financial industry. This structured model
of credit risk assumed that a company’s asset value process was subject to geometric
Brownian motion, and only described the continuous changes in the company’s asset value,
ignoring the abnormal changes in assets caused by a series of abnormal conditions such as
the Brexit vote and the epidemic. So many scholars have expanded the Merton model into
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the jump process. Mason and Bhattacharya [3] were the first to use pure jumps to describe
the value of corporate assets. Zhou [4] assumed that a company’s asset value was subject to
a diffusion process with a jump variable that fitted a lognormal distribution, and deduced
the bond pricing formula in 2001. Opposed to the approximately symmetric distribution of
market risk returns, the distribution of credit risk returns is typically asymmetric, and its
distribution often exhibits a phenomenon of skewed fronts and thick tails, and the Lévy
process can describe this phenomenon well. Hilberink and Rogers [5] introduced the
Lévy process in the structured model, as the direction of a jump can only be from top to
bottom in Hilberink and Rogers’s model. Scherer [6] further optimized their model so that
the value of corporate assets could not only jump from top to bottom, but also jump from
bottom to top. Based on the option pricing model in which the underlying stocks driven
by the Lévy jump–diffusion process, proposed by Xiong [7], Xue and Wang [8] discussed
a structural credit risk model driven by the Lévy process and obtained an explicit formula
for default probability, bond price, and the credit spread. Shi [9] introduced stochastic
interest rate risk based on a hybrid exponential jump–diffusion model and proposed
a hybrid exponential jump–diffusion model incorporating stochastic interest rates. It was
also shown that the model could better fit most of the typical characteristics of the market.

In 1921,the American economist Knightian [10] first proposed that financial markets
often contained risks that could not be measured with a single probability measure; these
were termed Knightian uncertainty risks. Subsequently, the famous Ellsberg paradox pro-
posed by Ellsberg [11] further showed that a large number of choice behaviors in financial
markets could not be explained by a single probability measure, so many scholars were
devoted to the study of Knightian uncertainty. Chen and Epstein [12] used the relevant
theory of backward stochastic differential equations (BSDE) for the first time to establish
a mathematical model that reflected Knightian uncertainty risk, and they studied continu-
ous time optimal consumption and portfolio models. Based on this work, Huang et al. [13]
studied deposit insurance pricing under Knightian uncertainty and obtained the conclusion
that Knightian uncertain risk had a significant impact on the determination of the Bank
of China’s premium; specifically, as the uncertainty parameter increased, the length of
each bank’s insurance rate interval increased. Huang and Wang [14] also paid attention to
the option pricing under Knightian uncertainty driven by the Lévy process, and established
the upper and lower bounds model of European options. Liu et al. [15] extended the pricing
of the hedge fund compensation to the Knightianian uncertainty market and obtained
the conclusion that an increase in the level of Knightian uncertainty would cause the erosion
of the value of the fees and the claim. Furthermore, based on uncertainty theory proposed
by Liu [16] in 2007, Liu [16] and Chen [17] proved European and American option pricing
formulas, respectively. Geometric average and arithmetic average Asian option pricing
formulas were certified by Zhang, Liu and Sun [18], and Chen [19], respectively.

Combining the above documents, we could see that when discussing the credit risk
problem driven by the Lévy process, many scholars ignored the impact of Knightian
uncertainty. Conversely, when discussing the issue of credit risk in Knightian uncertain
environment, they did not take into account the actual jump of the underlying asset.
The aim of this paper was to discuss the structured model of corporate credit risk driven
by the Lévy process under the Knightian uncertain financial market. Compared with
previous studies on credit risk, this paper studied the credit risk measurement problem
under the condition of comprehensively considering the existence of jumps in corporate
assets and Knightian risk, which cannot be measured by a single probability measure
in the financial market. In this case, the default probability of listed companies was no
longer a specific number but an interval, which could better reflect the impact of different
market sentiments on default probability and expand the flexibility of decision making.
By introducing a feasible control set to characterize Knightian uncertainty in the financial
market, we used the Lévy–Laplace transform to establish dynamic pricing models for
corporate default probability, stock values, and bond values and obtain the corresponding
pricing intervals. At the same time, the issue of credit risk driven by the pure jump Lévy
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process was discussed in detail. Under the assumption that the jump variable is a log-
normal distribution, the explicit solutions of the dynamic pricing models were obtained.
Finally, the numerical analysis method was used to reveal the important impact of Knightian
uncertain parameters and jump intensity on the default probability, stock values, and bond
value pricing intervals.

