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Abstract: In this paper, we introduce two new classes of mappings known as λ-enriched strictly
pseudocontractive mappings and ΦT-enriched Lipshitizian mappings in the setup of a real Banach
space. In addition, a new modified mixed-type Ishikawa iteration scheme was constructed, and it
was proved that our iteration method converges strongly to the common fixed points of finite families
of the above mappings in the framework of a real uniformly convex Banach space. Moreover, we
provided a non-trivial example to support our main result. Our results extend and generalize several
results existing in the literature.
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1. Introduction

Given a structured object Ξ of any sort, a symmetry is a mapping of the object Ξ onto
itself such that the structure is preserved. This kind of mapping can occur in many ways:
On one hand, if Ξ is a set with no additional structure, a symmetry is a bijective map
from the set Ξ to itself, which often results in a permutation group. On the other hand,
if object Ξ is a set of points in the plane with its metric structure, a symmetry is a bijection
of the set Ξ to itself, which preserves the distance between each pair of points (s, t) ∈ Ξ.
In [1], Sain established the idea of left symmetric and right symmetric points in Banach
spaces (recall that an element h̄ ∈ Ξ is known as left symmetric if h̄⊥Bζ implies ζ⊥B h̄ for
all ζ ∈ Ξ, whereas an element h̄ ∈ Ξ is known as right symmetric if ζ⊥B h̄ implies h̄⊥Bζ
for all ζ ∈ Ξ. Hence, an element h̄ ∈ Ξ is a symmetric point if h̄ is both left symmetric and
right symmetric).

Let (Ξ, ‖.‖) be a normed linear space. For any two elements h̄, ζ in Ξ, h̄ is said
to be orthogonal to ζ in the sense of Birkhoff–James [2], written h̄⊥Bζ, if and only if
‖h̄‖ ≤ ‖h̄ + λζ‖ for all λ ∈ R. Birkhoff–James orthogonality is related to many important
geometric properties of normed linear spaces including strict convexity, uniform convexity
and smoothness.
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Let C be a nonempty, closed and convex subset of a real Banach space E. If E? is a dual
of E, then the mapping J : E −→ 2E?

defined by the following:

J(h̄) = {h̄? ∈ E : 〈h̄, h̄?〉 = ‖h̄‖2, ‖h̄‖ = ‖h̄?‖}, (1)

is known as normalized duality mapping.
Let T : C −→ C be a nonlinear mapping. We will denote the set of all fixed points of T by

F(T). The set of common fixed points of finite family of mappings {Si}N
i=1, {Ti}N

i=1 : C −→ C
will be denoted by F = ∩N

i=1(F(Si)∩ F(Ti)), where N ∈ N (the set of natural numbers).

Definition 1. A self mapping T on C is said to be L-Lipschitizian, if for all h̄, ζ ∈ C, there exists a
constant L > 0 such that the following is the case:

‖Th̄− Tζ‖ ≤ L‖h̄− ζ‖, (2)

where L is known as Lipschitz constant.

Definition 2. A mapping T is known as ΦT-enriched Lipschitizian (or (b, ΦT)-enriched Lips-
chitizian) if for all h̄, ζ ∈ C, there exists b ∈ [0,+∞) and a continuous nondecreasing function
ΦT : R+ −→ R+, with Φ(0) = 0, such that the following is the case.

‖b(h̄− ζ) + Th̄− Tζ‖ ≤ (b + 1)ΦT(‖h̄− ζ‖). (3)

Remark 1. In special case, where b = 0, then the (b, ΦT)-enriched Lipschitizian mapping T is
known as ΦT-Lipschitzian; if b = 0 and ΦT(r) = Lr, for L > 0, then T is known as Lipschitzian
mapping with L as the Lipschitz constant. In particular, if b = 0, ΦT(r) = Lr and L = 1, then the
(b, ΦT)-enriched Lipschitizian mapping T is known as nonexpansive mapping on C.

Now, if b > 0 and ϑ =
1

b + 1
, then 0 < ϑ < 1. In this case, inequality (3) becomes the

following:

‖
( 1

ϑ
− 1
)

h̄ + ϑTh̄−
(( 1

ϑ
− 1
)

ζ + ϑTζ
)
‖ ≤ (b + 1)ΦT(‖h̄− ζ‖),

and, hence, we obtain the following.

‖(1− ϑ)h̄ + ϑTh̄− ((1− ϑ)ζ + ϑTζ)‖ ≤ (b + 1)ϑΦT(‖h̄− ζ‖). (4)

Inequality (4) can be written as follows:

‖Tϑ h̄− Tϑζ‖ ≤ $ΦT(‖h̄− ζ‖), (5)

where $ = (b + 1)ϑ and Tϑ = (1− ϑ)I + ϑT. Note that the mapping Tϑ is ΦT-Lipschitizian
in the sense of Hicks and Kubecek [3].

Remark 2. Every Lipschitz mapping is automatically ΦT-Lipschitzian but the converse impli-
cations may not be true (see [3] for more details). Moreover, every ΦT-Lipschitz mapping is a
(0, ΦT)-enriched Lipschitz mapping. Note that if ΦT(r) = r, then (5) reduces to the following:

‖Tϑ h̄− Tϑζ‖ ≤ $‖h̄− ζ‖, (6)

and it is known as b-enriched nonexpansive mapping. The concept of b-enriched nonexpansive
mapping was established by Berinde [4] as a generalization of an important class of mapping known
as nonexpansive mapping. Apart from being an obvious generalization of the contraction mapping
(and its connection with monotonicity method), nonexpansive mapping belongs to the first class of
nonlinear mapping for which fixed-point theorems were obtained by utilizing geometric properties
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instead of the compactness conditions. This class of mapping could also be seen in applications as
transition operators for initial value problems of differential inclusion, accretive operators, monotone
operators, variational inequality problems and equilibrium problems. Several generalizations of
nonexpansive mappings in different directions have been studied by different researchers in the
current literature; see, for instance, Refs. [5–13] and the references therein. Note that, in particular
that, if ΦT is not necessarily nondecreasing and satisfies ΦT(r) < r for r > 0, then T is known as a
nonlinear contraction on C.

Example 1. Let T : R −→ R be defined by the following.

Th̄ =
√
|h̄|, for all h̄ ∈ R.

Consider ΦT(r) =
√

r, r ≥ 0. Clearly, ΦT is continuous and nondecreasing. First notice that
the mapping T is subadditive. Suppose that h̄, ζ ∈ R. Then, we have the following.

(T(h̄ + ζ))2 = |h̄ + ζ|

≤ (
√
|h̄|+

√
|ζ|)2

= (Th̄ + Tζ)2.

Utilizing the subadditivity of T, we obtain the following.

|Th̄− Tζ| ≤ T(h̄− ζ) = ΦT(|h̄− ζ|).

Thus, T is ΦT-Lipschitizian (or (0, ΦT)-enriched Lipschitizian) mapping with ΦT as the
ΦT-function. Now, suppose that T is Lipschitizian with constant L > 0. Then, for all h̄, ζ ∈ R with

ζ = 0 and h̄ 6= 0, we have Th̄ ≤ L|h̄|. Hence, for all h̄ 6= 0, L ≥ 1√
|h̄|

. Letting h̄→ 0, we obtain

a contradiction. Consequently, T is not Lipschitizian.

