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Abstract: The current study examines the propagation of surface waves in an asymmetric rotating
doubly coated nonhomogeneous half space. The coating layers are assumed to be made of differ-
ent homogeneous isotropic materials, while the overlaying nonhomogeneous half space layer is
considered to be of exponentially varying material properties. The consequential exact vibrational
displacements and dispersion relation are determined analytically, in addition to the approximate
validation of the dispersion relation via the application of an asymptotic procedure within the long
wave limit. Two cases of unloaded and loaded end surface scenarios are analyzed by examining the
posed fundamental modes. More precisely, an elastic Winkler foundation was considered in the case
of a mechanically loaded end surface condition and was found to proliferate the transition between
having a fundamental mode over the frequency axis to the wave number axis as the angular velocity
increased. Moreover, the rotational effect was found to have a direct impact on the surface wave
propagation with a long wave and low frequency. Aside from that, an increase in the nonhomogeneity
parameter resulted in propagation with a relatively long frequency.

Keywords: surface waves; multiple coating; layered media; dispersion relation; anti-plane dynamic

1. Introduction

The propagation of surface waves in various structural configurations has been a topic
of much concern in different areas of real-life applications, such as geology, aerospace,
seismology, mechanical and civil engineering, and non-destructive analysis, among oth-
ers [1–5]. Thus, with recent technological advancements, considerable attention has been
invested by many scientists in the examination and analysis of the propagation of waves
in multilayered elastic structures [6–9]. One could see different studies on the propaga-
tion of surface waves, which are mainly governed by Rayleigh waves, Stoneley waves,
and Love waves in diverse elastic media (see [10–12] and the references therein). The
mechanic of multilayered and coated media has, therefore, been progressively gaining
ground in recent times, with the emergence of different layered media and composites, in-
cluding, for example, metamaterials, nanomaterials, and high-contrast materials to mention
a few [13–15]. In particular, there exists an extensive study on the propagation of surface
waves on sandwich structures comprising, for instance, the symmetric and asymmetric
three- and five-layered laminates [16–20]. In these studies, the asymptotic analysis method
was basically considered for the analysis of the resulting dispersion relations among the
presence of material contrasts. Moreover, structural symmetry allows dual analysis of
the involved fields, as well as the resulting dispersion relation. In essence, an asymptotic
approach of study allows an optimized form of propagation within the long-wave low-
frequency range [21]. This form of propagation of waves in elastic media is only achievable
via the asymptotic analysis methodology.

Furthermore, we digress a little to the dynamics of coated structures [22–24]. Coated
structures are equally in higher demand industrially and in day-to-day human life. Accord-
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ingly, the propagation of surface waves in a coated media has attracted much concern in
engineering, with vast applications including improving highway and rail transportation
quality and seismic protection, among others [25–28]. Yet, another area of the relevance of
the coated media is in the construction of biomedical devices, where coatings are utilized
to reduce the effect of mechanical loads on the surface of implants (for instance, see [29,30]).
We must mention here the recent study on the influence of magnetic and gravitational
fields on the propagation of surface waves on a coated viscoelastic half-space in a rotating
reference [31]. We also recall the recent work on the propagation of Rayleigh waves on
a mechanically loaded compressible half space [32]. The effects of surface stresses were
examined, in addition to the consequences of the presence of gravity. More related studies
can be found in the various related literature, including [33] and the references therein.
We also bear in mind certain important references that take into account the significance
of material nonhomogeneity with regard to linearly and exponentially varying material
constants [34,35] sequentially.

However, the current manuscript examines the propagation of surface waves in an
asymmetric rotating doubly coated nonhomogeneous half space via the application of
analytical and asymptotic approximation methods. The two coating layers comprising
upper and lower coatings are considered to be of different homogeneous isotropic materials,
while the overlying nonhomogeneous half space layer is assumed to be of exponentially
varying material constants. Two cases of unloaded and loaded mechanical end surface
scenarios will be analyzed on the face of the upper coating by examining the resultant
dispersion relation through the posed harmonic waves (precisely, the fundamental mode).
Moreover, the effects of the nonhomogeneity parameter, elastic Winkler foundation pa-
rameter, and the rotational effects on the propagation of surface waves in the governing
structure will be analyzed. This paper is organized in the following manner. Section 2 gives
the statement of the problem. Section 3 determines the exact expressions for the respective
vibrational displacements, while Section 4 acquires the exact expressions for the related
dispersion relations. Section 5 presents approximations of the exact dispersion relations,
while Section 6 gives a numerical application and discussion of the results. Finally, Section 7
concludes the findings of the study.