The remainder of this paper is organized as follows. In Section 2, we introduce
the Lévy financial market under Knightian uncertainty and some characteristics of the Lévy
process. In Section 3, we obtain the pricing intervals of the corporate default probability,
stock values, and bond values by establishing dynamic pricing models. Section 4 exam-
ines the important impact of Knightian uncertain parameter and jump intensity on these
value pricing intervals. Section 5 and 6 are the discussion and conclusion of this paper
respectively.

2. The Lévy Financial Market under Knightian Uncertainty

Referring to Ref. [14,20], this paper describes the financial market as follows. Let
(Ω,Ft,P) be completely a continuous time trading economy with an infinite horizon
that satisfies the usual conditions. The information evolves according to the augmented
filtration Ft generated by standard Brownian motion {Bt}0≤t≤T and an independent Lévy
process {Xt}0≤t≤T . In addition, the Lévy process satisfies the following properties:

(i) X0 = 0 almost surely;
(ii) {Xt}0≤t≤T is centered in its origin;
(iii) The Laplace transform of {Xt}0≤t≤T is bounded. There exists τ > 0 and ω2 > 0 so

that for every ω1 ∈ (−∞, ω2] and t ∈ (0, τ], the Laplace transform ω → E(eωXt) is
bounded by two strictly positive constants over ω ∈ [ω1, ω2]. There exists M1 > 0
and M2 > 0 for every ω ∈ [ω1, ω2] and t ∈ (0, τ], it holds that

M1 6 E(eωXt) 6 M2.

We also need the following Lévy–Laplace exponent of {Xt}0≤t≤T from Ref. [21]:

Lemma 1. There exists a function φ(·) that for every t ∈ R+, ω ∈ (−∞, ω2] satisfies

E(eωXt) = eφ(ω)t. (1)

This function φ(·) is called the Lévy–Laplace exponent of {Xt}0≤t≤T .

We assume that the enterprise value process is described by a geometric Brownian
motion multiplied by the exponential of a Lévy process with no Brownian motion part.
This leads to the following formulation for Vt:

Vt = V0exp
{ ∫ t

0

[
µs −

σ2
s

2

]
ds +

∫ t

0
σsdBs + Xt

}
, t ∈ [0, T], (2)

where µt,σt are the expected return and volatility of the value of Vt, respectively, and as-
sumes they are integrable functions in [0, T]→ R and σt > 0 for all t ∈ [0, T].

In theory, there is no arbitrage in the financial market if the discounted asset is Martin-
gale under the natural probability measure P, that is

E
[
exp
{
−
∫ t

0
rsds

}
Vt

]
= V0 a.s., (3)

where rs is the zero-coupon interest rate. Taking Vt into (3) we can obtain the following
equations
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E
[
exp
{
−
∫ t

0 rsds
}

Vt

]
= E

[
exp
{
−
∫ t

0 rsds
}

V0exp
{ ∫ t

0

[
µs − σ2

s
2

]
ds +

∫ t
0 σsdBs + Xt

}]
= V0exp

{ ∫ t
0 (µs − rs)ds−

∫ t
0

1
2 σ2

s ds
}

E
[
exp{

∫ t
0 σsdBs}

]
E
[
exp{Xt}

]
,

since {Bt}0≤t≤T is standard Brownian motion under probability measure P, we know that

E
[
exp
{ ∫ t

0
σsdBs

}]
=
∫ t

0

1
2

σ2
s ds,

from Lemma 1 and the following equation holds

E
[
exp{Xt}

]
= exp

{
φ(1)t

}
.

