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Abstract

:

In this article, we study the properties of  PR -pseudo-slant submanifold of para-Kenmotsu manifold and obtain the integrability conditions for the slant distribution and anti-invariant distribution of such submanifold. We derived the necessary and sufficient conditions for a  PR -pseudo-slant submanifold of para-Kenmotsu manifold to be a  PR -pseudo-slant warped product which are in terms of warping functions and shape operator. Some examples of  PR -pseudo-slant warped products of para-Kenmotsu manifold are also illustrated in the article.
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1. Introduction


At the end of the twentieth century, B.Y. Chen initiated the study of slant submanifold as a generalization of  CR -submanifolds [1]. Later, A. Carriazo studied slant submanifolds in contact metric manifold as a special case of bi-slant submanifolds [2]. Thereafter, he studied pseudo-slant submanifolds under the name anti-slant [3]. The slant submanifold with pseudo-Riemannian metric was also initiated by B.Y. Chen et al. [4,5]. The authors of [6,7] studied slant submanifold of Kaehler and contact manifolds with respect to the pseudo-Riemannian metric. P. Alegre and A. Carriazo studied slant submanifolds in para-Hermitian manifold and provided detailed descriptions of such type of submanifolds in pseudo-Riemannian metric.



On the other hand, the study of warped product manifold is one of the most significant generalizations of Cartesian product of pseudo-Riemannian manifolds (or Riemannian manifolds). This fruitful generalization was initiated by R. L Bishop and B. O’Neill in 1969 (see [8]). The notion of warped products appeared in the physical and mathematical literature before 1969, for instance, semi-reducible space, which is used for warped product by Kruchkovich in 1957 [9]. It has been successfully utilized in general theory of relativity, black holes, and string theory. The warped product is defined as follows:



Assume that B and F are two pseudo-Riemannian manifolds with pseudo-Riemannian metric   g B   and   g F  , respectively and f is a smooth function defined by   f : B ⟶  0 , 1   . Then, a pseudo-Riemannian manifold   M = B  × f  F   is said to be a warped product [8,10] if it is furnished a pseudo-Riemannian warping metric g fulfilling for any tangent vector U to M as the following:


     g  ( U , U )  = g  (  π *  U ,  π *  U )  +   f ∘ π  2  g  (  π * ′  U ,  π * ′  U )  ,     



(1)




where   π : B × F ⟶ B   and    π ′  : B × F ⟶ F   are natural projections on M, and * denotes the push-foreword map (or differential map). The smooth function f is called warping function. Moreover, the above relation is equivalent to


     g =  g B  +  f 2   g F  .     



(2)







If   f : B ⟶  0 , 1    is non-constant, then M is called a non-trivial (or proper) warped product, otherwise it is trivial. Now, consider any    U 1  ,  U 2  ∈ Γ  ( T B )    and    V 1  ,  V 2  ∈ Γ  ( T F )   , then from the Proposition   3.1   of [10] (page no. 49), we obtain that


         ∇  U 1    U 2  ∈ Γ  ( T B )  ,     



(3)






         ∇  U 1    V 1  =  ∇  V 1    U 1  =  U 1   ( ln f )   V 1  ,     



(4)






        t a n  (  ∇  V 1    V 2  )  =  ∇  V 1    ′    V 2  ,     



(5)






        n o r  (  ∇  V 1    V 2  )  =  h F   (  V 1  ,  V 2  )  = −   g (  V 1  ,  V 2  ) ∇ f  f  .     



(6)




where the symbols   ∇   ′    and h indicates are Levi–Civita connection on B and second fundamental form, respectively. By the consequence (3)–(6), we can conclude that for a warped product manifold   M = B  × f  F  , the submanifold F is a totally umbilical and the submanifold B is a totally geodesic in M.



In 1956, J.F. Nash derived a very useful theorem in Riemannian geometry known as Nash embedding theorem. The theorem states “every Riemannian manifold can be isometrically embedded in some Euclidean space” (see [11]). This theorem shows that any warped product of Riemannian (or pseudo-Riemannian) manifolds can be realized (or embedded) as a Riemannian (or pseudo-Riemannian) submanifold in Euclidean space. Due to this fact, B.Y. Chen asked a very interesting question in 2002. The question is “What can we conclude from an isometric immersion of an arbitrary warped product into a Euclidean space or into a space form with arbitrary codimension?” (see [10]). Thereafter, B.Y. Chen published the numerous articles on the  CR -warped products in K  a ¨  hler manifold (see [12,13]). Thereafter, several authors of [14,15,16,17,18,19,20] studied pseudo-slant warped product in different ambient manifolds. In 2015, A. Ali et al. derived some useful inequalities for a pseudo-slant warped product submanifold in nearly-Kenmotsu manifold [21]. Recently, the authors of [22,23,24] studied pseudo-slant warped product submanifold of Kenmotsu manifold and derived some characterizations and inequalities.



However, in 2014, B.Y. Chen initiated a new class of warped product called  PR -warped product and found the exact solutions of the system partial differential equations associated with  PR -warped products [25]. Recently, S.K. Srivastava and A. Sharma studied  PR -semi-invariant,  PR -pseudo-slant, and  PR -semi-slant warped product of para-cosymplectic manifold in [26,27,28,29]. In the last two decades, several geometrists studied warped product submanifolds and other submanifolds in different ambient space [26,27,28,29,30,31,32,33,34,35,36,37]. Motivated by them, we analyze the geometry of  PR -pseudo-slant warped product submanifolds of para-Kenmotsu manifold which are not studied yet.



This paper is formulated as follows. The second section includes some necessary information related to para-contact and para-Kenmotsu manifold and also contains some important information about the basics of submanifolds in para-Kenmotsu manifold. Section 3 includes some useful results related to integrability of  PR -pseudo-slant submanifold in para-Kenmotsu manifold and gives examples of such submanifolds. In Section 4, we analyze the geometry of  PR -pseudo-slant warped product submanifolds in para-Kenmotsu manifold and provide some characterization results allied to shape operator and endomorphism t, and also give some examples of  PR -pseudo-slant warped product submanifold of para-Kenmotsu manifold.




2. Preliminaries


A smooth manifold    M ˜   2 n + 1    of dimension   ( 2 n + 1 )   furnished an almost paracontact (see [26,38,39]) structure   ( φ , ξ , η )   which includes a   ( 1 , 1 )  -type tensor field  φ , a vector field  ξ , and a 1-form  η  globally defined on    M ˜   2 n + 1    which satisfies the accompanying relation for all   U ∈ Γ ( T  M  2 n + 1   )  :


      φ 2  U = U − η  ( U )  ξ ,  η  ( ξ )  = 1 .     



(7)







The tensor field  φ  induces an almost paracomplex structure  J  on a   2 n  -dimensional horizontal distribution  D  described as the kernel of 1-form  η , i.e.,   D = k e r ( η )  . The horizontal distribution  D  can be expressed as an orthogonal direct sum of the two eigen distribution   D +   and   D −  , the eigen distributions   D +   and   D −   having eigenvalue   + 1   and   − 1  , respectively, and each has dimension n. Moreover,  D  is invariant distribution, therefore   T   M ˜   2 n + 1     can be expressed in the following form;


     T   M ˜   2 n + 1   = D ⊕  〈 ξ 〉  .     



(8)







If    M ˜   2 n + 1    admits an almost paracontact structure   ( φ , ξ , η )  , then it is said to be an almost paracontact manifold [26,39]. In view of (7), we obtain


     η ∘ φ = 0 ,  φ ∘ ξ = 0  a n d  r a n k ( φ ) = 2 n .     



(9)







An almost paracontact manifold    M ˜   2 n + 1    is called an almost paracontact pseudo-metric manifold if it admits a pseudo-Riemannian metric of index n compatible with the triplet   ( φ , ξ , η )   by the following relation:


     g ( φ U , φ V ) = η ( U ) η ( V ) − g ( U , V ) ,     



(10)




for all   U , V ∈ Γ ( T   M ˜   2 n + 1   )  ;   Γ ( T   M ˜   2 n + 1   )   denotes the Lie algebra on    M ˜   2 n + 1   . The dual of the unitary structural vector field  ξ  allied to g is  η , i.e.,


     η ( U ) = g ( U , ξ ) .     



(11)







By the utilization of (7)–(10), we attain


     g ( U , φ V ) + g ( φ U , V ) = 0 .     



(12)







Definition 1.

An almost paracontact pseudo-metric manifold    M ˜   2 n + 1    is said to be a para-Kenmotsu manifold [38] if it satisfies


       (   ∇ ˜  U  φ )  V = η  ( V )  φ U + g  ( U , φ V )  ξ .      



(13)







In the relation (13), the symbol   ∇ ˜   indicates for the Levi–Civita connection with respect to g.





In (13) replacing V by  ξ  and then applying (7), we achieve that


       ∇ ˜  U  ξ = −  φ 2  U .     



(14)







Proposition 1.