2. Statement of the Problem

Consider the asymmetric doubly coated nonhomogeneous half space shown in Figure 1.
To be precise, two isotropic coating layers are considered, with the upper coating layer
having a constant thickness of h1 and occupying the region 0 ≤ x2 ≤ h1, while the lower
coating layer has a thickness of h2 and lies over the region h1 ≤ x2 ≤ h1 + h2. In addition,
the nonhomogeneous half space layer occupies the semi-infinite interval h1 + h2 ≤ x2 < ∞,
and perfect bounding conditions are assumed on the two interfaces (i.e., at x2 = h1 and
at x2 = h1 + h2). Importantly, the governing equation of motion is considered to be in
the sense of an anti-plane shear propagation [19,20] in favor of its relative simplicity yet
models real-life applications perfectly [36,37].

Equations of Motions in the Coating
The anti-plane shear equations of motion in the coating layers in the presence of

rotation are given as follows [19,20]:

∂τc
23

∂x2
+

∂τc
13

∂x1
= ρc

(
∂2vc

∂t2 −Ω2vc

)
, c = 1, 2, (1)

for

(x1, x2, t) ∈ R1 := {(x1, x2, t) : x1 ∈ (−∞, ∞), x2 ∈ (0, h1) ∪ (h1, h1 + h2), t ∈ (0, T], }

where c = 1 and c = 2 stand for the upper and lower coatings, respectively, Ω is the
angular velocity, ρc denotes the densities in the coatings, vc = vc(x1, x2, t) represents
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the displacements, and τc
m3 for m = 1, 2 are the respective stresses in the coatings, and

defined as
τc

m3 = µc
∂vc

∂xm
, m = 1, 2, c = 1, 2, (2)

where µc for c = 1, 2 are constant Lame’s material constants in the respective upper and
lower coating layers.

Figure 1. Doubly coated nonhomogeneous half space with tangential load Q.

Equation of Motion in the Nonhomogeneous Half Space
In a similar way, the anti-plane shear equation of motion in the nonhomogeneous half

space in the presence of rotation takes the following form:

∂τ3
23

∂x2
+

∂τ3
13

∂x1
= ρ̄3(x2)

(
∂2v3

∂t2 −Ω2v3

)
, (3)

for
(x1, x2, t) ∈ R2 := {(x1, x2, t) : x1 ∈ (−∞, ∞), x2 ∈ (0, ∞), t ∈ (0, T]},

where Ω is the angular velocity, ρ̄3(x2) denotes an x2-dependent density in the nonhomoge-
nous half space, v3 = v3(x1, x2, t) is the displacement, and τ3

m3 for m = 1, 2 are the stresses
given by

τ3
m3 = µ̄3(x2)

∂v3

∂xm
, m = 1, 2. (4)

where µ̄3(x2) is the x2-dependent Lame’s material constant in the nonhomogeneous half
space layer. Additionally, as the layer is nonhomogeneous, the material nonhomogeneity
with regard to the density ρ̄3(x2) and the Lame’s material constant µ̄3(x2) are further
assumed to be of the following exponential forms [35,38–40]:

µ̄3(x2) = µ3 eβx2 , ρ̄3(x2) = ρ3 eβx2 , (5)

where µ3 is a Lame’s material constant and ρ3 is a constant density, while β is the dimen-
sional nonhomogeneity parameter. Moreover, the literature is full of various forms of
material nonhomogeneities, including, for instance, the linear form [34], quadratic form
in [41], and the linear, quadratic, and exponential forms in [42] and in the respective
references therein.