Then

E
[
exp
{
−
∫ t

0
rsds

}
Vt

]
= V0exp

{ ∫ t

0
(µs − rs)ds + φ(1)t

}
,

therefore we can obtain the no-arbitrage constraint in this financial market as∫ t

0
µsds =

∫ t

0
rsds− φ(1)t, t ∈ [0, T], (4)

and denote the risk-neutral measure as Q.
From reference [22], we know that if we let

BQ
t =

∫ t

0

µs − rs

σs
ds + Bt,

then BQ
s is Brownian motion under the risk-neutral measure Q.

In order to describe the risk of Knightian uncertainty in financial markets, Chen and
Epstein [12] introduced the following set Θ called K-ignorance,

Θ =
{
(θt)0≤t≤T , |θt| ≤ k, a.s. t ∈ [0, T]

}
, (5)

where k > 0 is a constant, and θ ∈ Θ represents the degree of Knightian uncertainty
in the financial markets. Uncertain risks that are real in the financial market and cannot be
measured by a single probability measure, such as market information risk and liquidity
risk and other uncertain risks and the resulting changes in investor sentiment, will be
measured by generating a series of equivalent probability measures Qθ through θ. Namely
there is a family of equivalent probability measurement spaces (Ω,Ft, Qθ) with θ ∈ Θ
in the financial market. The condition θt = 0 indicates a rational investor, and the probabil-
ity measurement spaces is (Ω,Ft, Q), as mentioned above. The condition θt > 0 indicates
pessimistic investors, the bigger θt is the stronger the pessimism, and θt < 0 indicates
an optimistic investor, the smaller θt is the stronger the optimism.

Assume that the enterprise value process under Knightian uncertainty is as follows

Vt = V0exp
{ ∫ t

0

[
µs −

σ2
s

2
− σsθs

]
ds +

∫ t

0
σsdBθ

s + Xt

}
, t ∈ [0, T], (6)

where

Bθ
t = BQθ

t =
∫ t

0
θsds + BQ

t , (7)

then Bθ
t is Brownian motion under the probability measure Qθ .
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3. Structural Credit Risk Model
3.1. Default Probability

We make the following assumptions similar to Ref. [14,20] for the Poisson process
{Nt}0≤t≤T and stochastic jumps of size {Ui}i∈N+ . Let us denote {Nt}0≤t≤T as a Poisson
process of intensity λ and a sequence of independent variables independently and identically
distributed {Ui}i∈N+ that satisfies

(i) U0 = 1, Ui ∈ (−1,+∞);

(ii) ∀u ∈ (−∞, 1), E
[
(1 + U)u

]
< ∞.

Assume the standard Brownian motion {Bt}0≤t≤T , Poisson process {Nt}0≤t≤T , and
{Ui}i∈N+ are independent and the filtration Ft in this market is spanned by the three
stochastic processes. In this framework, the enterprise asset value process (2) can be mod-
eled as a risky asset with some stochastic jumps of size {Ui}i∈N+ , which occur according to
the Poisson process {Nt}0≤t≤T . Between two jumps, the enterprise asset value process can
be modeled by standard Brownian motion {Bt}0≤t≤T as follows:

Vt = V0exp
{ ∫ t

0

[
µs −

σ2
s

2

]
ds +

∫ t

0
σsdBs

} Nt

∏
i=1

(1 + Ui), t ∈ [0, T], (8)

where Xt = ln
( Nt

∏
i=1

(1 +Ui)
)

is a pure jump Lévy process, and
0

∏
i=1

(1 +Ui) = 1 means there

is no jump in this market.
In order to obtain the Lévy–Laplace exponent of a pure jump Lévy process Xt, we need

the following proposition of a Poisson process [21].

E
[
eXt
]
= E

[ Nt

∏
i=1

(1 + Ui)
]

=
+∞

∑
n=0

E
( Nt=n

∏
i=1

(1 + Ui)
∣∣∣Nt = n

)
P(Nt = n)

=
+∞

∑
n=0

(
E(1 + U1)

)n e−λt(λt)n

n!