On para-Kenmotsu pseudo-Riemannian manifold, the following relations holds:


         η  (   ∇ ˜  U  ξ )  = 0 ,   ∇ ˜  η = − η ⊗ η + g ,      



(15)






          L ξ  φ = 0 ,   L ξ  η = 0 ,  L ξ  g = − 2  ( g − η ⊗ η )  ,      



(16)




where  L  denotes the Lie differentiation.





Geometry of Submanifolds


Let M be a m-dimensional paracompact and connected smooth pseudo-Riemannian manifold and    M ˜   2 n + 1    be a para-Kenmotsu manifold. Assume that   ψ : M ⟶   M ˜   2 n + 1     is an isometric immersion. Then   ψ  M    is known as an isometrically immersed submanifold of a para-Kenmotsu manifold. Let us denote that   ψ *   for the differential map (or push forward map) of immersion  ψ  is characterized by    ψ *  :  T p  M ⟶  T  ψ ( p )     M ˜   2 n + 1    . Therefore, the induced pseudo-Riemannian metric  g  on   ψ ( M )   is defined as follows:   g   ( U , V )  p  = g  (  ψ *  U ,  ψ *  V )   , for all   U , V ∈  T p  M  . For our convenience, we use M and p in the place of   ψ ( M )   and   ψ ( p )  . Now, we denote   Γ (  T M  )   for set of all tangent vector fields on M,   Γ ( T  M ⊥  )   for the set of all normal vector fields of M, ∇ for induced Levi–Civita connection on   T M  , and   ∇ ⊥   for normal connection on the normal bundle   Γ ( T  M ⊥  )  . Then, Gauss and Weingarten formulas are characterized by the relation


       ∇ ˜  U  V =      ∇ U  V + h  ( U , V )  ,     



(17)






       ∇ ˜  U  ζ =     −  A ζ  U +  ∇ U ⊥  ζ ,     



(18)




for any   U , V ∈ Γ ( T M )   and   ζ ∈ Γ ( T  M ⊥  )  , where   A ζ   is a shape operator and h is a second fundamental form which are allied to the normal section  ζ  by the following relation:


     g  ( h  ( U , V )  , ζ )  = g  (  A ζ  U , V )  .     



(19)







The mean curvature vector H on M is described by   H =  1 m  t r a c e  ( h )   . Let   p ∈ M   and   {  U 1  ,  U 2  , ⋯ ,  U m  ,  U  m + 1   , ⋯ ,  U  2 n + 1   }   be an orthonormal basis of the    T p    M ˜   2 n + 1     in which   {  U 1  ,  U 2  , ⋯ ,  U m  }   are the tangent to M and   {  U  m + 1   ,  U  m + 2   , ⋯ ,  U  2 n + 1   }   are normal to M. Now, we set


      h  i j  k  = g  ( h  (  U i  ,  U j  )  ,  U k  )  ,     



(20)




for    i , j ∈ { 1 , 2 , ⋯ , m }   and   k ∈ { m + 1 , m + 2 , ⋯ , 2 n + 1 }  . The norm of h is defined by the following relation:


      ∥ h ∥  =    ∑  i , j = 1  m  g  ( h  (  U i  ,  U j  )  , h  (  U i  ,  U j  )  )    .     



(21)







An isometrically immersed submanifold M of a para-Kenmotsu manifold     M ˜   2 n + 1    ( φ , ξ , η , g )    is said to be (see [26,39])




	
Totally geodesic if h vanishes identically, i.e.,   h ≡ 0  .



	
Umbilical if for a normal vector field  ζ , shape operator   A ζ   is proportional to identity transformation.



	
Totally umbilical if M satisfies for every   U , V ∈ Γ ( T M )  


     h ( U , V ) = g ( U , V ) H .     



(22)







	
Minimal if trace of h (or H) vanishes identically.



	
Extrinsic sphere if M satisfies (22) and H is parallel with respect to   ∇ ⊥  .








From now on, we denote para-Kenmotsu manifold by   K  2 n + 1    and its pseudo-Riemannian submanifold by  N . For any   U ∈ Γ ( T N )  , we substitute   t U = t a n ( φ U )   and   n U = n o r ( φ U )  , where   t a n   and   n o r   are natural projections associated with the following direct sum:


      T p   K  2 n + 1   =  T p  N ⊕  T p   N ⊥  .     



(23)







Thus, we can write


     φ U = t U + n U .     



(24)







Similarly, for any   ζ ∈ Γ ( T  N ⊥  )  , we have


     φ ζ =  t   ′   ζ +  n   ′   ζ ,     



(25)




where    t   ′   ζ = t a n  ( φ ζ )    and    n   ′   ζ = n o r  ( φ ζ )   . In view of (12) and (22)–(25), we attain for any   U , V ∈ Γ ( T N )   and   ∀  ζ 1  ,  ζ 2  ∈ Γ  ( T  N ⊥  )    that


        g  (  n   ′    ζ 1  ,  ζ 2  )  = − g  (  ζ 1  ,  n   ′    ζ 2  )  ,  g  ( t U , V )  = − g  ( U , t V )  .     



(26)







Moreover, by the consequences of Equations (12) and (24)–(25), we have


     g  ( n U , ζ )  = − g  ( U ,  t   ′   ζ )  .     



(27)




Further, the covariant derivative of  φ , t and n are characterized by, respectively,


     (   ∇ ˜  U  φ ) V =       ∇ ˜  U  φ V − φ   ∇ ˜  U  V ,     



(28)






     (  ∇ U  t ) V =      ∇ U  t V − t  ∇ U  V ,     



(29)






     (  ∇ U  n ) V =      ∇ U ⊥  n V − n  ∇ U  V ,     



(30)




for some   U , V ∈ Γ ( T N )  .



Proposition 2.

Let  N  be tangent to ξ in   K  2 n + 1   . Then, we obtain


      (  ∇ U  t ) V =      A  n V   U +  t   ′   h  ( U , V )  + η  ( V )  t U − g  ( t U , V )  ξ ,      



(31)






      (  ∇ U  n ) V =      n   ′   h  ( U , V )  + η  ( V )  n U − h  ( U , t V )  ,      



(32)




for every   U , V ∈ Γ ( T N )  .





Proof. 

By the consequence of (17)–(18), (24), (28)–(30), we arrive at


      (   ∇ ˜  U  φ )  V +  A  n V   U = −  t   ′   h  ( U , V )  +  (  ∇ U  t )  V −  n   ′   h  ( U , V )  + h  ( U , t V )  +  (  ∇ U  n )  V ,     








for any   U ∈ Γ ( T N )  . Employing (13) and (24) into the above expression, then considering tangential part and normal part of the obtained expression, we have (31) and (32), respectively. □





Proposition 3.

If ξ is normal to  N  in   K  2 n + 1   , then we acquire that


      (  ∇ U  t ) V =      t   ′   h  ( U , V )  +  A  n V   U ,      



(33)






      (  ∇ U  n ) V =      n   ′   h  ( U , V )  + g  ( U , t V )  ξ − h  ( U , t V )  ,      



(34)




for all   U , V ∈ Γ ( T N )  .



Proof. 

Immediately, from (13), (17)–(18), (24), (28)–(30), we derive (33) and (34). □







Proposition 4.

Let  N  be tangent to ξ in   K  2 n + 1   . Then, we receive that


      (  ∇ U   t   ′   ) ζ =      A   n   ′   ζ   U − g  ( n U , ζ )  ξ − t  A ζ  U ,      



(35)






      (  ∇ U   n   ′   ) ζ =     − h  ( U ,  t   ′   ζ )  − n  A ζ  U ,      



(36)




for any   U ∈ Γ ( T N )   and   ζ ∈ Γ ( T  N ⊥  )  .





Proof. 

Employing (17)–(18), (25), (29), and (30) into (28), we achieve that


      (   ∇ ˜  U  φ )  ζ =  (  ∇ U   n   ′   )  ζ −  A   n   ′   ζ   U + t  A ζ  U + n  A ζ  U + h  ( U ,  t   ′   ζ )  +  (  ∇ U   t   ′   )  ζ ,     








for any   U ∈ Γ ( T N )  . Utilizing (13) and (24) into the above expression, we achieve (35) and (36). □





Proposition 5.

If  N  is normal to ξ in   K  2 n + 1   , then we achieve for any   U ∈ Γ ( T N )   and   ζ ∈ Γ ( T  N ⊥  )   that


          (  ∇ U   t   ′   )  ζ =  A   n   ′   ζ   U − t  A ζ  U + η  ( ζ )  t U ,      



(37)






          (  ∇ U   n   ′   )  ζ = − n  A ζ  U + η  ( ζ )  n U + g  ( U ,  t ′  ζ )  ξ − h  ( U , t V )  .      



(38)









Proof. 

The process is similar to Proposition 4. □





Consider   U , ξ ∈ Γ ( T N )   as two vector fields; thus, by the direct application of (14) and (17)–(18), we gain


      ∇ U  ξ =     −  φ 2  U ,  h  ( U , ξ )  = 0 .     



(39)







If   ξ ∈ Γ ( T  N ⊥  )  , then by the consequence of (14) and (18), we have


      A ξ  U =     U ,   ∇  U  ⊥  ξ = 0 .     



(40)







In view of (39) and (40), we give the following remarks:



Remark 1.