Finally, as the present study seeks to comparatively examine the resulting exact and
approximate vibrational displacements and dispersion relations, we therefore seek to obtain
strong solutions layer-wise. In light of this, it is expected that

{vc(x1, x2, t), vc
x1x1

(., x2, t), vc
x2x2

(x1, ., t), vc
tt(x1, x2, .)} ∈ C(R1), for c = 1, 2,
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and
{v3(x1, x2, t), v3

x1x1
(., x2, t), v3

x2x2
(x1, ., t), v3

tt(x1, x2, .)} ∈ C(R2),

where Rj, for j = 1, 2 are defined below Equations (1) and (3), respectively, and C(Rj)

are the spaces of continuous functions, where C(Rj) ⊂ L2(Rj, ) are the Lebesgue square
integrable functions.

Boundary Condition
On the end surface of the entire structure x2 = 0, we consider two different boundary

conditions:
Case (a): the unloaded end surface (traction-free) condition:

τ1
23(x1, x2, t) = 0, at x2 = 0, (x1, t) ∈ D := {(x1, t) : x1 ∈ (−∞, ∞), t ∈ [0, T]}, (6)

Case (b): the loaded end surface (mechanical loading) condition

τ1
23(x1, x2, t) = −Q, at x2 = 0, (x1, t) ∈ D := {(x1, t) : x1 ∈ (−∞, ∞), t ∈ [0, T]}, (7)

where Q in the last equation is a mechanical load that is considered to be due to an elastic
Winkler foundation, which is expressed as [43]

Q = p v1, (8)

where p is the dimensional stiffness of the elastic Winkler foundation, while v1 is the
vibrational displacement of the upper coating the load is being excited upon.

Interfacial Conditions
We equally prescribe sufficient perfect interfacial conditions between the upper and

lower coating layers x2 = h1 and between the lower coating layer and the nonhomogeneous
half space x2 = h1 + h2, respectively, as follows:

v1(x1, x2, t) = v2(x1, x2, t), at x2 = h1, (x1, t) ∈ D := {(x1, t) : x1 ∈ (−∞, ∞), t ∈ [0, T]},
τ1

23((x1, x2, t) = τ2
23(x1, x2, t), at x2 = h1, (x1, t) ∈ D := {(x1, t) : x1 ∈ (−∞, ∞), t ∈ [0, T]},

(9)

and

v2(x1, x2, t) = v3(x1, x2, t), at x2 = h1 + h2, (x1, t) ∈ D := {(x1, t) : x1 ∈ (−∞, ∞), t ∈ [0, T]},

τ2
23(x1, x2, t) = τ3

23(x1, x2, t), at x2 = h1 + h2, (x1, t) ∈ D := {(x1, t) : x1 ∈ (−∞, ∞), t ∈ [0, T]}.
(10)

3. Exact Vibrational Displacements

This section attempts to determine the respective exact vibration displacements in the
two coating layers v1 and v2, as well as in the nonhomogeneous half space v3. In light of
this, a classical analytical method is adopted to accomplish the set goal.

3.1. Exact Vibrational Displacement in the Coatings

Theorem 1. The harmonic wave solution for Equation (1) is given by


u1(x2) = A1 sinh

[
x2

√
k2 − ω2

s2
1
− Ω2

s2
1

]
+ B1 cosh

[
x2

√
k2 − ω2

s2
1
− Ω2

s2
1

]
, 0 ≤ x2 ≤ h1,

u2(x2) = A2 sinh
[

x2

√
k2 − ω2

s2
2
− Ω2

s2
2

]
+ B2 cosh

[
x2

√
k2 − ω2

s2
2
− Ω2

s2
2

]
, h1 ≤ x2 ≤ h1 + h2,

(11)

where A1, A2, B1, and B2 are constants to be determined from the prescribed boundary and interfacial
conditions.
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Proof. Upon substituting the constitutive equation of the coatings given in Equation (2)
into the equations of motions in Equation (1), the following wave-like equations are thus
obtained:

s2
c

(
∂2vc

∂x2
2
+

∂2vc

∂x2
1

)
=

∂2vc

∂t2 −Ω2vc, c = 1, 2, (12)

where sc for c = 1, 2 are the respective shear speeds in the upper and lower coatings,
respectively, given by

sc =

√
µc

ρc
, c = 1, 2.