Definition 3 ([14]). A mapping T is known as (b, k)-enriched strictly pseudocontractive mapping
((b, k)-ESPCM) if for all h̄, ζ ∈ C, there exist b ∈ [0,+∞) and k ∈ [0, 1) such that the following is
the case.

‖b(h̄− ζ) + Th̄− Tζ‖2 ≤ (b + 1)2‖h̄− ζ‖2 + k‖h̄− ζ − (Th̄− Tζ)‖2. (7)

Note that if b = 0 in inequality (7), we obtain a class of mapping known as k-strictly
pseudocontractive mapping, and if k = 0, then the inequality (7) reduces to a class of
mapping defined by (6). Thus, the class of (b, k)-ESPCM is a superclass of the class of
b-enriched nonexpansive mapping and k-strictly pseudocontractive mapping (for more
details, see, [14–18]).

Set b =
1
ϑ
− 1, for ϑ ∈ (0, 1]. Then, from inequality (7), we have the following:

‖Tϑ h̄− Tϑζ‖2 ≤ ‖h̄− ζ‖2 + k‖h̄− ζ − (Tϑ h̄− Tϑζ) ‖2, (8)

where Tϑ satisfies the inequality (5). Here, the average operator Tϑ is k-strictly pseudocon-
tractive mapping. If k = 1 in (8), then we have a pseudocontraction. Thus, the class of
(b, k)-strictly pseudocontractive mappings is a subclass of the class of b-enriched pseudo-
contractive mappings.

In a real Banach space, inequality (8) is equivalent to the following:

〈Tϑ h̄− Tϑζ, j(h̄− ζ)〉 ≤ ‖h̄− ζ‖2 − λ‖h̄− ζ − (Tϑ h̄− Tϑζ) ‖2, (9)
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where λ =
1
2
(1− k). If I denotes the identity mapping, then inequality (9) can be written

in the following form.

〈(I − Tϑ)h̄− (I − Tϑ)ζ, j(h̄− ζ)〉 ≥ λ‖h̄− ζ − (Tϑ h̄− Tϑζ)‖2. (10)

Again, the average operator Tϑ in this setting is still a strict pseudocontraction.
The class of (b, k)-enriched strictly pseudocontractive mappings was established in 2019
by Berinde as a generalization of the class of k-strictly pseudocontractive mappings (i.e,
a mapping T : C −→ C such that for all h̄, ζ ∈ C and k ∈ [0, 1), we have ‖Th̄− Tζ‖2 ≤
‖h̄− ζ‖2 + k‖h̄− ζ − (Th̄− Tζ)‖2. If k = 1, then we have a pseudocontraction. The class
of strictly pseudocontractive mappings, defined in the setup of a real Hilbert space, was
introduced in 1967 by Browder and Petryshym [19] as a superclass of the class of nonex-
pansive mappings and a subclass of the class of Lipschitz pseudocontractive mappings.
Whereas lipschitz pseudocontractive mappings are generally not continuous, the strictly
pseudocontractive mappings inherit Lipschitz properties from their definitions). He proved
that if C is a bounded, closed and convex subset of a real Hilbert space and T : C −→ C is a
(b, k)-enriched strictly pseudocontractive mapping, then T has a fixed point. He examined
the following theorems.

Theorem 1. Let C be a bounded closed convex subset of a real Hilbert space and T : C −→ C is a
(b, k)-enriched strictly pseudocontractive demicompact mapping. Then, F(T) 6= ∅, and for any
h̄0 ∈ C and any fixed 0 < $ < 1− k, the Krasnoselkii iteration sequence given by the following:

h̄n+1 = (1− $)h̄n + $Th̄n, n ≥ 0

which converges strongly to a fixed point of the mapping T.

Theorem 2. Let C is a bounded closed convex subset of a real Hilbert space and T : C −→ C is a
(b, k)-ESPCM for some 0 ≤ k < 1. Then F(T) 6= ∅, and for any h̄0 ∈ C, and any control sequence
{µn}n ≥ 1 such that k < µn < 1 and ∑+∞

n=1(µn − k)(1− µn) = +∞, the Krasnoselkii–Mann
iteration sequence given by the following:

h̄n+1 = (1− λµn)h̄n + λµnTh̄n, n ≥ 0,

for some λ ∈ (0, 1), converges weakly to a fixed point of a mapping T.

Modified Mixed-Type Ishikawa Iteration Scheme

Let E be a real Banach space and K be a nonempty closed and convex subset of E. Let
{Si}N

i=1 : C −→ C be a finite family of (b, ΦS)-enriched Li-Lipschitizian self mappings and
{Tϑ

i
}N

i=1 : C −→ C be a finite family of enriched strictly pseudocontractive self mappings.
If h̄0 ∈ K, then the new hybrid-type iteration scheme for the above mentioned mappings is
as follows:

h̄1 = (1− µ0 − $0)h̄0 + µ0T1τ1 + $0u0,

h̄2 = (1− µ1 − $1)h̄1 + µ1T2τ2 + $1u1,
...

h̄N = (1− µN−1 − $N−1)h̄N−1 + µN−1TNτN−1 + $N−1uN−1,

with

τ1 = (1− ϑ0)S1ζ1 + ϑ0T1ζ1,

τ2 = (1− ϑ1)S2ζ2 + ϑ1T2ζ2,
...

τN = (1− ϑN)SNζN + ϑNTNζN ,
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where

ζ1 = (1− µ′0 − $′0)h̄0 + µ′0T1ρ1 + $′0v0,

ζ2 = (1− µ′1 − $′1)h̄1 + µ′1T2ρ2 + $′1v1,
...

ζN = (1− µ′N−1 − $′N−1)h̄N−1 + µ′N−1TNρN−1 + $′N−1vN−1,

with the following being the case.

ρ1 = (1− ϑ′0)S1h̄0 + ϑ′0T1h̄0,

ρ2 = (1− ϑ′1)S2h̄1 + ϑ′1T2h̄1,
...

ρN = (1− ϑ′N)S
2
N h̄N + ϑ′NTN h̄N .

The above Hybrid-type iteration sequence can be written in compact form as follows:
h̄1 ∈ K
h̄n+1 = (1− µn − $n)h̄n + µnTiτn+1 + $nun

ζn+1 = (1− µ′n − $′n)h̄n + µ′nTiρn+1 + $′nvn,

(11)

where

τn+1 = (1− ϑn)Siζn+1 + ϑnTiζn+1,

ρn+1 = (1− ϑ′n)Si h̄n + ϑ′nTi h̄n,

also {µn}, {$n}, {ϑn}, {µ′n}, {$′n}, {ϑ′n} ∈ [0, 1], and {un}, {vn} ⊂ K are two bounded se-
quences.

The following well known iteration schemes can be obtained as special cases from
inequality (11).

Remark 3.

1. If Si = I, where I denotes the identity map in K, for all i = 1, 2, · · · ,N, ϑn = ϑ′n = 0 in
inequality (11), we have the following:

h̄1 ∈ K
h̄n+1 = (1− µn − $n)h̄n + µnTiζn+1 + $nun

ζn+1 = (1− µ′n − $′n)h̄n + µ′nTi h̄n + $′nvn,

(12)

where µn, µ′n, $n and $′n are as in inequality (11).
2. For i = 1, 2, · · · , N, i f $n = $′n = 0 in inequality (12), we have the following:

h̄1 ∈ K
h̄n+1 = (1− µn)h̄n + µnTiζn+1

ζn+1 = (1− µ′n)h̄n + µ′nTi h̄n,

(13)

where µn and µ′n are as stated in inequality (11).
3. If Ti = T and ζn+1 = ζn in inequality (13), we obtain the well-known Ishikawa iteration

scheme as follows: 
h̄1 ∈ K
h̄n+1 = (1− µn)h̄n + µnTζn

ζn = (1− µ′n)h̄n + µ′nTi h̄n,

(14)

where µn and µ′n are as in inequality (11).
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4. If µ′n = 0 in (14), we obtain the Mann iteration scheme as discussed below:
For an arbitrary h̄1 ∈ K, the sequence {h̄n}n≥1 is given by the following:

h̄n+1 = (1− µn)h̄n + µnTζn, (15)

where µn is as in inequality (11).