= exp
{

λtE(U1)
}

that is φ(1) = λE(U1), then we obtain the following concrete expression of the no-arbitrage
constraint in this section:∫ t

0
µsds =

∫ t

0
rsds− λE(U1)t, t ∈ [0, T].

Under the risk-neutral measure Q, the enterprise value process

Vt = V0

Nt

∏
i=1

(1 + Ui)exp
{ ∫ t

0

[
rs −

σ2
s

2

]
ds− λE(U1)t +

∫ t

0
σsdBQ

s

}
, t ∈ [0, T], (9)

then the enterprise value process under Knightian uncertainty is

Vθ
t = V0

Nt

∏
i=1

(1 + Ui)exp
{ ∫ t

0

[
rs −

σ2
s

2
− σsθs

]
ds− λE(U1)t +

∫ t

0
σsdBθ

s

}
, t ∈ [0, T], (10)

where Bθ
s is defined as in (7).

Let E(t, Vt, T) and D(t, Vt, T) be the value of the stock and bonds issued by the en-
terprise at time t, where T is the maturity date of the enterprise bonds. Assume that
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the enterprise’s default time can only be the bond maturity date T. Concretely, at the ma-
turity date T, if VT < L, the enterprise will default and enterprise bond holders can only
receive an amount of wealth equal to VT ; if VT > L, the enterprise will not default and
enterprise bond holders will receive an amount of wealth equal to L. Here L is the par
value of the enterprise bonds.

We then obtain the first conclusion of this paper as the following theorem, Theorem 1:
the interval of enterprise default probability under Knightian uncertain environment.

Theorem 1. Assume an enterprise asset value process is described by (10), the enterprise’s default
probability under Knightian uncertainty is

pθ = Pθ{Vθ
T < L} =

+∞

∑
n=1

(λT)n e−λT

n!
N(−dθ

n), θ ∈ Θ, (11)

where N(·) is a standard normal distribution and

dθ
n =

ln V0
L + ln

[ n

∏
i=1

(1 + Ui)
]
− λTE(U1) +

∫ T

0

[
rs −

σ2
s

2
− σsθs

]
ds√∫ T

0 σ2
s ds

, (12)

and the default probability interval is
[

p−k, pk
]
, k > 0.

Proof. According to the definition of enterprise default probability and the enterprise value
process (10), we get

pθ = Pθ{Vθ
T < L}

= pθ
{

V0

NT

∏
i=1

(1 + Ui)exp
{ ∫ T

0

[
rs −

σ2
s

2
− σsθs

]
ds− λE(U1)T +

∫ T

0
σsdBθ

s < L
}

,

From the assumptions about the volatility parameter in the enterprise value process (2),

it follows that
√∫ T

0 σ2
s ds > 0. Dividing both sides of the inequality in curly braces by√∫ T

0 σ2
s ds we get

pθ = pθ
{ ∫ T

0 σsdBθ
s√∫ T

0 σ2
s ds

< −
ln V0

L + ln
[ NT

∏
i=1

(1 + Ui)
]
− λTE(U1) +

∫ T

0

[
rs −

σ2
s

2
− σsθs

]
ds√∫ T

0 σ2
s ds

}
.

For writing convenience, set

A =
{ ∫ T

0 σsdBθ
s√∫ T

0 σ2
s ds

< −
ln V0

L + ln
[ NT

∏
i=1

(1 + Ui)
]
− λTE(U1) +

∫ T

0

[
rs −

σ2
s

2
− σsθs

]
ds√∫ T

0 σ2
s ds

}
,

then
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pθ = Pθ{Vθ
T < L} = Eθ [IA]

= Eθ
[

Eθ
(

IA

∣∣∣NT

)]
=

+∞

∑
n=1

(λT)n e−λT

n!
Eθ [IA

∣∣∣NT = n]
]

=
+∞

∑
n=1

(λT)n e−λT

n!
Pθ
[

A
∣∣∣NT = n

]

=
+∞

∑
n=1

(λT)n e−λT

n!
Pθ
{ ∫ T

0 σsdBθ
s√∫ T

0 σ2
s ds

< −dθ
n

}
.