Let ξ be tangent to  N  in   K  2 n + 1   . Then relation (39) holds on  N .





Remark 2.

Let ξ be normal to  N  in   K  2 n + 1   . Then Equation (40) holds in  N .





Proposition 6.

Let ξ be tangent to  N  in   K  2 n + 1   . Then, the endomorphism t and bundle 1-form n satisfies


          t 2  +  t   ′   n = I − η ⊗ ξ ,      



(41)






         n t +  n   ′   n = 0 .      



(42)









Proof. 

Operating  φ  on (24), we have


      φ 2  U = φ  ( t U )  + φ  ( n U )  .     











Employing (7) and (24) into the above expression, we achieve


     U − η  ( U )  ξ =  t 2  U + n t U +  t   ′   n U +  n   ′   n U .     











Comparing tangential and normal parts of the above expression, we obtain (41) and (42). □





In similar way, we prove the following result:



Proposition 7.

Let ξ be normal to  N  in   K  2 n + 1   . Then, the following relations holds:


         t  t   ′   +  t   ′    n   ′   = 0 ,      



(43)






         n  t   ′   +  n    ′ 2    = I .      



(44)











3.  PR -Pseudo-Slant Submanifolds


Definition 2.

Let  N  be tangent to ξ in   K  2 n + 1   . Then  N  is called a slant [40] if the quotient     g  t U , t U    g  φ U , φ U    = λ  θ    is constant for any non-zero spacelike or timelike vector   U ∈  T p  N   and for any   p ∈ N  . The symbol θ is used for slant angle and   λ  θ    for slant coefficient or function. In other words, if  N  is slant then λ does not depend on the vector field and point.





Remark 3.

The value of   λ  θ    can be




	(i) 

	
  λ =  cosh 2  θ ∈  [ 1 , ∞ )    for     ∥ t U ∥   ∥ φ U ∥   > 1  ,   t U   is timelike or spacelike for any spacelike or timelike vector field U and   θ > 0  .




	(ii) 

	
  λ  θ  =  cos 2  θ ∈  [ 0 , 1 ]    for     ∥ t U ∥   ∥ φ U ∥   < 1  ,   t U   is timelike or spacelike for any spacelike or timelike vector field U and   0 ≤ θ ≤ 2 π  .




	(iii) 

	
  λ  θ  = −  sinh 2  θ ∈  ( − ∞ , 0 ]    for   t U   is timelike or spacelike for any timelike or spacelike vector field U and   θ < 0  .











Remark 4.

If   λ = 0  , then  N  is an anti-invariant submanifold.





Remark 5.

If   λ = 1  , then  N  is an invariant submanifold.





Example 1.

Let us consider    M ˜  =  R 4  ×  R +    together with the the usual Cartesian coordinates   (  x 1  ,  x 2  ,  y 1  ,  y 2  , s )  . Then the structure   ( φ , ξ , η )   over   M ˜   is defined by


      φ   ∂  ∂  x i     =  ∂  ∂  y i    ,  φ   ∂  ∂  y i     =  ∂  ∂  x i    ,  φ   ∂  ∂ s    = 0 ,  η = d s ,      



(45)




where   i , j ∈ { 1 , 2 }   and the pseudo-Riemannian metric tensor g is defined as


         g   ∂  ∂  x i    ,  ∂  ∂  x i     =  e  − 2 s   ,  g   ∂  ∂  y i    ,  ∂  ∂  y i     = −  e  − 2 s   , g   ∂  ∂ s   ,   ∂  ∂ s    = 1 ,      



(46)






         g   ∂  ∂  x i    ,  ∂  ∂  x k     = 0 ,  g   ∂  ∂  x i    ,  ∂  ∂  y k     = 0 ,  g   ∂  ∂  y i    ,  ∂  ∂  y k     = 0 .      



(47)







Then, by simple computation, we can easily see that   M ˜   is para-Kenmotsu manifold. Suppose   M 1  ,   M 2  , and   M 3   are immersed submanifolds into   M ˜   by the immersions σ,   σ   ′   , and   σ    ″     respectively, defined by


         σ  ( u , v , α )  =  u ,  3  v ,  3 2  v , v , α  ,          σ  ( u , v , α )  =  u ,  1 2  v ,  2  v , v , α  ,          σ  ( u , v , α )  =  u , 3 v , 2 v , v , α  .      











By simple computation, we conclude that   M 1  ,   M 2  , and   M 3   are slant submanifolds of type I, type II, and type III of para-Kenmotsu manifold, respectively.





Theorem 1

([40]). Let ξ be tangent to  N  in   K  2 n + 1   . Then  N  is slant if and only if there exists a constant   λ ∈ R   such that


      t 2  = λ  ( I − η ⊗ ξ )  .     



(48)




In particular, λ is either    cos 2  θ   or    cosh 2  θ   or   −  sinh 2  θ  .





Theorem 2

([40]). Let  N  be a slant submanifold in   K  2 n + 1    with   ξ ∈ Γ ( T N )  . Then, for any   U , V ∈ Γ ( T N )  , we have


     g ( t U , t V )     = λ g ( φ U , φ V ) ,     



(49)






     g ( n U , n V )     = ( 1 − λ ) g ( φ U , φ V ) .     



(50)









Proposition 8.

Let  N  be a slant submanifold in   K  2 n + 1    with slant coefficient   λ  θ    if and only if




	(i) 

	
   t ′  n U =  1 − λ  U   and   n  t U = −  n ′  n U   for non-lightlike tangent vector field U on  N .




	(ii) 

	
     n ′   2  ζ = λ ζ   for non-lightlike normal vector field ζ.











Proof. 

Assume  N  to be slant submanifold of   K  2 n + 1   .




	(i)

	
Then for every   p ∈ N   and   U ∈ T N  , we find


     φ U =     t U + n U ,        φ 2  U =     φ  t U + n U  ,       U − η ( U ) ξ =      t 2  U + n t U +  t ′  n U +  n ′  n U .     








Equating tangential and normal parts and using (51), we can attain the result.




	(ii)

	
Since,   ζ ∈ Γ  T  N ⊥    , there exists   U ∈ Γ  T N    as  N  is slant submanifold such that   n U = ζ  .



Now,      n ′   2  ζ =  n ′    n ′   n U = −  n ′   n  t U = n   t 2  U = λ ζ  .









The converse can be easily derived using the same equations. □





Definition 3.

Let  N  be tangent to ξ in   K  2 n + 1   . Then  N  is said to be a  PR -pseudo-slant submanifold in   K  2 n + 1    if its tangent bundle   T N   can orthogonally be decomposed as a direct sum of an anti-invariant distribution   D ⊥   and a slant distribution   D λ   i.e.,   T N =  D λ  ⊕  D ⊥  ⊕  〈 ξ 〉   , where ξ is a one-dimensional real distribution.





Let P and Q be two orthogonal projections on the slant   D λ   and anti-invariant distribution   D ⊥  , respectively. Then, for any   U ∈ Γ ( T N )   can be expressed as follows:


     U = P U + Q U + η ( U ) ξ .     



(51)







From (51), we have


      P 2  = P ,   Q 2  = Q ,  P Q = Q P = 0 .     



(52)







From (24) and (51), we obtain


     φ U = t P U + n P U + t Q U + n Q U ,     








using the fact M is  PR -pseudo-slant, we find


     φ P U = t P U + n P U + n Q U ,  t Q U = 0 ,  t P U ∈ Γ (  D λ  ) .     



(53)







This leads to the following proposition:



Proposition 9.

Let  N  be a  PR -pseudo-slant submanifold in   K  2 n + 1   . Then the Equation (53) holds.





Theorem 3.

Let  N  be a  PR -pseudo-slant submanifold in   K  2 n + 1   . Then the endomorphism n is parallel if and only if


       A ζ   V 1  = −  1 λ   A   n ′  ζ   t  V 1  ,      



(54)




for all    V 1  ∈ Γ  (  D λ  )    and   ζ ∈ Γ ( T  N ⊥  )  .





Proof. 

Firstly, assume that the endomorphism n is parallel, then from (32), we obtain


      n   ′   h  (  V 1  ,  V 2  )  − h  (  V 1  , t  V 2  )  − η  (  V 2  )  n  V 1  = 0 .     











Replacing   V 2   with   t  V 2    in the above equation, we obtain


      n ′  h  (  V 1  , t  V 2  )  − h  (  V 1  ,  t 2   V 2  )  = 0     











Now, using (32) in the above equation, we have    n ′  h  (  V 1  , t  V 2  )  − λ h  (  V 1  ,  V 2  )  = 0  . Now, taking inner product with   ζ ∈ Γ ( T  N ⊥  )   and using (19) and (26), we compute


     g  (  A ζ   V 2  ,  V 1  )  = −  1 λ  g  (  A   n ′  ζ   t  V 2  ,  V 1  )  .     











□





Theorem 4.

Let  N  be a  PR -pseudo-slant submanifold in   K  2 n + 1   . Then the slant distribution   D λ   is always integrable.





Proof. 