From (12)–(15), it is clear that the iteration scheme considered in this paper is much
more general than several iteration schemes so far employed in obtaining convergence
theorems in the current literature.

Motivated and inspired by the results in [4,14,15], our main focus in this manuscript
is to examine the new iteration scheme defined by inequality (11), extend the idea of
(b, k)-ESPCM from a real Hilbert space to a more general Banach space and from a single
(b, k)-ESPCM as considered in [14] to a finite family of λ-enriched strictly pseudocontrac-
tive mappings. Furthermore, we shall introduce various strong convergence theorems of
the iterative scheme defined by inequality (11) for a mixed-type finite family of λ-enriched
strictly pseudocontractive mapping and finite family of ΦS-enriched Li-Lipschitizian map-
ping in the setup of real uniformly convex Banach spaces.

The manuscript is organized as follows: Section 2 is devoted to some preliminary
results which will be helpful in examining the main findings of this manuscript are recalled;
Theorem 4 and some of its consequences are the subject of Sections 3 and 4 concludes
the paper.

2. Preliminaries

For the sake of convenience, we restate the following concepts and results which will
be helpful in the prove of our main results.
Let E be a Banach space with its dimension greater than or equal to 2. The modulus of
convexity of E is a function δE(ε) : (0, 2] −→ (0, 2] defined by the following.

δE(ε) = inf{1− ‖1
2
(h̄ + ζ)‖ : ‖h̄‖ = 1, ‖ζ‖ = 1, ε = ‖h̄− ζ‖}.

A Banach space E is uniformly convex if and if δE(ε) > 0, for all ε ∈ (0, 2].

Lemma 1 ([20]). Let E be a real Banach space. Then, for all h̄, ζ ∈ E, j(h̄− ζ) ∈ J(h̄− ζ), the
following inequality holds.

‖h̄ + ζ‖2 ≤ ‖h̄‖2 + 2〈ζ, j(h̄ + ζ)〉.

Lemma 2 ([21]). Let {an}, {bn}, {cn} be sequences of nonnegative real numbers satisfying the
recursive inequality:

an+1 ≤ (1 + bn)an + cn, for all n ≥ n0,

where n0 is some nonnegative integer. If ∑+∞
n=1 bn < +∞ and ∑+∞

n=1 cn < +∞, then limn→+∞ an
exists.

Lemma 3. Let Tϑ : C −→ C be an (b, k)-ESPCM. Then Tϑ is an L-Lipschitizian mapping, where
L is a positive constant.

Proof. By the definition of (b, k)-ESPCM for b > 0 and ϑ =
1

b + 1
, we obtain the following.
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〈Tϑ h̄− Tϑζ, j(h̄− ζ)〉 ≤ ‖h̄− ζ‖2 − λ‖h̄− ζ − (Tϑ h̄− Tϑζ)‖2

⇒ 〈Tϑ h̄− Tϑζ, j(h̄− ζ)〉 − 〈h̄− ζ, j(h̄− ζ)〉 ≤ −λ‖h̄− ζ − (Tϑ h̄− Tϑζ)‖2

⇒ −〈(I − Tϑ)h̄− (I − Tϑ)ζ, j(h̄− ζ)〉 ≤ −λ‖(I − Tϑ)h̄− (I − Tϑ)ζ‖2

⇒ 〈(I − Tϑ)h̄− (I − Tϑ)ζ, j(h̄− ζ)〉 ≥ λ‖(I − Tϑ)h̄− (I − Tϑ)ζ‖2

⇒ ‖h̄− ζ‖ ≥ λ‖(I − Tϑ)h̄− (I − Tϑ)ζ‖
≥ λ‖Tϑ h̄− Tϑζ‖ − λ‖h̄− ζ‖.

The last inequality implies the following:

‖Tϑ h̄− Tϑζ‖ ≤ L‖h̄− ζ‖,

where L =
1 + λ

λ
, 0 < ϑ < 1 and Tϑ = (1 − ϑ)I + ϑT (I denoting the identity map

on C).

Definition 4. Let E be a uniformly convex Banach space (UCBS) and C be a closed convex subset
of E. A mapping T : C −→ C is known as an asymptotically regular on C if the following is
the case:

‖Tn+1h̄ = Tn h̄‖ → 0 as n→ +∞

for all h̄ ∈ C. If T is nonexpansive, then Tϑ = (1− ϑ)I + ϑT is asymptotically regular for all
0 < ϑ < 1 (see [22,23]). The concept of asymptotic regularity is due to Browder and Petryshyn [24].

Lemma 4 ([22]). Let C be a nonempty bounded closed convex subset of a real Banach space E.
If a mapping T : C −→ C is a nonexpansive and F(T) 6= ∅, then, for any given ϑ ∈ (0, 1),
the mapping Tϑ = (1− ϑ)I + ϑT, where I is the identity operator, has the same fixed point as a
mapping T and is asymptotically regular.

Remark 4. If T is a nonexpansive mapping then the corresponding mapping Tϑ is also nonexpansive
and both have the same fixed point. However, Tϑ has more felicitous asymptotic behavior than the
original mapping (see for details, [22]).

Definition 5. Let C be a nonempty bounded closed convex subset of a real Banach space E.
A mapping T : C −→ C is said to be demicompact (see [25]) if for every bounded sequence {h̄n}n≥1
in C such that h̄n − Th̄n converges in C, there exists a convergent subsequence of {h̄n}n≥1.

The results proved in this article generalized the results present in [26–29]. For some
more related results, see [30–34].

3. Main Results

In this section, we will provide some fixed point results for (b, k)-enriched strictly pseu-
docontractive, demicompact and (b, ΦS)-enriched Li-Lipschitizian mapping in uniformly
convex Banach spaces.

Theorem 3. Let C be a nonempty bounded closed convex subset of a UCBS and Tϑ : C −→ C be
(b, k)-enriched strictly pseudocontractive and demicompact mapping. Let F(T) 6= ∅, then for any

h̄0 ∈ C, λ ∈ [0,
1
2
) and ϑ, ϑ′, δ ∈ (0, 1), the sequence defined by the following:

h̄n+1 = (1− δϑ′)h̄n + δϑ′Tϑ h̄n, n ≥ 0, (16)

converges strongly to a fixed point of a mapping T, where Tϑ = (1 − ϑ)I + ϑT and I is an
identity mapping.
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Proof. Using inequality (8), we have the following.