Since
∫ T

0 σsdBθ
s is a standard normal distribution with mean 0 and variance

∫ T
0 σsds

under probability measure Pθ , then

pθ =
+∞

∑
n=1

(λT)n e−λT

n!
N(−dθ

n).

It is easy to verify by the definition of set Knightian uncertainty Θ that the default

probability interval is
[

p−k, pk
]
, k > 0.

The conclusion in Lin [23], is the special case when θ = 0 here.

3.2. Enterprise Bond Value and Stock Value

In Section 3, we analyzed that at time T if VT < L, the enterprise will default, and the
enterprise bond value D(VT) will be VT and stock value E(VT) will be 0, due to the priority
claim of bonds. Contrarily, if VT > L, the enterprise will not default, then the enterprise
bond value D(VT) will be L and stock value E(VT) will beVT − L. That is,

E(VT) = max
{

VT − L, 0
}

, (13)

D(VT) = L−max
{

L−VT , 0
}

. (14)

This means that stock value is a call option of enterprise asset value. Enterprise bond
value is equivalent to such a portfolio: buy a risk-free bond with a par value of L and
a maturity date of T, and sell a put option with an execution price of L and a maturity date
of T for the assets of the enterprise at the same time.

According to Black–Scholes formula [1] and Martingale measure transformation,
we obtain the following theorem, Theorem 2, about the value of the enterprise stock and
enterprise bond.

Theorem 2. Assume an enterprise asset value process is described by (10), the value of enterprise
stock and an enterprise bond under Knightian uncertainty are

Eθ(0, V0, T) =
+∞

∑
n=1

(λT)n e−λT

n!

[
V0exp

{
− λTE(U1)−

∫ T

0
σsθsds

}
n

∏
i=1

(1 + Ui)N(dθ
2,n)− L exp

{
−
∫ T

0
rsds

}
N(dθ

1,n)
]
,

(15)

Dθ(0, V0, T) = V0 − Eθ(0, V0, T), (16)
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where N(·) is a standard normal distribution and

dθ
1,n = dθ

n =

ln V0
L + ln

[ n

∏
i=1

(1 + Ui)
]
− λTE(U1) +

∫ T

0

[
rs −

σ2
s

2
− σsθs

]
ds√∫ T

0 σ2
s ds

, (17)

dθ
2,n = dθ

1,n +

√∫ T

0
σ2

s ds, (18)

and the enterprise stock value interval is
[

Ek(0, V0, T), E−k(0, V0, T)
]
, (k > 0). Then the enter-

prise bond value interval is
[

D−k(0, V0, T), Dk(0, V0, T)
]
, (k > 0).

Proof. According to Black–Scholes formula [1] of the call option

Eθ(0, V0, T) = Eθ
[
exp
{
−
∫ T

0 rsds
}
(Vθ

T − L)+
]

= Eθ
[
exp
{
−
∫ T

0 rsds
}(

V0

n

∏
i=1

(1 + Ui)exp
{ ∫ T

0

[
rs −

σ2
s

2
− σsθs

]
ds

−λE(U1)T +
∫ T

0 σsdBθ
s

}
− L

)+]
=

+∞

∑
n=1

(λT)n e−λT

n!

[
V0exp

{
− λTE(U1)−

∫ T

0
σsθsds

} n

∏
i=1

(1 + Ui)N(dθ
2,n)

−L exp
{
−
∫ T

0 rsds
}

N(dθ
1,n)
]
,

where
dθ

1,n = dθ
n,

dθ
2,n = dθ

1,n +
√∫ T

0 σ2
s ds,

and the enterprise stock value interval is
[

Ek(0, V0, T), E−k(0, V0, T)
]
, (k > 0).