Considering    W 1  ∈ Γ  (  D ⊥  )    and    V 1  ,  V 2  ∈ Γ  (  D λ  )   , the utilization of (10) and (17) gives   g  (  ∇  V 1    V 2  ,  W 1  )  = − g  ( φ   ∇ ˜   V 1    V 2  , φ  W 1  )  + η  (   ∇ ˜   V 1    V 2  )  η  (  W 1  )   . By the consequences of (14), (17), (18), and (22), the above expression takes the following form:


     g  (  ∇  V 1    V 2  ,  W 1  )  = − g  ( h  (  V 1  , t  V 2  )  , n  W 1  )  − g  (  ∇  V 1  ⊥  n  V 2  , n  W 1  )  .     











In the light of Equations (36) and (40), we compute


     g  (  ∇  V 1    V 2  ,  W 1  )  = − g  (  n ′  h  (  V 1  ,  V 2  )  , n  W 1  )  − g  ( n  ∇  V 1    V 2  , n  W 1  )  .     



(55)







By interchange   V 1   and   V 2   into (55), we obtain


     g  (  ∇  V 2    V 1  ,  W 1  )  = − g  (  n ′  h  (  V 1  ,  V 2  )  , n  W 1  )  − g  ( n  ∇  V 2    V 1  , n  W 1  )  .     



(56)







In the light of (55) and (56), we achieve   g  (  [  V 1  ,  V 2  ]  ,  W 1  )  = − g  ( n  [  V 1  ,  V 2  ]  , n  W 1  )   , now using (50), thus, we find


     g  (  [  V 1  ,  V 2  ]  ,  W 1  )  =  ( 1 − λ )   g  (  [  V 1  ,  V 2  ]  ,  W 1  )  − η  (  [  V 1  ,  V 2  ]  )  η  (  W 1  )   .     



(57)







By the relation (57) we conclude that   D λ   is integrable. This completes the proof. □





Remark 6.

The one-dimensional real distribution of  PR -pseudo-slant submanifold in   K  2 n + 1    is always integrable.





Theorem 5.

Let  N  be a  PR -pseudo-slant submanifold in   K  2 n + 1   . Then, the distribution   D ⊥   is integrable if and only if the shape operator satisfies


       A  n  W 1     W 2  =  A  n  W 2     W 1  ,      



(58)




  ∀  W 1  ,  W 2  ∈ Γ  (  D ⊥  )   .





Proof. 

By the direct consequence of Equation (22), we obtain


     Φ  [  W 1  ,  W 2  ]  = t  [  W 1  ,  W 2  ]  + n  [  W 1  ,  W 2  ]  =     t   ∇ ˜   W 1    W 2  − t   ∇ ˜   W 2    W 1  + n   ∇ ˜   W 1    W 2  − n   ∇ ˜   W 2    W 1  .     











Since   D ⊥   is anti-invariant distribution then    [  W 1  ,  W 2  ]  ∈ Γ  ( T  D ⊥  )    if and only if   t   ∇ ˜   W 1    W 2  − t   ∇ ˜   W 2    W 1  = 0  . By the application of (29) and (53), we observe that   −  (  ∇  W 2   t )   W 1  +  (  ∇  W 1   t )   W 2  = 0  . In view of (31), we obtain (58). This completes the proof. □





Corollary 1.

Let  N  be a  PR -pseudo-slant submanifold in   K  2 n + 1   . Then, the distribution   D ⊥   is integrable if and only if the endomorphism t satisfies


       (  ∇  W 2   t )   W 1  =  (  ∇  W 1   t )   W 2  ,      



(59)




  ∀  W 1  ,  W 2  ∈ Γ  (  D ⊥  )   .





Lemma 1.

For a  PR -pseudo-slant submanifold  N  in   K  2 n + 1   , we have


      g  (  ∇  V 1    V 2  ,  W 1  )  =  1 λ  g  ( h  (  V 1  ,  W 1  )  , n t  V 2  )  − g  ( h  (  V 1  , t  V 2  )  , φ  W 1  )  ,      



(60)




for all    W 1  ∈ Γ  (  D ⊥  )    and    V 1  ,  V 2  ∈ Γ  (  D λ  ⊕  〈 ξ 〉  )   .





Proof. 

By the consequence of (10) and (17), we have


     g  (  ∇  V 1    V 2  ,  W 1  )  = η  (   ∇ ¯   V 1    V 2  )  η  (  W 1  )  − g  ( φ   ∇ ˜   V 1    V 2  , φ  W 1  )  .     











In view of (12) and (28), we obtain


     g  (  ∇  V 1    V 2  ,  W 1  )  = − g  (   ∇ ¯   V 1   n  V 2  , φ  W 1  )  − g  (   ∇ ˜   V 1   t  V 2  , φ  W 1  )  .     











Now using (13), (17), and (29) in the above relation,


     g  (  ∇  V 1    V 2  ,  W 1  )  = − g  ( h  (  V 1  , t  V 2  )  , φ  W 1  )  + g  (   ∇ ˜   V 1    t ′  n  V 2  , φ  W 1  )  + g  (   ∇ ˜   V 1    n ′  n  V 2  , φ  W 1  )      











The above expression reduces into the following form by the use of first part of Proposition 8 and (14):


     g  (  ∇  V 1    V 2  ,  W 1  )  = − g  ( h  (  V 1  , t  V 2  )  , φ  W 1  )  +  ( 1 − λ )  g  (  ∇  V 1    V 2  ,  W 1  )  − g  (   ∇ ˜   V 1   n t  V 2  , φ  W 1  )  .     











By the virtue of (18) and (19), we have (60). □





Theorem 6.

Let  N  be a  PR -pseudo-slant submanifold in   K  2 n + 1   . Then, the distribution    D λ  ⊕  〈 ξ 〉    is integrable if and only if the shape operator A satisfies


      g  (  A  n t  V 2     W 1  ,  V 1  )  − g  (  A  n t  V 1     W 1  ,  V 2  )  + g  (  A  φ  W 1    t  V 1  ,  V 2  )  − g  (  A  φ  W 1     V 1  , t  V 2  )  = 0 ,      



(61)




  ∀  W 1  ,  W 2  ∈ Γ  (  D ⊥  )    and    V 1  ,  V 2  ∈  D λ  ⊕  〈 ξ 〉   .





Proof. 

By the consequence of Lemma 1, we have


     g (  [  V 1  ,  V 2  ]  ,  W 1  ) =      1 λ   ( g   ( h  (  V 1  ,  W 1  )  , n t  V 2  )  − g  ( h  (  V 2  ,  W 1  )  , n t  V 1  )         + g  ( h  ( t  V 1  ,  V 2  )  , φ  W 1  )  − g  ( h  (  V 1  , t  V 2  )  , φ  W 1  )   )      








for every    V 1  ,  V 2  ∈ Γ  (  D λ  ⊕  〈 ξ 〉  )    and    W 1  ∈ Γ  (  D ⊥  )   . In light of (19), we have


     λ  g (  [  V 1  ,  V 2  ]  ,  W 1  )  =     g  (  A  n t  V 2     W 1  ,  V 1  )  − g  (  A  n t  V 1     W 1  ,  V 2  )      










     + g  (  A  φ  W 1    t  V 1  ,  V 2  )  − g  (  A  φ  W 1     V 1  , t  V 2  )  .     



(62)







By the relation (62), we conclude that    D λ  ⊕  〈 ξ 〉    is integrable if and only if the relation (61) holds. This completes the proof. □





Theorem 7.

Let  N  be a mixed totally geodesic  PR -pseudo-slant submanifold in   K  2 n + 1   . Then, the distribution    D λ  ⊕  〈 ξ 〉    is integrable if and only if the shape operator A satisfies


       A  n  W 1    t  V 1  + t  A  n  W 1     V 1  = 0 ,      



(63)




  ∀  W 1  ,  W 2  ∈ Γ  (  D ⊥  )    and    V 1  ,  V 2  ∈ Γ  (  D λ  ⊕  〈 ξ 〉  )   .





Proof. 

By the consequence of (10), (13), (28), and (53), we have   g  (  [  V 1  ,  V 2  ]  ,  W 1  )  = g  (   ∇ ˜   V 1   φ  W 1  , φ  V 2  )  − g  (   ∇ ˜   V 2   φ  W 1  , φ  V 1  )   , for every    V 1  ,  V 2  ∈ Γ  (  D λ  ⊕  〈 ξ 〉  )    and    W 1  ∈ Γ  (  D ⊥  )   . Now, using (17), (18), and (26) in the above expression, we have


     g (  [  V 1  ,  V 2  ]  ,  W 1  ) =     − g  (  A  n  W 1     V 1  , t  V 2  )  + g  (  A  n  W 1     V 2  , t  V 1  )          + g  (  ∇  V 1  ⊥  n  W 1  , n  V 2  )  − g  (  ∇  V 2  ⊥  n  W 1  , n  V 1  )  .     



(64)







Furthermore, by the virtue of (13), (17), (18), (26), (28), and (53), we find


     t  ∇  V 1    W 1  + n  ∇  V 1    W 1  +  A  n  W 1     V 1  =  ∇  V 1  ⊥  n  W 1  −  t   ′   h  (  V 1  ,  W 1  )  −  n   ′   h  (  V 1  ,  W 1  )  .     