〈(I − Tϑ)h̄− (I − Tϑ)ζ, j(h̄− ζ)〉 ≥ λ‖h̄− ζ − (Tϑ h̄− Tϑζ)‖2

≥ λ[‖h̄− ζ‖2 − 2〈Tϑ h̄− Tϑζ, j(h̄− ζ)〉+ ‖Tϑ h̄− Tϑζ‖2]

⇒ |h̄− ζ|2 − 〈Tϑ h̄− Tϑζ, j(h̄− ζ)〉 − λ‖h̄− ζ‖2 + 2λ〈Tϑ h̄− Tϑζ, j(h̄− ζ)〉 ≥ ‖Tϑ h̄− Tϑζ‖2

⇒ (1− λ)‖h̄− ζ‖2 − (1− 2λ)〈Tϑ h̄− Tϑζ, j(h̄− ζ)〉 ≥ ‖Tϑ h̄− Tϑζ‖2.

Therefore, for any λ ∈ [0,
1
2
), the operator Tϑ = (1− ϑ)I + ϑT is nonexpansive. Now,

consider the sequence {h̄n}n≥1 defined by the following:

h̄n+1 = (1− δϑ′)h̄n + δϑ′Tϑ h̄n, n ≥ 0, (17)

where δ, ϑ′ ∈ (0, 1). It is clear that {h̄n}n≥1 ∈ C; hence, it is bounded. Set the following.

Uδϑ = (1− δϑ′)I + δϑ′Tϑ. (18)

Then, by (19) and nonexpansiveness of Tϑ, it follows that Uδϑ is asymptotically regular.

‖h̄n −Uδϑ h̄n‖ → 0 as n→ +∞. (19)

Observe the following.

Uδϑ h̄− h̄ = (1− δϑ′)h̄ + δϑ′Tϑ h̄− h̄

= δϑ′(Tϑ h̄− h̄)

= δϑ′((1− ϑ)h̄ + ϑTh̄− h̄)

= δϑ′ϑ(Th̄− h̄). (20)

From (19) and (20), we have the following.

‖h̄n − Th̄n‖ → 0 as n→ +∞. (21)

Since the mapping T is demicompact (by hypothesis), it follows, from (20) that Uδϑ is
also demicompact. Since {h̄n}n≥1 ∈ C and C is closed and bounded subset of E, it follows
that {h̄n}n≥1 is demicompact. Hence, there exists a subsequence {h̄nj}j≥1 of {h̄n}n≥1 that
converges strongly to a point `, which obviously belongs to C since C is closed. Again,
it is clear that limn→+∞ ‖h̄nj − Uδϑ h̄nj‖ = 0; since limj→+∞ ‖` − h̄nj‖ = 0 and Uδϑ are
demicompact, Uδϑ` = `. Consequently, using (18), the nonexpansivity of Tϑ and Lemma 4,
it follows that Tϑ` = `; that is, F(Uδϑ) = F(Tϑ).

Following the same argument as above, considering (21) and demicompactness of T,
we obtain Tq = `. Thus, we have the following.

F(Uδϑ) = F(Tϑ) = F(T).

Furthermore, using the fact that Tϑ is nonexpansive, we obtain the following:

‖h̄n+1 − `‖ = ‖(1− δϑ)h̄n + δϑTϑ h̄n − `‖
≤ (1− δϑ)‖h̄n − `‖+ δϑ‖Tϑ h̄n − `‖
≤ (1− δϑ)‖h̄n − `‖+ δϑ‖h̄n − `‖
= ‖h̄n − `‖, (22)

for any positive integer n. For any ε > 0, there exists an integer n0 such that ‖h̄n0 − `‖ < ε,
we obtain from (22) that ‖h̄n − `‖ < ε for any integer n ≥ n0. Therefore, {h̄n}n≥1 converges
strongly to `, a fixed point of a mapping T.
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Example 2. Let E = R2 be equipped with the Euclidean norm, and we have the following.

C = {(h̄1, h̄2) ∈ R2, h̄1, h̄2 ≥ 0, h̄2
1 + h̄2

2 ≤ 1}. (23)

Define the mapping T : C −→ C by T(h̄, ζ) = ( h̄
2 , ζ

2 ). It is easy to see that E is UCBS and
that C is a bounded, closed and convex subset of E. Let b ∈ [0,+∞) and k ∈ [0, 1). Then, for all
h̄, ζ ∈ C, we have the following.

‖ b(h̄− ζ) + Th̄− Tζ ‖2=

(
2b + 1

2

)2

‖ (h̄1, ζ1)− (h̄2, ζ2) ‖2 . (24)

Moreover, we have the following.

(b + 1)2 ‖ h̄− ζ ‖2 +k ‖ h̄− ζ − (Th̄− Tζ) ‖2= [(b + 1)2 +
k
4
] ‖ (h̄1, ζ1)− (h̄2, ζ2) ‖2 . (25)

From (24) and (25) implies the following.

‖ b(h̄− ζ) + Th̄− Tζ ‖2 =

(
2b + 1

2

)2

‖ (h̄1, ζ1)− (h̄2, ζ2) ‖2

≤ [(b + 1)2 +

(
k
4

)
] ‖ (h̄1, ζ1)− (h̄2, ζ2) ‖

= (b + 1)2 ‖ h̄− ζ ‖2 +k ‖ h̄− ζ − (Th̄− Tζ) ‖2 .

Thus, the mapping T is (b, k)-enriched strictly pseudocontractive mapping. Again, it is not
hard to see that T is demicompact. Furthermore, observe that (0, 0) is a unique fixed point of T.

Next, we show that the sequence defined in (16) (Theorem 3) converges strongly to the fixed
point of T. Using the fact that Tϑ = (1− ϑ)I + ϑT, where I is an identity mapping, and by setting
h̄0 = (0.7, 0.7) ∈ C as our initial guess, we proceed as follows.

Fix δ = ϑ = ϑ′ = 0.5 and define mapping T : C −→ C by Th̄ =
h̄
2

. Then, for n = 0 and
h̄ = h̄0 in (16), we obtain the following.

h̄1 = (1− δϑ
′
)h̄0 + δϑ

′
[(1− ϑ)h̄0 + ϑTh̄0]h̄0 = (0.617, 0.617). (26)

Again, for n = 1 in (16), we obtain the following.

h̄2 = (1− δϑ
′
)h̄1 + δϑ

′
[(1− ϑ)h̄1 + ϑTh̄1]h̄1 = (0.534, 0.534). (27)

By continuing in this manner, it can be seen that h̄n → 0 as n → ∞, and this completes
the proof.

Theorem 4. Let E be a real UCBS and C a nonempty closed convex subset of E. Let Si : C −→ C
be a finite family (b, ΦS)-enriched Li-Lipschitizian self mappings and Tϑ

i : C −→ C a finite family
of enriched strictly pseudocontractive self mappings. Let {h̄n} be a sequence defined by the following:


h̄1 ∈ K
h̄n+1 = (1− µn − $n)h̄n + µnTϑ

i τn+1 + $nun

ζn+1 = (1− µ′n − $′n)h̄n + µ′nTϑ
i ρn+1 + $′nvn,

(28)

where
τn+1 = (1− ϑn)Siζn+1 + ϑnTϑ

i ζn+1, ρn+1 = (1− ϑ′n)Si h̄n + ϑ′nTϑ
i h̄n,

and {µn}, {$n}, {ϑn}, {µ′n}, {$′n}, {ϑ′n} ∈ [0, 1] and {un}, {vn} ⊂ K are two bounded sequences.
Suppose F = ∩Ni=1(F(Si) ∩ F(Ti)) 6= ∅. If the following conditions hold:
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i. 0 < ξ < ξn ≤ ηn ≤ µn < µ < 1, ∑+∞
n=1 µn = +∞, ∑+∞

n=1 µ2
n < +∞,

∑+∞
n=1 $n < +∞, ∑+∞

n=1 $′n < +∞;
ii. $n + $′n ≥ 1, µn + $n ≥ 1, µ′n + $′n ≥ 1, limn→+∞ µ2

nλ > 0;
iii. There exists a constant L′ such that Φt(r) = L′r, for some L′ > 0.

then the sequence defined by (28) converges strongly to a fixed point ` ∈ F .