According to Black–Scholes formula [1] of put option

Dθ(0, V0, T) = Eθ
[
exp
{
−
∫ T

0 rsds
}

D(Vθ
T)
]

= exp
{
−
∫ T

0 rsds
}

Eθ
[

L−max{L−VT , 0}
]

= Lexp
{
−
∫ T

0 rsds
}
− Eθ

[
exp
{
−
∫ T

0 rsds
}
(L−Vθ

T)
+
]

= V0 −
+∞

∑
n=1

(λT)n e−λT

n!
Eθ
[
V0exp

{
− λTE(U1)−

∫ T

0
σsθsds

} n

∏
i=1

(1 + Ui)N(dθ
2,n)

−L exp
{
−
∫ T

0 rsds
}

N(dθ
1,n)
]
,

and the value interval is
[

D−k(0, V0, T), Dk(0, V0, T)
]
, (k > 0).

3.3. A Particular Case

Considering that a company’s asset value process is described by an exponential form
as in (10), for the convenience of numerical calculations in Section 4, we suppose, as it is
assumed in Huang [14] and Benhamou [20], that the jump process (1 + Ui) follows a log-
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normal distribution with mean µ̄ and volatility σ̄2 for any i ∈ N+. Then, the expectation of
U1 is

E(U1) = exp
{

µ̄ +
σ̄2

2

}
− 1. (19)

Their product
n

∏
i=1

(1 + Ui) follows a log-normal distribution with mean nµ̄ and volatil-

ity nσ̄2, as the (1 + Ui) are independently distributed.
Let

Y =

ln
( n

∏
i=1

(1 + Ui)
)
− nµ̄

√
nσ̄

,

Y follows a standard normal distribution, then

n

∏
i=1

(1 + Ui) = exp
{

nµ̄ +
√

nσ̄Y
}

. (20)

We also need the following important property of a centered normalized normal
distribution Y ∼ N(0, 1), for every a1, a2, a3 ∈ R,

E
(

exp{a1Y}N(a2Y + a3)
)
= exp

{ a2
1

2

}
N
( a1a2 + a3√

1 + a2
2

)
. (21)

Under this framework, assume the expected return µ and volatility σ2 of the enterprise
value are constants. Then, we obtain the following theorem, Theorem 3.

Theorem 3. Under the assumption of the jump process, (1 +Ui) follows a log-normal distribution
with mean µ̄ and volatility σ̄. The value of the enterprise stock (15), enterprise bond (16), and
default probability (11) under Knightian uncertainty have the following expressions

Eθ(0, V0, T) =
+∞

∑
n=1

(λT)n e−λT

n!

[
V0exp

{
nµ̄ +

nσ̄2

2
− λTE(U1)−

∫ T

0
σθsds

}
N(d̄θ

2,n))− Le−rT N(d̄θ
1,n)
]
,

(22)

Dθ(0, V0, T) = V0 − Eθ(0, V0, T), (23)

pθ = Pθ{Vθ
T < L} =

+∞

∑
n=1

(λT)n e−λT

n!
N(−d̄θ

n), (24)

where N(·) is a standard normal distribution, and

E(U1) = exp
{

µ̄ + σ̄2

2

}
− 1,

d̄θ
1,n = d̄θ

n =
ln V0

L +nµ̄+

(
r− σ2

2 −λE(U1)

)
T−
∫ T

0 σθsds
√

σ2T+nσ̄2

d̄θ
2,n = d̄θ

1,n +
√

σ2T + nσ̄2.

Proof. Since ln(1+Ui) ∼ N(µ̄, σ̄2) and formula (18) holds, the value of enterprise stock (13)
can be rewritten as follows

Eθ(0, V0, T) =
+∞

∑
n=1

(λT)n e−λT

n!
Eθ
[
V0exp

{
− λTE(U1)−

∫ T

0
σsθsds

}
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exp
{

nµ̄ +
√

nσ̄Y
}

N(dθ
2,n)− L e−rT N(dθ

1,n)
]
.