(65)







By comparing normal components of (65), we obtain


      ∇  V 1  ⊥  n  W 1  −  n   ′   h  (  V 1  ,  W 1  )  = n  ∇  V 1    W 1  .      



(66)







Now utilizing (65) and (66) in (64), we obtain


     g (  [  V 1  ,  V 2  ]  ,  W 1  ) =     − g  (  A  n  W 1     V 1  , t  V 2  )  + g  (  A  n  W 1     V 2  , t  V 1  )  + g  ( n  ∇  V 1    W 1  )  , n  V 2   )           + g  (  n   ′   h  (  V 1  ,  W 1  )  , n  V 2  )  − g  ( n  ∇  V 2    W 1  )  , n  V 1   ) − g   (  n   ′   h  (  V 2  ,  W 1  )  , n  V 1  )  .     











By the application of (8), we have


     λ g  (  [  V 1  ,  V 2  ]  ,  W 1  )  = g  ( t  A  n  W 1     V 1  ,  V 2  )  + g  (  A  n  W 1    t  V 1  ,  V 2  )  .     



(67)







By the above expression, we conclude that   D λ   is integrable if and only if (63) holds. □





Theorem 8.

Let  N  be a  PR -pseudo-slant submanifold in   K  2 n + 1   . Then, the distribution    D λ  ⊕  〈 ξ 〉    is integrable if and only if


      g  (  A  n  W 1     V 1  , t  V 2  )  − g  (  A  n  W 1    t  V 1  ,  V 2  )  +     g  (  ∇  V 1  ⊥  n  V 2  , n  W 1  )  − g  (  ∇  V 2  ⊥  n  V 1  , n  W 1  )  = 0 ,      



(68)




for every    V 1  ,  V 2  ∈ Γ  (  D λ  ⊕  〈 ξ 〉  )    and    W 1  ∈ Γ  (  D ⊥  )   .





Proof. 

By the consequence of (17), (18), and (22), we have


     φ [ U , V ] =     t  ∇  V 1    V 2  + n  ∇  V 1    V 2  − t  ∇  V 2    V 1  − n  ∇  V 2    V 1  .     











In light of (29), (30) and (31), we observe that


     φ [  V 1  ,  V 2  ]     =  ∇  V 1   t  V 2  +  ∇  V 1  ⊥  n  V 2  −  ∇  V 2   t  V 1  −  ∇  V 2  ⊥  n  V 1  +  A  n  V 1     V 2  −  A  n  V 2     V 1           + η  (  V 1  )  φ  V 2   ) − η   (  V 2  )  φ  V 1  + 2 g  ( t  V 1  ,  V 2  )  ξ + h  (  V 1  , t  V 2  )  − h  ( t  V 1  ,  V 2  )  .     



(69)







Now, taking the inner product in the above expression with   n  W 1    and using (12), where    W 1  ∈ Γ  (  D ⊥  )   ;


     g ( φ  [  V 1  ,  V 2  ]  , n  W 1  ) =     g  ( h  (  V 1  , t  V 2  )  , n  V 1  )  − g  ( h  ( t  V 1  ,  V 2  )  , n  W 1  )  + g  (  ∇  V 1  ⊥  n  V 2  , n  W 1  )           − g (  ∇  V 2  ⊥  n  V 1  , n  W 1  ) .     











From using (25) and (26) in the above equation, we arrive that


     g (  t   ′   n  [  V 1  ,  V 2  ]  ,  W 1  ) =     g  ( h  ( t  V 1  ,  V 2  )  , n  W 1  )  − g  ( h  (  V 1  , t  V 2  )  , n  V 1  )  − g  (  ∇  V 1  ⊥  n  V 2  , n  W 1  )           + g (  ∇  V 2  ⊥  n  V 1  , n  W 1  ) .     











In light of Lemma 8, we have


      1 − λ  g  (  [  V 1  ,  V 2  ]  ,  W 1  )  =     g  ( h  ( t  V 1  ,  V 2  )  , n  W 1  )  − g  ( h  (  V 1  , t  V 2  )  , n  V 1  )  − g  (  ∇  V 1  ⊥  n  V 2  , n  W 1  )           + g (  ∇  V 2  ⊥  n  V 1  , n  W 1  ) .     



(70)







Thus, Equation (70) concludes that    D λ  ⊕  〈 ξ 〉    is integrable if and only if (68) holds. □





Theorem 9.

Let  N  be a pseudo-slant submanifold in   K  2 n + 1   . Then, the distribution   D ⊥   is integrable if and only if it A satisfies


       A  n  W 1     W 2  = 0 ,      



(71)




  ∀  W 1  ,  W 2  ∈ Γ  (  D ⊥  )   .





Proof. 

First of all, suppose   D ⊥   is integrable distribution, then   t  W 2  = t  W 1  = 0  ; this implies that    ∇  W 2   t  W 1  =  ∇  W 1   t  W 2  = 0  . Therefore, relation (31) reduces   g  (  (  ∇  V 1   t )   W 2  ,  W 1  )  = g  (  A  n  W 2     V 1  ,  W 1  )  + g  (  t ′  h  (  V 1  ,  W 2  )  ,  W 1  )   , for every    V 1  ∈ Γ  (  D λ  ⊕ < ξ > )   ; this implies that   g  (  A  n  W 2     V 1  ,  W 1  )  = − g  (  t ′  h  (  V 1  ,  W 2  )  ,  W 1  )   . Now, in the light of (19) and (27), the above expression turns into   g  (  A  n  W 2     W 1  , X )  = − g  (  A  n  W 1     W 2  ,  V 1  )   . Thus, from (58), we obtain (71).



Conversely: suppose that  N  satisfies (71), then by utilization of (19) we have   g (  t ′  h  (  V 1  ,  W 2  )  ,  W 1  ) = 0  . Now, employing (29) and (31) into the above expression, we achieve that   g (  ∇  W 2    W 1  ,  V 1  ) = 0  , which implies that    ∇  W 2    W 1  ∈ Γ  (  D ⊥  )   . This shows that   D ⊥   is a integrable distribution. □






4.  PR -Pseudo-Slant Warped Product Submanifolds


Let  N  be tangent to  ξ  in   K  2 n + 1   . Then,  N  is said to be a  PR -pseudo-slant warped product if it is a warped product of type    N ⊥   × f   N λ    or    N λ   × f   N ⊥   , where   N λ   is slant submanifold and   N ⊥   is a anti-invariant submanifold in  N . In this paper, we only study the warped product whose base is slant, i.e.,    N λ   × f   N ⊥   .



Proposition 10.

Let   N =  N λ   × f   N ⊥    be a  PR -pseudo-slant submanifold warped product in   K  2 n + 1    such that   ξ ∈ Γ ( T  N ⊥  )  . Then  N  is a  PR -product.





Proof. 

From Equation (4), we have    ∇  V 1    W 1  =  ∇  W 1    V 1  =  V 1   ( ln f )   W 1   , for    V 1  ∈ Γ  ( T  N λ  )    and    W 1  ∈ Γ  ( T  N ⊥  )   . Replacing by   W 1   by  ξ  into the above expression, we have    ∇  V 1   ξ =  V 1   ( ln f )  ξ  . With the help of (39), the above expression reduces into the given form    V 1   ( ln f )  = 0  . This completes the proof. □





Proposition 11.

There exists a non-trivial  PR -pseudo-slant submanifold warped product   N =  N λ   × f   N ⊥    in   K  2 n + 1    such that   ξ ∈ Γ ( T  N λ  )  .





Proof. 

From Equation (4), we have    ∇  V 1    W 1  =  ∇  W 1    V 1  =  V 1   ( ln f )   W 1   , for    V 1  ∈ Γ  ( T  N λ  )    and    W 1  ∈ Γ  ( T  N ⊥  )   . Replacing by   V 1   by  ξ  into the above expression, we have    ∇  W 1   ξ = ξ  ( ln f )   W 1   . In the light of (39), the above expression reduces into the following form   ξ  ( ln f )   W 1  = −  W 1   . By the definition of gradient, we have


       ∇ f  f  = − ξ .     



(72)







By the theory of differential equations we observe that Equation (72) has a solution. This shows that f is non-constant. This completes the proof.



□





Remark 7.

Let   N =  N λ   × f   N ⊥    be  PR -pseudo-slant warped product submanifold in   K  2 n + 1   . Then, we have


      ξ ( ln f ) = − 1 .      



(73)









Now, we give some examples of  PR -pseudo-slant submanifold of type   N =  N λ   × f   N ⊥   .



Example 2.

Choose    M ˜  =  R 8  ×  R +    together with the usual Cartesian coordinates   (  x 1  ,  x 2  ,  x 3  ,  x 4  ,  y 1  ,  y 2  ,  y 3  ,  y 4  , s )  . Then the structure   ( φ , ξ , η )   over   M ˜   is defined by


      φ   ∂  ∂  x i     =  ∂  ∂  y i    ,  φ   ∂  ∂  y i     =  ∂  ∂  x i    ,  φ   ∂  ∂ s    = 0 ,  η = d s .      