Proof. Let the following:
M = sup{‖un − `‖, |vn − `‖}

and the following be the case.
L = max{L′i, L′′i }.

Since τn+1 = (1− ϑn)Siζn+1 + ϑnTiζn+1, and ρn+1 = (1− ϑ′n)Si h̄n + ϑ′nTi h̄n, we have
the following.

‖ρn+1 − `‖ = ‖(1− ϑ′n)Si h̄n + ϑ′nTϑ
i h̄n)− `‖

≤ (1− ϑ′n)‖Si h̄n − `‖+ ϑ′n‖Tϑ
i h̄n − `‖

≤ (1− ϑ′n)ΦS(‖h̄n − `‖) + ϑ′nL′′i ‖h̄n − `‖
≤ (1− ϑ′n)L′i‖h̄n − `‖+ ϑ′nL‖h̄n − `‖
≤ (1− ϑ′n)L‖h̄n − `‖+ ϑ′nL‖h̄n − `‖
= L‖h̄n − `‖. (29)

Moreover, we have the following.

‖ζn+1 − `‖ = ‖ξn((1− µ′n − $′n)h̄n + µ′nTϑ
i ρn + $′nvn)− `‖

= ‖ξn(1− µ′n − $′n)(h̄n − `) + ξnµ′n(T
ϑ
i ρn − `) + ξn$′n(vn − `)‖

≤ ξn(1− µ′n − $′n)‖h̄n − `‖+ ξnµ′n‖Tϑ
i ρn − `‖+ ξn$′n‖vn − `‖

≤ ξn(1− µ′n − $′n)‖h̄n − `‖+ ξnµ′nL′′i ‖ρn − `‖+ ξn$′n‖vn − `‖
≤ ξn(1− µ′n)‖h̄n − `‖+ ξnµ′nL‖ρn − `‖+ ξn$′n M

= ξn(1− µ′n)‖h̄n − `‖+ ξnµ′nL2‖h̄n − `‖+ $′n M by (29)

≤ ξn(1 + µ′nL2)‖h̄n − `‖+ $′n M. (30)

Furthermore, we have the following.

‖ρn+1 − ζn+1‖ ≤ ‖ρn+1 − `‖+ ‖`− ζn+1‖
≤ L‖h̄n − `‖+ (1 + µ′nL2)‖h̄n − `‖+ $′n M by (29) and (30)

= (1 + L + µ′nL2)‖h̄n − `‖+ $′n M. (31)

Now, we can write the following.

‖τn+1 − `‖ = ‖(1− ϑn)Siζn+1 + ϑnTϑ
i ζn+1 − `‖

≤ (1− ϑn)‖Siζn+1 − `‖+ ϑn‖Tϑ
i ζn+1 − `‖

≤ (1− ϑn)ΦS‖ζn+1 − `‖+ ϑnL′′i ‖ζn+1 − `‖
≤ (1− ϑn)L′‖ζn+1 − `‖+ ϑnL′′i ‖ζn+1 − `‖
≤ (L′ + L′′i )‖ζn+1 − `‖
≤ 2L‖ζn+1 − `‖
≤ 2L[(1 + µ′nL2)‖h̄n − `‖+ $′n M] by (30)

= 2L(1 + µ′nL2)‖h̄n − `‖+ 2L$′n M. (32)

Moreover, we have the following.
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‖ζn+1 − h̄n+1‖ = ‖ξn((1− µ′n − $′n)h̄n + µ′nTϑ
i ρn+1 + $′nvn+1)− ηn((1− µn − $n)h̄n

+µnTϑ
i τn+1 + $nun)‖ (33)

≤ ‖ξn((1− µ′n − $′n)h̄n + µ′nTϑ
i ρn+1 + $′nvn)− ξn[(1− µn − $n)h̄n

+µnTϑ
i τn+1 + $nun]‖

= ‖ξn(1− µ′n − $′n)(h̄n − `) + ξnµ′n(T
ϑ
i ρn+1 − `) + ξn$′n(vn − `)

−ξn[(1− µn − $n)(h̄n − `) + µn(Tϑ
i τn+1 − `) + $n(un − `)]‖

= ‖ − ξn(µ
′
n + $′n)(h̄n − `) + ξnµ′n(T

ϑ
i ρn+1 − `) + ξn$′n(vn − `)

−ξn[−(µn + $n)(h̄n − µ`) + µn(Tϑ
i τn+1 − `) + $n(un − `)]‖

≤ ‖ξnµ′n(T
ϑ
i ρn+1 − `) + ξn$′n(vn − `)− ξnµn(Tϑ

i τn − `)

−ξn$n(un − `)‖

≤ ξnµ′n‖Tϑ
i ρn+1 − `‖+ ξn$′n‖vn − `‖+ ξnµn‖Tϑ

i τn+1 − `‖
+ξn$n‖un − `‖‖

≤ ξnµ′nL′′i ‖ρn+1 − `‖+ ξn$′n M + ξnµnL′′i ‖τn+1 − `‖+ ξn$n M

≤ ξnµ′nL‖ρn+1 − `‖+ ξnµnL‖τn+1 − `‖+ ξn($n + $′n)M

≤ ξnµ′nL2‖h̄n − `‖+ 2ξnµnL2(1 + µ′nL2)‖h̄n − `‖+ 2ξnµ$′nL2M

+ξn($n + $′n)M by (29) and (32)

= ξn[µ
′
n + 2µn(1 + µ′nL2)]L2‖h̄n − `‖+ ξn($n + $′n + 2µ$′nL2)M (34)

and

‖τn+1 − h̄n+1‖ = ‖(1− ϑn)Siζn + ϑnTϑ
i ζn − h̄n+1‖

≤ ‖Siζn+1 − ζn+1‖+ ‖ζn+1 − h̄n+1‖+ ϑn‖Tϑ
i ζn+1 − `‖+ ϑn‖`− Siζn+1‖

≤ ‖Siζn+1 − `‖+ ‖ζn+1 − `‖+ ‖ζn+1 − h̄n+1‖+ ϑn‖Tϑ
i ζn+1 − `‖

+ϑn‖`− Siζn+1‖

≤ L′i‖ζn+1 − `‖+ ‖ζn+1 − µ`‖+ ‖ζn+1 − h̄n+1‖+ ϑnL′′i ‖ζn+1 − `‖
+ϑnL′i‖µ`− ζn+1‖

≤ ΦS‖ζn+1 − `‖+ ‖ζn+1 − `‖+ ‖ζn+1 − h̄n+1‖+ ϑnL′′i ‖ζn+1 − `‖+ ϑnL′‖`− ζn‖

≤ L‖ζn+1 − `‖+ ‖ζn+1 − `‖+ ‖ζn+1 − h̄n+1‖+ ϑnL‖ζn+1 − `‖+ ϑnL‖`− ζn+1‖

= (1 + L + 2ϑnL)‖ζn+1 − `‖+ ‖ζn+1 − h̄n+1‖

≤ ξn(1 + L + 2ϑnL)[(1 + µ′n)L2‖h̄n − `‖+ $′n M] + ξn[µ
′
n + 2µn(1 + µ′nL2)]L2

×‖h̄n − `‖+ ($n + $′n + 2µn$′nL2)M] by (30) and (34)