What is more, upon deploying the harmonic wave solutions of the following form

vc(x1, x2, t) = uc(x2) exp(i(kx1 −ωt)), c = 1, 2, (13)

where k and ω are the dimensional wavenumber and frequency, respectively, then Equation (12)
reduces to the following ordinary differential models:

d2uc

dx2
2
−
(

k2 − ω2

s2
c
− Ω2

s2
c

)
uc = 0, c = 1, 2. (14)

Finally, Theorem 1 is evident upon solving the above ordinary differential equations
layer-wise.

3.2. Exact Vibrational Displacement in the Nonhomogeneous Half Space

Theorem 2. The bounded harmonic wave solution for Equation (3) is given by

u3(x2) = A3 exp

[
−
(

β

2
+

√
β2

4
+ k2 − ω2

s2
3
− Ω2

s2
3

)
x2

]
. (15)

where A3 is a constant to be obtained from the prescribed boundary and interfacial conditions.

Proof. By substituting the constitutive equation of the nonhomogeneous half space layer
given in Equation (4) into the equation of motion in Equation (3), one obtains the following
equation:

s2
3

(
∂2v3

∂x2
2
+ β

∂v3

∂x2
+

∂2v3

∂x2
1

)
=

∂2v3

∂t2 −Ω2v3, (16)

where s3 is the shear speed in the nonhomogeneous half space given by

s3 =

√
µ3

ρ3
,

while β is the nonhomogeneity parameter. Thus, upon deploying the harmonic wave
solution of the following form

v3(x1, x2, t) = u3(x2) exp(i(kx1 −ωt)), (17)

where k and ω are the dimensional wavenumber and frequency, respectively, then Equation (16)
reduces to the following differential equation:

d2u3

dx2
2
+ β

du3

dx2
−
(

k2 − ω2

s2
3
− Ω2

s2
3

)
u3 = 0. (18)
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Now, since the layer is semi-infinite, the following solution form is assumed in order
to maintain the boundedness of the solution as x2 → ∞:

u3(x2) = z(x2) exp
(
− β

2
x2

)
, (19)

such that Equation (18) becomes

d2z
dx2

2
−
(

β2

4
+ k2 − ω2

s2
3
− Ω2

s2
3

)
z(x2) = 0, (20)

where the later equation has the following solution:

z(x2) = A3 exp

[
−x2

√
β2

4
+ k2 − ω2

s2
3
− Ω2

s2
3

]
+ B3 exp

[
x2

√
β2

4
+ k2 − ω2

s2
3
− Ω2

s2
3

]
, (21)

with A3 and B3 as constants to be obtained later on from the prescribed conditions.
Thus, the solution obtained in the above equation as x2 → ∞ reduces to the following:

z(x2) = A3 exp

[
−x2

√
β2

4
+ k2 − ω2

s2
3
− Ω2

s2
3

]
. (22)

Finally, Theorem 2 is evident from Equations (19) and (22).

4. Exact Dispersion Relation

This section establishes the resulting exact dispersion relations corresponding to both
the unloaded and loaded end surface conditions. In doing so, the upper coating layer is
further assumed to have a similar shear speed to that of the half-space layer. However, the
exponentially varying material constants are only associated with the half space. Therefore,
this assumption of s1 = s3 yields

µ1 = µ3, ρ1 = ρ3. (23)

Hence, this development further results in the following basic dimensionless quantities:

h =
h2

h1
, µ =

µ2

µ1
, ρ =

ρ2

ρ1
, (24)

together with

K = kh1, χ =
ωh1

s1
, Θ =

Ω h1

s1
, α = βh1, (25)

where K is the dimensionless wavenumber, χ is the dimensionless frequency, Θ is the
dimensionless angular velocity in favour of the rotation, and α is the rescaled nonhomo-
geneity parameter.

4.1. Exact Dispersion Relation with the Unloaded End Surface Condition

In this case, we make use of the boundary condition associated with the unloaded end
surface (traction-free) condition given in Equation (6) together with the perfect interfacial
conditions prescribed in Equations (9) and (10) to acquire the resulting dispersion relation.
When substituting the aforementioned conditions into the earlier obtained exact solutions
of all the three layers under consideration, the dimensionless dispersion matrix is obtained
as follows:
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D1 =


1 0 0 0 0

sinh(γ1) cosh(γ1) − sinh(γ2) − cosh(γ2) 0
cosh(γ1)γ1 sinh(γ1)γ1 −µ cosh(γ2)γ2 −µ sinh(γ2)γ2 0