(74)




where   i , j ∈ { 1 , ⋯ , 4 }   and the pseudo-Riemannian metric tensor g is defined as


         g   ∂  ∂  x i    ,  ∂  ∂  x i     =  e  − 2 s   ,  g   ∂  ∂  y i    ,  ∂  ∂  y i     = −  e  − 2 s   , g   ∂  ∂ s   ,   ∂  ∂ s    = 1 ,      



(75)






         g   ∂  ∂  x i    ,  ∂  ∂  x k     = 0 ,  g   ∂  ∂  x i    ,  ∂  ∂  y k     = 0 ,  g   ∂  ∂  y i    ,  ∂  ∂  y k     = 0 ,      



(76)




for all   k ∈ { 1 , ⋯ , 4 }  . Then by simple computation, we can easily see that   M ˜   is para-Kenmotsu manifold. Suppose  N  is an immersed submanifold into   M ˜   by an immersion σ which is defined by


          x 1  = u ,   x 2  = k v sinh α ,   x 3  =  α 2  ,   x 4  = 0 ,   y 1  = v ,         y 2  = k v cosh α ,   y 3  = 0 ,   y 4  =  α 2  − 2 ,  s = s ,      








for   k ∈ R  . Thus, we can easily provide the generating set for the tangent bundle of submanifold as follows:


          Z α  = k v cosh α  ∂  ∂  x 2    + 2 α  ∂  ∂  x 3    + k v sinh α  ∂  ∂  y 2    + 2 α  ∂  ∂  y 4    ,           Z u  =  ∂  ∂  x 1    ,           Z v  = k sinh α  ∂  ∂  x 2    +  ∂  ∂  y 1    + k cosh α  ∂  ∂  y 2    ,           Z s  = ξ .      








for   s ∈ R  . The basis vector for   φ ( T M )   is given by


         φ  Z α  = k v sinh α  ∂  ∂  x 2    + 2 α  ∂  ∂  x 4    + k v cosh α  ∂  ∂  y 2    + 2 α  ∂  ∂  y 3    ,          φ  Z u  =  ∂  ∂  y 1    ,          φ  Z v  =  ∂  ∂  x 1    + k cosh α  ∂  ∂  x 2    + k sinh α  ∂  ∂  y 2    ,          φ  Z s  = 0 .      











By simple calculation, we obtain that the distribution    D λ  = s p a n  {  Z u  ,  Z v  }    is slant distribution with slant function   λ =  1  1 +  k 2      and the distribution    D ⊥  = s p a n  {  Z α  }    is anti-invariant under φ. The induced metric tensor   g N   on   N =  N λ   × f   N ⊥    is given by


       g N  = d  s 2  +  ( d  u 2  −  ( 1 +  k 2  )  d  v 2  )   e  − 2 s   +  e  − 2 s    v 2  d  α 2  .      



(77)







The above calculation manifests that the submanifold  N  is a form of  PR -pseudo-slant warped product of type II with warping function   f =  e  − s   v   of para-Kenmotsu manifold.





Example 3.

Choose    M ˜  =  R 8  ×  R +    together with the usual Cartesian coordinates   (  x 1  ,  x 2  ,  x 3  ,  x 4  ,  y 1  ,  y 2  ,  y 3  ,  y 4  , s )  . Then, the structure   ( φ , ξ , η )   over   M ˜   is defined by


      φ   ∂  ∂  x i     =  ∂  ∂  y i    ,  φ   ∂  ∂  y i     =  ∂  ∂  x i    ,  φ   ∂  ∂ s    = 0 ,  η = d s .      



(78)




where   i , j ∈ { 1 , ⋯ , 4 }   and the pseudo-Riemannian metric tensor g is defined as


         g   ∂  ∂  x i    ,  ∂  ∂  x i     =  e  − 2 s   ,  g   ∂  ∂  y i    ,  ∂  ∂  y i     = −  e  − 2 s   , g   ∂  ∂ s   ,   ∂  ∂ s    = 1 ,      



(79)






         g   ∂  ∂  x i    ,  ∂  ∂  x k     = 0 ,  g   ∂  ∂  x i    ,  ∂  ∂  y k     = 0 ,  g   ∂  ∂  y i    ,  ∂  ∂  y k     = 0 ,      



(80)




for all   k ∈ { 1 , ⋯ , 4 }  . Then, by simple computation, we can easily see that   M ˜   is para-Kenmotsu manifold. Suppose  N  is an immersed submanifold into   M ˜   by an immersion σ which is defined by


          x 1  = k u sinh α ,   x 2  = α ,   x 3  = u ,   x 4  = 0 ,   y 1  = k u cosh α ,         y 2  = 0 ,   y 3  = v ,   y 4  = α + 1 ,  s = s ,      








for   k ∈ R ∼ { 1 }  . Thus, we can easily provide the generating set for the tangent bundle of submanifold as follows:


          Z α  = k u cosh α  ∂  ∂  x 1    +  ∂  ∂  x 2    + k u sinh α  ∂  ∂  y 1    +  ∂  ∂  y 4    ,           Z u  = k sinh α  ∂  ∂  x 1    +  ∂  ∂  x 3    + k cosh α  ∂  ∂  y 1    ,           Z v  =  ∂  ∂  y 3    ,           Z s  = ξ .      








for   s ∈ R  . The basis vector for   φ ( T N )   is given by


         φ  Z α  = k u cosh α  ∂  ∂  y 1    +  ∂  ∂  y 2    + k u sinh α  ∂  ∂  x 1    +  ∂  ∂  x 4    ,          φ  Z u  = k sinh α  ∂  ∂  y 1    +  ∂  ∂  y 3    + k cosh α  ∂  ∂  x 1    ,          φ  Z v  =  ∂  ∂  x 3    ,          φ  Z s  = 0 .      











By simple calculation, we obtain that the distribution    D λ  = s p a n  {  Z u  ,  Z v  }    is slant distribution of with slant function   λ =  1  1 −  k 2      and the distribution    D ⊥  = s p a n  {  Z α  }    is anti-invariant under φ. The induced metric tensor   g N   on   N =  N λ   × f   N ⊥    is given by


       g N  = d  s 2  +  e  − 2 s    (  ( 1 −  k 2  )  d  u 2  − d  v 2  )  +  e  − 2 s    u 2  d  α 2  .      



(81)







The above calculation manifests that the submanifold  N  is a form of  PR -pseudo-slant warped product of type I if   k < 1   and  PR -pseudo-slant warped product of type III if   k > 1   of para-Kenmotsu manifold with warping function   f =  e  − s   u  .





Lemma 2.

For a  PR -pseudo-slant warped product submanifold   N =  N λ   × f   N ⊥    in   K  2 n + 1   , we receive for all    V 1  ,  V 2  ∈ Γ  ( T  N λ  )    and    W 1  ,  W 2  ∈ Γ  ( T  N ⊥  )    that


      g ( h  (  V 1  ,  V 2  )  , n  W 1  ) =      g ( h  (  V 1  ,  W 1  )  , n  V 2  ) ,      



(82)






      g ( h  (  V 1  ,  W 1  )  , n  W 2  ) =      g ( h  (  V 1  ,  W 2  )  , n  W 1  ) .      



(83)









Proof. 

By the consequence of (17) and (28), we have


     g  ( h  (  V 1  ,  V 2  )  , n  W 1  )  = g  (   ∇ ˜   V 1    V 2  , φ  W 1  )  − g  (   ∇ ˜   V 1    V 2  , t  W 1  )  .     











Now, applying (12) and (13) into the above expression, we achieve


     g  ( h  (  V 1  ,  V 2  )  , n  W 1  )  = − g  (   ∇ ˜   V 1   t  V 2  ,  W 1  )  − g  (   ∇ ˜   V 1   n  W 1  ,  V 2  )  − g  (   ∇ ˜   V 1    V 2  , t  W 1  )  .     











By the utilization of (4) and (17), we obtain (82). We proceed with a similar process to prove (83). □





Lemma 3.

Let   N =  N λ   × f   N ⊥    be a  PR -pseudo-slant warped product submanifold in   K  2 n + 1   . Then, we obtain for all    V 1  ,  V 2  ∈ Γ  ( T  N λ  )    and   U , V ∈ Γ ( T  N ⊥  )   that


      g ( h  (  W 1  ,  W 1  )  , n  V 1  ) =     g  ( h  (  V 1  ,  W 1  )  , n  W 1  )  + t  V 1   ( ln f )  g  (  W 1  ,  W 1  )  ,      



(84)






      g ( h  (  W 1  ,  W 1  )  , n t  V 1  ) =     g  ( h  ( t  V 1  ,  W 1  )  , n V )  + λ   V 1   ( ln f )  + η  (  V 1  )    (  W 1  ,  W 1  )  .      



(85)









Proof. 

By the consequence of (17) and (28), we have


     g  ( h  (  W 1  ,  W 1  )  , n  V 1  )  = g  (   ∇ ˜   W 1    W 1  , φ  V 1  )  − g  (   ∇ ˜   W 1    W 1  , t  V 1  )  .     