= ξn[(1 + L + 2ϑnL)(1 + µ′nL2) + (µ′n + 2µn(1 + µ′n)L2))L2]‖h̄n − µ`‖]
+ξn[(2 + L + 2ϑnL + 2µnL2)$′n + $n]M.. (35)

Now, using Lemma 1, condition (ii) and the fact that Tϑ
i (i = 1, 2, · · ·N) is strictly

pseudocontractive self mapping , we obtain the following.
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‖h̄n+1 − `‖2 = ‖ξn((1− µn − $n)h̄n + µnTϑ
i τn+1 + $nun)− `‖2

= ‖ξn(1− µn − $n)(h̄n − `) + ξnµn(Tϑ
i τn+1 − `) + ξn$n(un − `)‖2

≤ ξ2
n(1− µn − $n)

2‖h̄n − `‖2 + 2ξnµn〈(Tϑ
i τn+1 − `)

+$n(un − `), j(h̄n+1 − `)〉

= ξ2
n(1− µn − $n)

2‖h̄n − `‖2 + 2ξnµn〈Tϑ
i τn+1 − `, j(h̄n+1 − `)〉

+2ξnµn〈$nun − `, jxn+1 − `〉

= ξ2
n(1− µn − $n)

2‖h̄n − `‖2 + 2ξnµn〈Tϑ
i τn+1 − Tϑ

i h̄n+1

+(Tϑ
i h̄n+1 − `), j(h̄n+1 − `)〉+ 2ξnµn$n‖un − `‖‖(h̄n+1 − `)‖

= ξ2
n(1− µn − $n)

2‖h̄n − `‖2 + 2ξnµn〈Tϑ
i τn+1 − Tϑ

i h̄n+1, j(h̄n+1 − `)〉
+2ξnµn〈Tϑ

i h̄n+1 − `, j(h̄n+1 − `)〉+ 2ξnµn$n‖un − `‖‖(h̄n+1 − `)‖

≤ ξ2
n(1− µn − $n)

2‖h̄n − `‖2 + 2ξnµn〈Tϑ
i τn+1 − Tϑ

i h̄n+1, j(h̄n+1 − `)〉
+2ξnµn(‖h̄n+1 − `‖2 − λ‖h̄n+1 − Tϑ

i h̄n+1‖2) + 2ξnµn$n‖un − `‖‖(h̄n+1 − `)‖

= ξ2
n(1− µn − $n)

2‖h̄n − `‖2 + 2ξnµn‖Tϑ
i τn+1 − Tϑ

i h̄n+1‖‖h̄n+1 − `‖
+2ξnµn‖h̄n − `‖2 − 2ξnµnλ‖h̄n+1 − Tϑ

i h̄n+1‖2 + 2ξnµn$n M‖h̄n+1 − `‖

≤ ξ2
n(1− µn − $n)

2‖h̄n − `‖2 + 2ξnµnL′′i ‖τn+1 − h̄n+1‖‖h̄n+1 − `‖
+2ξnµn‖h̄n+1 − `‖2 − 2ξnµnλ‖h̄n+1 − Tϑ

i h̄n+1‖2 + 2µn$n M‖h̄n+1 − `‖

≤ ξ2
n(1− µn − $n)

2‖h̄n − `‖2 + 2ξnµnL‖τn+1 − h̄n+1‖‖h̄n+1 − `‖
+2ξnµn‖h̄n+1 − `‖2 − 2ξnµnλ‖h̄n+1 − Tϑ

i h̄n+1‖2

+2ξnµn$n M‖h̄n+1 − `‖. (36)

From (35) and (36), and using the fact that 2ab ≤ a2 + b2, we have the following.
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‖h̄n+1 − `‖2 ≤ ξ2
n(1− µn − $n)

2‖h̄n − `‖2

+2ξnµnL{[(1 + L + 2ϑnL)(1 + µ′nL2) + (µ′n + 2µn(1 + µ′n)L2)L2]‖h̄n − `‖]
+[(2 + L + 2ϑnL + 2µnL2)$′n + $n]M}‖h̄n+1 − `‖
+2ξnµn‖h̄n+1 − `‖2 − 2ξnµnλ‖h̄n+1 − Tϑ

i h̄n+1‖2 + 2ξnµn$n M‖h̄n+1 − `‖
< (1− (µn + $n))

2‖h̄n − `‖2

+2{{ξnµnL[(1 + L + 2ϑnL)(1 + µ′nL2) + (µ′n + 2µn(1 + µ′n)L2)L2]‖h̄n − `‖]
+[(2 + L + 2ϑnL + 2µnL2)$′n + $n]M}+ 2ξnµn$n M}‖h̄n+1 − `‖
+2‖h̄n+1 − `‖2 − 2ξnµnλ‖h̄n+1 − Tϑ

i h̄n+1‖2

= [1 + (µn + $n)
2]‖h̄n − `‖2 − 2(µn + $n)‖h̄n − h̄n+1 + h̄n+1 − `‖2

+2{{ξnµnL[(1 + L + 2ϑnL)(1 + µ′nL2) + (µ′n + 2µn(1 + µ′n)L2)L2]‖h̄n − µ`‖]
+[(2 + L + 2ϑnL + 2µnL2)$′n + $n]M}+ 2ξnµn$n M}‖h̄n+1 − `‖
+2‖h̄n+1 − `‖2 − 2ξnµnλ‖h̄n+1 − Tϑ

i h̄n+1‖2

≤ [1 + (µn + $n)
2]‖h̄n − `‖2 − 2(µn + $n)‖h̄n − h̄n+1‖2 − 2(µn + $n)‖h̄n+1 − `‖2

+2{{ξnµnL[(1 + L + 2ϑnL)(1 + µ′nL2) + (µ′n + 2µn(1 + µ′n)L2)L2]‖h̄n − `‖]
+[(2 + L + 2ϑnL + 2µnL2)$′n + $n]M}+ 2ξnµn$n M}‖h̄n+1 − `‖
+2‖h̄n+1 − `‖2 − 2ξnµnλ‖h̄n+1 − Tϑ

i h̄n+1‖2

= [1 + (µn + $n)
2]‖h̄n − `‖2 − 2(µn + $n)‖h̄n − `+ `− h̄n+1‖2

−2(µn + $n)‖h̄n+1 − `‖2

+2{{ξnµnL[(1 + L + 2ϑnL)(1 + µ′nL2) + (µ′n + 2µn(1 + µ′n)L2)L2]‖h̄n − `‖]
+[(2 + L + 2ϑnL + 2µnL2)$′n + $n]M}+ 2ξnµn$n M}‖h̄n+1 − `‖
+2‖h̄n+1 − `‖2 − 2ξnµnλ‖h̄n+1 − Tϑ

i h̄n+1‖2

≤ [1 + (µn + $n)
2]‖h̄n − `‖2 − 2(µn + $n)‖`− h̄n+1‖2 − 2(µn + $n)‖h̄n+1 − `‖2

+2{{ξnµnL[(1 + L + 2ϑnL)(1 + µ′nL2) + (µ′n + 2µn(1 + µ′n)L2)L2]‖h̄n − `‖]
+[(2 + L + 2ϑnL + 2µnL2)$′n + $n]M}+ 2ξnµn$n M}‖h̄n+1 − `‖
+2‖h̄n+1 − `‖2 − 2ξnµnλ‖h̄n+1 − Tϑ