0 0 sinh((h + 1)γ2) cosh((h + 1)γ2) −e−(h+1)γ3

0 0 µ cosh((h + 1)γ2)γ2 µ sinh((h + 1)γ2)γ2 e−(h+1)γ3 γ3

, (26)

where γj for j = 1, 2, 3 appearing in the above equation are dimensionless quantities
given by

γ1 =
√

K2 − χ2 −Θ2, γ2 =

√
K2 − µ

ρ
χ2 − µ

ρ
Θ2, γ3 =

α

2
+

√
α2

4
+ γ2

1. (27)

Theorem 3. The overall exact dispersion relation in the case of the unloaded end surface condition
is given as follows:

γ2
2 µ2 tanh(γ2) + γ2 µ(γ3 + γ1 tanh(γ1h)) + γ1 γ3 tanh(γ2) tanh(γ1h) = 0, (28)

where γj for j = 1, 2, 3 are given in Equation (27).

Proof. The proof follows directly upon setting the resulting determinant of the dispersion
matrix expressed in Equation (26) to zero.

Lemma 1. A very special case of Theorem 3 is when the nonhomogeneity in the half spaces vanishes
(i.e., when α = 0). In this case, γ1 = γ3 and further yields the following dispersion relation:(

γ2
2 µ2 + γ2

1 tanh(γ1h)
)

tanh(γ2) + γ1 γ2 µ(1 + tanh(γ1h)) = 0. (29)

4.2. Exact Dispersion Relation with the Loaded End Surface Condition

Here, the exact dispersion relation with the loaded end surface condition given in
Equation (7) is determined. To be precise, the case of an elastic Winkler foundation given in
Equation (8) is analyzed in this subsection. Moreover, a new dimensionless stiffness of the
elastic Winkler foundation has been discovered to be ζ, defined as

ζ =
p h2

µ1
, (30)

where p is the dimensional stiffness of the elastic Winkler foundation.
Therefore, the resulting dispersion matrix in the presence of loaded end surface

condition is found to be

D2 =


hγ1 ζ 0 0 0

sinh(γ1) cosh(γ1) − sinh(γ2) − cosh(γ2) 0
cosh(γ1)γ1 sinh(γ1)γ1 −µ cosh(γ2)γ2 −µ sinh(γ2)γ2 0

0 0 sinh((h + 1)γ2) cosh((h + 1)γ2) −e−(h+1)γ3

0 0 µ cosh((h + 1)γ2)γ2 µ sinh((h + 1)γ2)γ2 e−(h+1)γ3 γ3

. (31)

Theorem 4. The overall exact dispersion relation in the case of the loaded end surface condition is
given as follows:(

γ2
2µ2 tanh(γ2) + γ2µ(γ3 + γ1 tanh(γ1h)) + γ1γ3 tanh(γ2) tanh(γ1h)

)
−

ζ

γ1h
(γ1(γ2µ + γ3 tanh(γ2)) + γ2µ(γ2µ tanh(γ2) + γ3) tanh(γ1h)) = 0,

(32)

where γj for j = 1, 2, 3 are given in Equation (27).
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Similarly, the proof of Theorem 4 follows as in Theorem 3 via setting the dispersion
relation expressed in Equation (31) to zero.

Lemma 2. Theorem 4 reduces to Theorem 3 upon setting ζ = 0.

Lemma 3. A very special case of Theorem 4 is when the nonhomogeneity in the half spaces vanishes
(i.e., when α = 0). In this case, γ1 = γ3 and further yields the following dispersion relation:

γ2
2µ2 tanh(γ2) + γ2µ(γ1 + γ1 tanh(γ1h)) + γ2

1 tanh(γ2) tanh(γ1h)−
ζ

γ1h
(γ1(γ2µ + γ1 tanh(γ2)) + γ2µ(γ2µ tanh(γ2) + γ1) tanh(γ1h)) = 0.

(33)

Additionally, as the propagation with a long wave and low frequency is attained at
K � 1, and χ� 1, we therefore quote the following statement as a remark in connection
to the obtained respective dispersion relations:

Remark 1. “The transcendental dispersion relation allows polynomial asymptotic expansions at
the long-wave limit K � 1” [15].