Set
A = Eθ

[
exp
{

nµ̄ +
√

nσ̄Y
}

N(dθ
2,n)
]
,

B = Eθ
[

L e−rT N(dθ
1,n)
]
,

then

A = enµ̄Eθ
[
exp
{√

nσ̄Y
}

N
(√

nσ̄

σ
√

T
Y +

ln V0
L +nµ̄+

(
r+ σ2

2 −λE(U1)

)
T−
∫ T

0 σθsds

σ
√

T

)]
= enµ̄exp

{
nσ̄2

2

}
N
( nσ̄2+ln V0

L +nµ̄+

(
r+ σ2

2 −λE(U1)

)
T−
∫ T

0 σθsds

σ
√

T
√

1+ nσ̄2
σ2T

)

= exp
{

nµ̄ + nσ̄2

2

}
N
( ln V0

L +nµ̄+nσ̄2+

(
r+ σ2

2 −λE(U1)

)
T−
∫ T

0 σθsds
√

σ2T+nσ̄2

)
,

and

B = L e−rTEθ
[

N
(√

nσ̄

σ
√

T
Y +

ln V0
L +nµ̄+

(
r− σ2

2 −λE(U1)

)
T−
∫ T

0 σθsds

σ
√

T

)]
= L e−rT N

( ln V0
L +nµ̄+

(
r− σ2

2 −λE(U1)

)
T−
∫ T

0 σθsds
√

σ2T+nσ̄2

)
.

Set

d̄θ
1,n =

ln V0
L +nµ̄+

(
r− σ2

2 −λE(U1)

)
T−
∫ T

0 σθsds
√

σ2T+nσ̄2

d̄θ
2,n = d̄θ

1,n +
√

σ2T + nσ̄2.

From the above analysis, we get

Eθ(0, V0, T) =
+∞

∑
n=1

(λT)n e−λT

n!
Eθ
[
V0exp

{
− λTE(U1)−

∫ T

0
σsθsds

}
exp
{

nµ̄ +
√

nσ̄Y
}

N(dθ
2,n)− L e−rT N(dθ

1,n)
]

=
+∞

∑
n=1

(λT)n e−λT

n!

[
V0exp

{
nµ̄ +

nσ̄2

2
− λTE(U1)−

∫ T

0
σθsds

}
N(d̄θ

2,n)− Le−rT N(d̄θ
1,n)
]
.

The same method can be used to prove (21) and (22).

4. Example Analysis

In this part, we examined the effects of the Knightian parameter and Poisson intensity
on the three pricing ranges proved above. For calculation convenience, let us assume the value
of an enterprise asset at time 0 is V0 = 55, volatility is σ2 = 0.04, the risk free rate of in-
terest is r = 0.05, the face value of enterprise bonds are L = 50, enterprise bonds maturity
is T = 3, the mean and volatility of a jump process (1 + Ui) are µ̄ = −0.15, σ̄2 = 0.01,
respectively, and the Knightian uncertain parameter is k ∈ [0, 1]. From the conclusion of
the third section the default probability interval is [p−k, pk], the enterprise stock value interval

is
[

Ek(0, V0, T), E−k(0, V0, T)
]
, and the bond value interval is

[
D−k(0, V0, T), Dk(0, V0, T)

]
.

We take different values of the Poisson intensity λ = 0.01, 0.05, and 0.1, and obtain the fol-
lowing results, Figures 1–3.
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Figure 1. The variation trend of the default probability interval in Knightian uncertain parameters
and the Poisson intensity.

Figure 2. The variation trend of the enterprise stock value interval in Knightian uncertain parameters
and the Poisson intensity.
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Figure 3. The variation trend of the enterprise bond value interval on Knightian uncertain parameters
and the Poisson intensity.

It can be seen from Figure 1 that the influence on the default probability of the
Poisson intensity λ and Knightian uncertain parameter was significant. With the increase
in Poisson intensity λ, the probability of default increased significantly. On the other
hand, as the Knightian uncertain parameter increased, the company’s default probability
became greater and greater, and the default probability interval also gradually increased
and the upper bound of the default probability increased, while the lower bound decreased.
This meant that the impact of the jump intensity in corporate assets in the financial market
on the probability of corporate default could not be ignored.