Now, applying (12) and (13) into the above expression, we achieve


     g  ( h  (  W 1  ,  W 1  )  , n  V 1  )  = − g  (   ∇ ˜   W 1   φ  W 1  ,  V 1  )  − g  (   ∇ ˜   W 1    W 1  , t  V 1  )  .     











By the utilization of (4), (18) and (19), we obtain (84). If we replace   V 1   with   t  V 1    in (84), then we attain (85). □





Theorem 10.

Let  N  be a  PR -pseudo-slant submanifold in   K  2 n + 1   . Then,  N  is a  PR -pseudo-slant warped product submanifold if and only if


       A  n t  V 1     W 1  −  A  φ  W 1    t  V 1  = λ   V 1   ( μ )  + η  (  V 1  )    W 1  ,      



(86)




for every    V 1  ∈ Γ  (  D λ  ⊕  〈 ξ 〉  )   ,    W 1  ∈ Γ  (  D ⊥  )    and some smooth function μ on  N  satisfies    W 2   ( μ )  = 0  , for every    W 2  ∈ Γ  (  D ⊥  )   .





Proof. 

Suppose that  N  is a  PR -pseudo-slant warped product submanifold in   K  2 n + 1   . Then, by the virtue of (19) and (85), we easily obtain (86) by taking   μ = ln f  .



Conversely, suppose  N  is  PR -pseudo-slant submanifold in   K  2 n + 1    that satisfies (86). Then, by the application of Lemma 1 and (86), we obtain   g  (  ∇  V 1    V 2  ,  W 1  )  =   V 1   ( μ )  + η  (  V 1  )      g (  W 1  ,  V 2  ) = 0  . This shows that the distribution    D λ  ⊕  〈 ξ 〉    is totally geodesic and integrable. Now, let us denote   h ⊥   as the second fundamental form of   D ⊥  . Then, by the use of (17), we have   g  (  h ⊥   (  W 1  ,  W 2  )  ,  V 1  )  = g  (   ∇ ˜   W 1    W 2  ,  V 1  )   . In view of (10), the above expression reduces into the following form:


     g  (  h ⊥   (  W 1  ,  W 2  )  ,  V 1  )  = − g  ( φ   ∇ ˜   W 1    W 2  , φ  V 1  )  + η  (  V 1  )  g  (   ∇ ˜   W 1    W 2  , ξ )  .     











By the consequence of (13), (14), and (28), the above expression reduces into the following form:


     g (  h ⊥   (  W 1  ,  W 2  )  ,  V 1  ) =     − g  (   ∇ ˜   W 1   φ  W 2  , φ  V 1  )  + g  (  (   ∇ ˜   W 1   φ )   W 2  , φ  V 1  )  + η  (  V 1  )  g  (  W 1  ,  W 2  )         = − g  (   ∇ ˜   W 1   φ  W 2  , φ  V 1  )  + η  (  V 1  )  g  (  W 1  ,  W 2  )  .     











Now, using (17)–(19) and (27) in the above relation, we have


     g (  h ⊥   (  W 1  ,  W 2  )  ,  V 1  ) =     g  ( h  (  W 1  , t  V 1  )  , φ  W 2  )  − g  (  W 2  ,   ∇ ˜   W 1    t   ′   n  V 1  )      










     − g  (  W 2  ,   ∇ ˜   W 1    n   ′   n  V 1  )  + η  (  V 1  )  g  (  W 1  ,  W 2  )  .     



(87)







In view of (86), (87), and Lemma 8, we have


     g (  h ⊥   (  W 1  ,  W 2  )  ,  V 1  ) =      1 λ   g  ( h  (  W 1  , t  V 1  )  , φ  W 2  )  − g  ( h  (  W 1  ,  W 2  )  , n t  V 1  )       










     + η  (  V 1  )  g  (  W 1  ,  W 2  )  = −  V 1   ( μ )  g  (  W 1  ,  W 2  )  .     



(88)







By definition of gradient and (88), we have


      h ⊥   (  W 1  ,  W 2  )  = − ∇  ( μ )  g  (  W 1  ,  W 2  )  .     



(89)







The relation (89) shows that the distribution   D ⊥   is totally umbilical with mean curvature    H ⊥  = − ∇  ( μ )   , which is parallel with respect to   ∇ ⊥  . By Hiepko result and the above discussion, we conclude that the   N =  N λ   × f   N ⊥    is a  PR -pseudo-slant warped product submanifold of   K  2 n + 1   . This completes the proof. □





Theorem 11.

Let  N  be a  PR -pseudo-slant submanifold in   K  2 n + 1   . Then,  N  is a mixed totally geodesic  PR -pseudo-slant warped product submanifold if and only if


       A  φ  W 1     V 1  = 0 ,  a n d   A  n t  V 1     W 1  = − λ   V 1   ( μ )  + η  (  V 1  )    W 1  ,      



(90)




for every    V 1  ∈ Γ  (  D λ  ⊕  〈 ξ 〉  )   ,    W 1  ∈ Γ  (  D ⊥  )    and some smooth function μ on  N  satisfies    W 2   ( μ )  = o  , for every    W 2  ∈ Γ  (  D ⊥  )   .





Proof. 

Suppose that  N  is a mixed totally geodesic  PR -pseudo-slant warped product submanifold in   K  2 n + 1   , then   h (  V 1  ,  W 1  ) = 0  , for every    V 1  ∈ Γ  ( T  N λ  )    and    W 1  ∈ Γ  ( T  N ⊥  )   . Therefore, by the virtue of (19) and (82), we achieve (90).



Conversely, suppose  N  is a  PR -pseudo-slant submanifold in   K  2 n + 1    that satisfies (90). From Lemma 1 and (90), we have


     g  (  ∇  V 1    V 2  ,  W 1  )  = −   V 1   ( μ )  + η  ( X )   g  (  W 1  ,  V 2  )  = 0 .     











By this expression, we easily see that the leaves of    D λ  ⊕  〈 ξ 〉    are totally geodesic and integrable. Let us denote   h ⊥   as the second fundamental form of   D ⊥  . Then, by the use of (17), we have   g  (  h ⊥   (  W 1  ,  W 2  )  ,  V 1  )  = g  (   ∇ ˜   W 1    W 2  ,  V 1  )   . Now, utilizing (10), (13), (14), and (28) in the above expression, we concede that


     g  (  h ⊥   (  W 1  ,  W 2  )  ,  V 1  )  = − g  (   ∇ ˜   W 1   φ  W 2  , φ  V 1  )  + η  (  V 1  )  g  (  W 1  ,  W 2  )  .     











By using (17)–(19), (27), and the first part part of (90) into the above relation, we receive that


     g (  h ⊥   (  W 1  ,  W 2  )  ,  V 1  ) =     − g  (  W 2  ,   ∇ ˜   W 1    t   ′   n  V 1  )  − g  (  W 2  ,   ∇ ˜   W 1    n   ′   n  V 1  )  + η  (  V 1  )  g  (  W 1  ,  W 2  )  .     



(91)







In view of Lemma 8, (90) and (91), we have


     g  (  h ⊥   (  W 1  ,  W 2  )  ,  V 1  )  =  V 1   ( μ )  g  (  W 1  ,  W 2  )  .     



(92)







By definition of gradient and (92), we have


      h ⊥   (  W 1  ,  W 2  )  = ∇  ( μ )  g  (  W 1  ,  W 2  )  .     



(93)







The relation (93) shows that the distribution   D ⊥   is totally umbilical with mean curvature    H ⊥  = ∇  ( μ )    which is parallel with respect to   ∇ ⊥  . By Hiepko result and the above discussion, we conclude that the   N =  N λ   × f   N ⊥    is a mixed totally geodesic  PR -pseudo-slant warped product submanifold of   K  2 n + 1   . □





Theorem 12.

Let   N =  N λ   × f   N ⊥    be a  PR -pseudo-slant warped product submanifold in   K  2 n + 1   . Then,  N  is locally a  PR -product if and only if


       A  n t  V 1     W 1  = λ η  (  V 1  )   W 1  ,      



(94)




for every    V 1  ∈ Γ  ( T  N λ  )    and    W 1  ∈ Γ  ( T  N ⊥  )   .





Proof. 

By the application of Equations (10), (17), and (28), we have   g  (  ∇  W 1    V 1  ,  W 2  )  = − g  (   ∇ ˜   W 1   φ  V 1  , φ  W 2  )  + g  (  (   ∇ ˜   W 1   φ )   V 1  , φ  W 2  )   , for every    V 1  ∈ Γ  ( T  N λ  )    and    W 1  ,  W 2  ∈ Γ  ( T  N ⊥  )   . Now, using (10) and (27), we concede that


     g  (  ∇  W 1    V 1  ,  W 2  )  = − g  (   ∇ ˜   W 1   t  V 1  , φ  W 2  )  − η  (  V 1  )  g  (  W 1  ,  W 2  )  − g  (   ∇ ˜   W 1   n  V 1  , φ  W 2  )  .     