i h̄n+1‖2

= [1 + (µn + $n)
2]‖h̄n − `‖2 − 4(µn + $n)‖h̄n+1 − `‖2

+2{{ξnµnL[(1 + L + 2ϑnL)(1 + µ′nL2) + (µ′n + 2µn(1 + µ′n)L2)L2]‖h̄n − `‖]
+[(2 + L + 2ϑnL + 2µnL2)$′n + $n]M}+ 2ξnµn$n M}‖h̄n+1 − `‖
+2‖h̄n+1 − `‖2 − 2ξnµnλ‖h̄n+1 − Tϑ

i h̄n+1‖2

≤ [1 + (µn + $n)
2]‖h̄n − `‖2 − 4‖h̄n+1 − µ`‖2

+2{{ξnµnL[(1 + L + 2ϑnL)(1 + µ′nL2) + (µ′n + 2µn(1 + µ′n)L2)L2]‖h̄n − `‖]
+[(2 + L + 2ϑnL + 2µnL2)$′n + $n]M}+ 2ξnµn$n M}‖h̄n+1 − `‖
+2‖h̄n+1 − `‖2 − 2ξnµnλ‖h̄n+1 − Tϑ

i h̄n+1‖2

= [1 + (µn + $n)
2]‖h̄n − `‖2 − 2‖h̄n+1 − `‖2

+2{{ξnµnL[(1 + L + 2ϑnL)(1 + µ′nL2) + (µ′n + 2µn(1 + µ′n)L2)L2]‖h̄n − `‖]
+[(2 + L + 2ϑnL + 2µnL2)$′n + $n]M}+ 2ξnµn$n M}‖h̄n+1 − `‖
−2ξnµnλ‖h̄n+1 − Tϑ

i h̄n+1‖2. (37)

Let the following be the case.

an = ‖h̄n − µ`‖2,

νn = ξnµnL[(1 + L + 2ϑnL)(1 + µ′nL2) + ξnµnL(µ′n + 2µnL(1 + µ′nL2))L2,
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and

`n = ξnµnL[(2 + L + 2ϑnL + 2µnL2)$′n + $n]M + 2ξnµn$n M, σn = ‖h̄n+1 − Tϑ
i h̄n+1‖2.

Using the above information, (37) becomes the following.

an+1 ≤ (1 + µ2
n + 2µn$n + $2

n)an − 2an+1 + 2(νn‖h̄n − `‖+ `n)‖h̄n+1 − `‖
−2ξnµnλσn. (38)

Again, by using 2ab ≤ a2 + b2, (38) becomes the following.

an+1 ≤ (1 + µ2
n + 2µn$n + $2

n)an − 2an+1 + (νn‖h̄n − `‖+ `n)
2 + ‖h̄n+1 − `‖2

−2ξnµnλσn

= (1 + µ2
n + 2µn$n + $2

n)an − 2an+1 + ν2
n‖h̄n − µ`‖2 + 2νn`n‖h̄n − `‖+ `2

n

+‖h̄n+1 − `‖2 − 2ξnµnλσn

≤ (1 + µ2
n + 2µn$n + $2

n)an − 2an+1 + ν2
n‖h̄n − µ`‖2 + ν2

n + `2
n‖h̄n − µ`‖2 + `2

n

+‖h̄n+1 − µ`‖2 − 2ξnµnλσn

= (1 + µ2
n + 2µn$n + $2

n)an − 2an+1 + ν2
nan + ν2

n + `2
nan + `2

n

+an+1 − 2ξnµnλσn

= (1 + µ2
n + 2µn$n + $2

n + ν2
n + `2

n)an − an+1 + ν2
n + `2

n

−2ξnµnλσn

≤ (1 + µ2
n + 2µn$n + $2

n + ν2
n + `2

n)an + ν2
n + `2

n

−2ξnµnλσn (39)

≤ (1 + µ2
n + 2µn$n + $2

n + ν2
n + `2

n)an + ν2
n + `2

n. (40)

From (40), we have the following.

an+1 ≤ (1 + gn)an + hn, (41)

where gn = µ2
n + 2µn$n + $2

n + ν2
n + `2

n and hn = ν2
n + `2

n. By conditions (i) and (iii), we
obtain ∑+∞

n=1 gn < +∞ and ∑+∞
n=1 hn < +∞.

Again, from (41) and Lemma 2, we obtain that limn→+∞ an = limn→+∞ ‖h̄n −
`‖ exists.

Now, we claim that {h̄n}n≥1 is a Cauchy sequence in E. To see this, we apply the
inequality eθ ≥ 1 + θ, which holds for all θ ≥ 0, in (41) to obtain the following:

‖h̄n+1 − `‖ ≤ (1 + gn)‖h̄n − `‖+ hn

≤ egn‖h̄n − `‖+ hn,

which, for m, n ≥ 1, provides the following.

‖h̄n+m − `‖ ≤ egn+m−1‖h̄n+m−1 − `‖+ hn+m−1

≤ egn+m−1 [egn+m−2‖h̄n+m−1 − ξ?‖+ hn+m−2] + hn+m−1

= egn+m−1+gn+m−2‖h̄n+m−1 − `‖+ hn+m−2 + hn+m−1

≤ egn+m−1+gn+m−2‖h̄n+m−1 − `‖
+egn+m−1+gn+m−2(hn+m−2 + hn+m−1)

≤ . . .

≤ e∑+∞
i=1 gi‖h̄0 − `‖+ e∑+∞

i=1 gi
n+m−1

∑
i=1

hi. (42)
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Set W = e∑+∞
i=1 gi . Then, for any given ε > 0, it follows from ∑+∞

n=1 gn < +∞ and
∑+∞

n=1 hn < +∞ that there exists a positive integer n0 and a point ` ∈ F such that the
following is the case.

‖h̄0 − `‖ < ε

2(1 + W)
,

n+m−1

∑
i=1

hi <
ε

2W
. (43)

Thus, from (42) and (43), we have, for all m ≥ 1, the following.

‖h̄n0+m − h̄n0‖ ≤ ‖h̄n0+m − `‖+ ‖h̄n0 − `‖

≤ W‖h̄n0 − `‖+ W
n+m−1

∑
i=1

hi + ‖h̄n0 − `‖

< ε. (44)

Thus, {h̄n}n≥1 is a Cauchy sequence in E as claimed. The completeness of E guarantees
that {h̄n}n≥1 converges strongly to a point ` ∈ E.

Suppose that limn→+∞ h̄n = `, we need to show that ` ∈ F . However, for any given
ε? > 0, there exists a positive integer N? ≥ N such that the following is the case.

‖h̄n − `‖ = d(h̄N? , `) ∩ d(h̄n, F) <
ε?

2(1 + L)
.

Similarly, there exists ν ∈ F such that the following is the case.

‖h̄n − ν‖ = d(h̄N? , ν) ∩ (.h̄n, F) <
ε?

2(1 + 3L)
.

Using the above estimates, we have the following.