As shown in Figure 2, the equilibrium price of a call option in a Knightian uncertain
environment was no longer a certain value, but an interval. This showed that the infor-
mation risk and liquidity risk in the financial market, and the resulting changes in in-
vestor sentiment (this paper attributed this to Knightian uncertainty), significantly affected
the equilibrium price of assets. Due to the objective existence of Knightian uncertainty risks
such as information risk and liquidity risk, investors need corresponding uncertainty risk
compensation, so the equilibrium price of assets is a certain range.

From Figure 3, we can see that in the Knightian uncertainty environment, the price of
a put option is also a range and, whether it is a call option or a put option, as the degree
of Knightian uncertainty increased, the pricing range became larger. This showed that
the higher the degree of Knightian uncertainty, the greater the uncertainty of future odds
or returns. Risk–averse investors not only show Knight uncertainty aversion, and might
choose not to enter the market, which reduces the liquidity of the market, but also expect
a higher Knight uncertainty premium, showing a larger pricing range.

5. Discussion

From the above analysis, it could be seen that the influence on the default probability,
enterprise stock values, and bond value intervals of the Poisson intensity and Knightian un-
certain parameter was significant. This showed that if an investor was a knightian uncertainty
enthusiast, the more vague they would be about the knightian uncertainty in the financial
market and the greater the incentive would be. Conversely, if an investor was knightian
uncertainty averse, the more ambiguous they would be about knightian uncertainty in finan-
cial markets and the incentive would be less. This result fully demonstrated the impact of
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Knightian uncertainty on the probability of default, a company’s stock value, and bond value;
thus, we must consider the impact of Knightian uncertainty on a company’s default in actual
operation. Compared with decisions that do not consider Knight’s uncertain risks, the results
of this study took into account investors’ risk appetite and provided a more comprehensive ref-
erence for investment decisions. The mainstream asset pricing theory assumed that investors
not only clearly know what uncertain states may occur in the future, but also could estimate
the probability of their occurrence, and make investment decisions on this basis. However,
due to the large amount of uncertainty that actually exists in financial markets, the “premium
puzzle” and “smile volatility” have led to a large number of phenomena that deviate from
the ideal situation. Researchers call this uncertainty “Knightian uncertainty” and limit the risk
to the kind of uncertainty that is unique in probability distributions, quantitatively deter-
minable, closed and complete, while Knightian uncertainty is set as uncertainty that does
not have these properties and is subject to frequent changes due to “potential surprises” and
novelties. Compared with investment decisions that do not consider Knightian uncertainty
risk in Ref. [8], the results of this paper took into account investors’ risk appetite and deci-
sion making in different market sentiments, providing a more comprehensive reference for
investment decisions.

6. Conclusions

Unlike traditional credit risk models that are based on mainstream asset pricing theory
and ignore the impact of uncertainties, such as investor risk appetite and market senti-
ment, this thesis investigated the credit risk measure of listed companies in a Lévy market
under a Knightian uncertainty environment. Assuming that the asset value process of
listed companies obeys a Lévy process, a credit risk measure model under a Knightian
uncertainty environment was developed. Unlike the traditional credit risk structure model,
the probability of default for public companies was no longer a specific number, but an in-
terval. In addition, the effect of Knightian uncertainty on default probability, stock values,
and bond values was also investigated using numerical analysis. This differed from pre-
vious studies in that the results better reflected the impact of different market sentiments
on the default interval and expanded the decision flexibility, which is more conducive to
subjective decisions.

This paper stated that an enterprise value is subject to Brownian motion as well as the
jump process and Knightian uncertainty is only over Brownian motion. Future research
might consider investigating uncertainty over the jump process. This question would
be challenging and innovative as jump components are more difficult to estimate than
the Brownian motion part. On the other hand, quantifying the strength of Knightian
uncertainty in the financial market was a very difficult problem. We currently do not
have a better method, so this paper did not involve empirical research for the time being,
but only carried out an example analysis. Quantifying Knightian uncertainty risk is also a
research direction for us in the future.
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