By the consequence of (12), (13), (14), (24), and (28), the above expression relation reduces into the following form:


     g  (  ∇  W 1    V 1  ,  W 2  )  = g  (   ∇ ˜   W 1    t 2   V 1  ,  W 2  )  + g  (   ∇ ˜   W 1   n t  V 1  ,  W 2  )        − η  (  V 1  )  g  (  W 1  ,  W 2  )  − g  (  ∇  W 1  ⊥  n  V 1  , φ  W 2  )  .     











In light of (14), (17), (4), and Lemma 3, the above expression reduces into the following form:


      ( 1 − λ )    V 1   ( ln f )  − η  (  V 1  )   g  (  W 1  ,  W 2  )  = g  ( h  (  W 1  ,  W 2  )  , n t  V 1  )  − g  (  ∇  W 1  ⊥  n  V 1  , φ  W 2  )  .     



(95)







Interchanging   W 1   and   W 2   into (95), we have


      ( 1 − λ )    V 1   ( ln f )  − η  (  V 1  )   g  (  W 1  ,  W 2  )  = g  ( h  (  W 1  ,  W 2  )  , n t  V 1  )  − g  (  ∇  W 2  ⊥  n  V 1  , φ  W 1  )  .     



(96)







In view of (95) and (96), we have


     g  (  ∇  W 2  ⊥  n  V 1  , φ  W 1  )  = g  (  ∇  W 1  ⊥  n  V 1  , φ  W 2  )  .     



(97)







On the other hand, by use of (13), (17), and (28), we observe that


     g  (  ∇  W 1  ⊥  n  V 1  , φ  W 2  )  = g  ( φ   ∇ ˜   W 1    V 1  , φ  W 2  )  − η  (  V 1  )  g  ( φ  W 1  , φ  W 2  )        − g (   ∇ ˜   W 1   t  V 1  , φ  W 2  ) .     











In light of (4) and (10), the above expression reduces into the following form:


     g  (  ∇  W 1  ⊥  n  V 1  , φ  W 2  )  = −  V 1   ( ln f )  g  (  W 1  ,  W 2  )  + η  (  V 1  )  g  (  W 1  ,  W 2  )  − g  (   ∇ ˜   W 1   t  V 1  , φ  W 2  )  .     



(98)







Again, interchanging   W 1   and   W 2   into (98), we have


     g  (  ∇  W 2  ⊥  n  V 1  , φ  W 1  )  = −  V 1   ( ln f )  g  (  W 1  ,  W 2  )  + η  (  V 1  )  g  (  W 1  ,  W 2  )  − g  (   ∇ ˜   W 2   t  V 1  , φ  W 1  )  .     



(99)







By the virtue of (98) and (99), we conclude that (97) holds if and only if


     g  (   ∇ ˜   W 2   t  V 1  , φ  W 1  )  = 0 = − g  (   ∇ ˜   W 1   t  V 1  , φ  W 2  )  .     



(100)







By the utilization of (17), (24), (28), (100), and Lemma 3, we obtain


     λ   V 1   ( ln f )  + η  (  V 1  )   ) g   (  W 1  ,  W 2  )   − g  ( h  (  W 1  ,  W 2  )  , n t  V 1  )  = 0 .     



(101)







By the above relation, we can observe that f is constant if and only if the relation (94) holds. This completes the proof. □





Lemma 4.

Let   N =  N λ   × f   N ⊥    be a  PR -pseudo-slant warped product submanifold in   K  2 n + 1   . Then, we obtain for all   U ∈ Γ ( T N )  ,    V 1  ∈ Γ  ( T  N λ  )   , and    W 1  ∈ Γ  ( T  N ⊥  )    that


       (  ∇ U  t )   W 1  =     − g  (  W 1  , Q U )  t ∇  ( ln f )  ,      



(102)






       (  ∇ U  t )   V 1  =     η  ( U )   A  n  V 1    ξ + η  (  V 1  )  t P U + g  ( P U , t  V 1  )  ξ + t  V 1   ( ln f )  Q U .      



(103)






       (  ∇ U  t )  t  V 1  =     η  ( U )   A  n t  V 1    ξ + λ η  (  V 1  )  P U − λ η  (  V 1  )  g  ( P U ,  V 1  )  ξ        + λ (  V 1   ( ln f )  + η  (  V 1  )  ) Q U .      



(104)









Proof. 

By the use of (51), we have    (  ∇ U  t )   W 1  =  (  ∇  P U   t )   W 1  +  (  ∇  Q U   t )   W 1  + η  ( U )   (  ∇ ξ  t )   W 1   . By the virtue of (4) and Definition 3, we have    (  ∇  P U   t )   W 1  =  (  ∇ ξ  t )   W 1  = 0  . In view of (29) and (5), we observe that    (  ∇  Q U   t )   W 1  = − g  (  W 1  , Q U )  t ∇  ( ln f )   . By these observations, we easily concede the relation (102). By reuse of (51), we have    (  ∇ U  t )   V 1  =  (  ∇  P U   t )   V 1  +  (  ∇  Q U   t )   V 1  + η  ( U )   (  ∇ ξ  t )   V 1   . Furthermore, by the virtue of (31), we attain    (  ∇  P U   t )   V 1  =  A  n  V 1    P U +  t   ′   h  ( P U ,  V 1  )  + η  (  V 1  )  t P U − g  ( t P U ,  V 1  )  ξ  . Since   N λ   is totally geodesic, the above expression reduces into the following form:


      (  ∇  P U   t )   V 1  = η  (  V 1  )  t P U − g  ( t P U ,  V 1  )  ξ .     



(105)







By the utilization of (4) and (51), we have


      (  ∇  Q U   t )   V 1  = t  V 1   ( ln f )  Q U .     



(106)







Similarly, we find


      (  ∇ ξ  t )   V 1  =  A  n  V 1    ξ .     



(107)







By the application of (105)–(107), we achieve (103). If we replace   V 1   with   t  V 1    in (), we easily achieve (104). □





Theorem 13.

Let  N  be a  PR -pseudo-slant submanifold in   K  2 n + 1   . Then,  N  is a  PR -pseudo-slant warped product submanifold if and only if the endomorphism t satisfies


      g  (  (  ∇ U  t )  V ,  V 1  )  = t  V 1   ( μ )  g  ( Q U , Q V )  + η  (  V 1  )  g  ( P U , t P V )  ,      



(108)




for every    V 1  ∈ Γ  (  D λ  ⊕  〈 ξ 〉  )   ,   U , V ∈ Γ ( T N )  , and some smooth function μ on  N  satisfies    W 2   ( μ )  = 0  , for every    W 2  ∈ Γ  (  D ⊥  )   .





Proof. 

Suppose that M is a  PR -pseudo-slant warped product submanifold in   K  2 n + 1   , then by (51), we obtain


      (  ∇ U  t )  V =  (  ∇ U  t )  Q V +  (  ∇ U  t )  P V + η  ( V )   (  ∇ U  t )  ξ .     



(109)







By the utilization of (14), (17), (102), and (103), we achieve that


      (  ∇ U  t )  V = − η  ( V )  t U − g  ( Q U , Q V )  t ∇  ( ln f )  + η  ( U )   A  n P V   ξ       + η ( P V ) t P U + g ( P U , t P V ) ξ + t P V ( ln f ) Q U .     



(110)







By taking the inner product with   V 1   into (111), then using (39) and definition of gradient, we achieve


     g  (  (  ∇ U  t )  V ,  V 1  )  = t  V 1   ( ln f )  g  ( Q U , Q V )  + η  (  V 1  )  g  ( P U , t P V )  ,     



(111)







By taking   μ = ln f   into (111) and using the fact that  N  is a warped product, we accomplished (108).



Conversely, assume that  N  is a  PR -pseudo-slant submanifold in   K  2 n + 1    satisfying (108). Now, replacing U with   V 2   and V with   W 1   in (108), we have   g (  (  ∇  V 2   t )   W 1  ,  V 1  ) = 0  ,    V 1  ∈ Γ  (  D λ  ⊕  〈 ξ 〉  )    and    W 1  ∈ Γ  (  D ⊥  )   . In view of (26) and (29), we have   g (  h λ   ( t  V 1  ,  V 2  )  ,  W 1  ) = 0  . This shows that    D λ  ⊕  〈 ξ 〉    is integrable and its leaves are totally geodesic in  N . Furthermore, replacing U with   W 1   and V with   W 2   in (108), we have   g  (  (  ∇  W 1   t )   W 2  ,  V 1  )  = t  V 1   ( μ )  g  (  W 1  ,  W 2  )  + η  (  V 1  )  g  (  W 1  , t  V 1  )   , for every    W 1  ,  W 2  ∈ Γ  (  D ⊥  )   . By (26) and orthogonality relation, we observe that


     g (  (  h ⊥   (  W 1  ,  W 2  )  , t  V 1  )  = g  ( t  V 1  , ∇  ( ln f )  )  g  (  W 1  ,  W 2  )  .     



(112)







By the relation (112), we observe that the distribution   D ⊥   is totally umbilical with mean curvature    H ⊥  = ∇  ( μ )   . By the application of Hiepko result [41], we can conclude that M is a  PR -pseudo-slant warped product submanifold in   K  2 n + 1   . This completes the proof. □
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