‖Ti`− `‖ = ‖Ti`− ν + Ti h̄N? − ν + ν− Ti h̄N? + ν− h̄N? + h̄N? − `‖
≤ ‖Ti`− ν‖+ ‖Ti h̄N? − ν‖+ ‖ν− Ti h̄N?‖+ ‖ν− h̄N?‖+ ‖h̄N? − `‖
≤ L′′i ‖`− ν‖+ L′′i ‖h̄N? − ν‖+ L′′i ‖ν− h̄N?‖+ ‖ν− h̄N?‖+ ‖h̄N? − `‖
≤ L‖`− h̄N?‖+ 2L‖h̄N? − ν‖+ L‖ν− h̄N?‖+ ‖ν− h̄N?‖+ ‖h̄N? − `‖
= (1 + L)‖`− h̄N?‖+ (1 + 3L)‖h̄N? − ν‖
< ε?.

Since ε? > 0 is arbitrary, we obtain the following.

Ti` = `.

Again, from the above estimates, we have the following.

‖Si`− `‖ = ‖Si`− ν + Si h̄N? − ν + ν− Si h̄N? + ν− h̄N? + h̄N? − `‖
≤ ‖Si`− ν‖+ ‖Si h̄N? − ν‖+ ‖ν− Si h̄N?‖+ ‖ν− h̄N?‖+ ‖h̄N? − `‖
≤ ΦS(‖`− ν‖) + ΦS(‖h̄N? − ν‖) + ΦS(‖ν− h̄N?‖) + ‖ν− h̄N?‖+ ‖h̄N? − `‖
≤ L′i‖`− ν‖+ L′i‖h̄N? − ν‖+ L′i‖ν− h̄N?‖+ ‖ν− h̄N?‖+ ‖h̄N? − `‖
≤ L‖`− h̄N?‖+ 2L‖h̄N? − ν‖+ L‖ν− h̄N?‖+ ‖ν− h̄N?‖+ ‖h̄N? − `‖
= (1 + L)‖`− h̄N?‖+ (1 + 3L)‖h̄N? − ν‖
< ε?.

Since ε? > 0 is arbitrary, we obtain the following.

Si` = `.

Consequently, ` ∈ F = ∩Ni=1(F(Si) ∩ F(Ti)). This completes the proof.
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Corollary 1. Let E be a real UCBS and C a nonempty closed convex subset of E. Let Tϑ
i : C −→ C

be a finite family of enriched strictly pseudocontractive self mappings. Let {h̄n} be a sequence
defined by the following:

h̄1 ∈ K
h̄n+1 = (1− µn − $n)h̄n + µnTϑ

i τn+1 + $nun

ζn+1 = (1− µ′n − $′n)h̄n + µ′nTϑ
i ρn+1 + $′nvn

, (45)

where
τn+1 = (1− ϑn)ζn+1 + ϑnTϑ

i ζn+1, ρn+1 = (1− ϑ′n)h̄n + ϑ′nTϑ
i h̄n,

{µn}, {$n}, {ϑn}, {µ′n}, {$′n}, {ϑ′n} ∈ [0, 1] and {un}, {vn} ⊂ K are two bounded sequences.
Suppose F = ∩N

i=1F(Ti) 6= ∅. If the following conditions hold:

i. 0 < ξ < ξn ≤ ηn ≤ µn < µ < 1,
∑+∞

n=1 µn = +∞, ∑+∞
n=1 µ2

n < +∞, ∑+∞
n=1 $n < +∞, ∑+∞

n=1 $′n < +∞;
ii. $n + $′n ≥ 1, µn + $n ≥ 1, µ′n + $′n ≥ 1, limn→+∞ µ2

nλ > 0;
iii. There exists a constant L′ such that Φt(r) = L′r, for some L′ > 0.

then, the sequence defined in (45) converges strongly to fixed point ` ∈ F .

Proof. Let Si = I, i = 1, 2, · · · , N, where I is an identity mapping, in (28). Then, the results
follows as in the proof of Theorem 4.

Corollary 2. Let E be a real UCBS and C be a nonempty closed convex subset of E. Let Tϑ
i : C −→

C be finite family of enriched strictly pseudocontractive self mappings. Let {h̄n} be a sequence
defined by the following:

h̄1 ∈ K
h̄n+1 = (1− µn − $n)h̄n + µnTϑ

i τn+1 + $nun

ζn+1 = (1− µ′n − $′n)h̄n + µ′nTϑ
i h̄n + $′nvn,

(46)

where
τn+1 = (1− ϑn)ζn+1 + ϑnTϑ

i ζn+1,

{µn}, {$n}, {ϑn}, {µ′n}, {$′n}, {ϑ′n} ∈ [0, 1], and {un}, {vn} ⊂ K are two bounded sequences.
Suppose F = ∩N

i=1F(Ti) 6= ∅. If the following conditions hold:

i. 0 < ξ < ξn ≤ ηn ≤ µn < µ < 1,
∑+∞

n=1 µn = +∞, ∑+∞
n=1 µ2

n < +∞, ∑+∞
n=1 $n < +∞, ∑+∞

n=1 $′n < +∞;
ii. $n + $′n ≥ 1, µn + $n ≥ 1, µ′n + $′n ≥ 1, limn→+∞ µ2

nλ > 0;
iii. There exists a constant L′ such that Φt(r) = L′r, for some L′ > 0.

then, the sequence defined by (46) converges strongly to fixed point ` ∈ F .

Proof. Let Si = I, i = 1, 2, · · · , N, where I is an identity mapping, and ϑn = ϑ′n = 0 in (28).
Then, the results follows as in the proof of Theorem 4.

Corollary 3. Let E be a real Banach space and C a nonempty closed bounded convex subset of
E. Let Tϑ : C −→ C be two strictly pseudocontractive self mappings. Let {h̄n} be a sequence
defined by the following: 

h̄1 ∈ K
h̄n+1 = ξn((1− µn)h̄n + µnTϑ

i ζn)

ζn = ηn((1− µ′n)h̄n + µ′nTϑ
i h̄n)

, (47)

where {ξn}, {ηn} ∈ (0, 1), {µn}, {µ′n} ∈ [0, 1]. Suppose F = ∩N
i=1F(Ti) 6= ∅. If the following

conditions hold:
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i. 0 < ξ < ξn ≤ ηn ≤ µn < µ < 1,
∑+∞

n=1 µn = +∞, ∑+∞
n=1 µ2

n < +∞, ∑+∞
n=1 $n < +∞, ∑+∞

n=1 $′n < +∞;
ii. $n + $′n ≥ 1, µn + $n ≥ 1, µ′n + $′n ≥ 1, limn→+∞ µ2

nλ > 0;
iii. There exists a constant L′ such that Φt(r) = L′r, for some L′ > 0.

then, the sequence defined by (47) converges strongly to a fixed point µ` ∈ F .

Proof. Let Si = I, where I is an identity mapping, and ϑn = ϑ′n = $n = $′n = 0 in (28).
Then, the results follows as in the proof of Theorem 4.

Remark 5. If T is a k-strictly pseudocontractive self mapping, then the above results still hold very
well. Our results generalize the results of Theorem 2 and Corollary 3 in [14] in particular and many
other results currently existing in literature.

4. Conclusions

In this paper, we have introduced and studied (b, k)-ESPCM in the setup of real Banach
space. We proved strong convergence theorem (Theorem 4) that extends the remarkable
results obtained in [14] from real Hilbert space to a more general UCBS and from one
mapping to a finite family of mappings. Moreover, we provided an example that does
not only support our main results but also validates the results. The results obtained in
this paper extend and improve several convergence theorems in the current literature (for
details, see [14,26,28–30] and the references therein).
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