Moreover, a similar remark can be drawn upon with regard to the low frequency limit
χ� 1.

5. Approximation

This section establishes approximate dispersion relations corresponding to both the
unloaded and loaded end surface conditions via the application of an asymptotic approxi-
mation procedure. To accomplish this, certain effective boundary conditions will be derived
and thereafter utilized to approximate the governing equations of motions such that they
lead to the optimal approximate dispersion relations.

5.1. Effective Boundary Conditions

To derive the appropriate effective boundary conditions, it is convenient to set the
following boundary conditions at the interfaces such that

v1 = w1 at x2 = h1,

v2 = w2 at x2 = h1 + h2,
(34)

where wc = wc(x1, x2, t), for c = 1, 2 are certain prescribed displacements.

5.1.1. Procedure for the Upper Coating Layer (c = 1)

We reduce the effect of the upper coating layer by means of effective boundary condi-
tions. To begin with, let us specify a small parameter ε in the long wave limit as

ε =
h1 + h2

L
� 1,

(
k ∼ 1

L

)
, (35)

where L is a typical wave length. In addition, we introduce the following scaling:

ξ l =
x1

L
, η1 =

x2 + h2

h1 + h2
, τc =

sc t
L

, (36)

along with

v∗c =
vc

L
, w∗c =

wc

L
, τ

(∗,c)
13 =

τc
13

µc
, τ

(∗,c)
23 =

τc
23

ε µc
, p∗c =

p L
ε µc

, Ω∗c =
Ω L
sc

, (37)
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where c = 1, 2 and all quantities with an asterisk are assumed to have the same asymptotic
order.

Therefore, the equation of motion given in Equation (1) and the constitutive relations
in Equation (2) are rewritten for c = 1 as

∂τ
(∗,1)
23

∂η1
+

∂τ
(∗,1)
13
∂ξ l

=
∂2v∗1
∂τ2

1
−Ω∗

2

1 v∗1 , τ
(∗,1)
13 =

∂v∗1
∂ξ l

, ε2 τ
(∗,1)
23 =

∂v∗1
∂η1

, (38)

where the boundary conditions given in Equations (7) and (34)1 become

τ
(∗,1)
23 = −p∗1 v∗1 at η1 = θ2, and v∗1 = w∗1 at η1 = 1, (39)

with θ2 = h2/(h1 + h2).
Moreover, we expand the involved displacements and stresses via asymptotic series

as follows:  v∗c
τ
(∗,c)
13

τ
(∗,c)
23

 =

 v(0)c

τ
(0,c)
13

τ
(0,c)
23

+ ε . . ., (40)

Then, at the leading order, Equation (38) becomes

∂τ
(0,1)
23

∂η1
+

∂τ
(0,1)
13

∂ξ l

=
∂2v(0)1

∂τ2
1
−Ω∗

2

1 v(0)1 , τ
(0,1)
13 =

∂v(0)1
∂ξ l

,
∂v(0)1
∂η1

= 0, (41)

while the boundary conditions determined in Equation (39) become

τ
(0,1)
23 = −p∗1 v(0)1 at η1 = θ2, and v(0)1 = w∗1 at η1 = 1, (42)

Hence, the solution of the above system is obtained as follows:

v(0)1 = w∗1 , τ
(0,1)
13 =

∂w∗1
∂ξ l

, τ
(0,1)
23 = (η1 − θ2)

(
∂2w∗1
∂τ2

1
−

∂2w∗1
∂ξ2

l

−Ω∗
2

1 w∗1

)
− p∗1 w∗1 . (43)

Moreover, upon returning to the original variables, the effective boundary conditions
at the interface x2 = h1 may be obtained as follows:

τ2
23 = h1

(
ρ1

(
∂2v2

∂t2 −Ω2 v2

)
− µ1

∂2v2

∂x2
1

)
− pv2. (44)

5.1.2. Procedure for the Lower Coating Layer (c = 2)

Now, let us perform a similar treatment for the lower coating layer by first adopting
the following quantity:

η2 =
x2

h1 + h2
, (45)

We adopt this along with the dimensionless quantities defined earlier in Equations (36)
and (37). Moreover, the equations of motion given in Equation (1) and the constitutive
relations given in Equation (2) at c = 2 can be reformed in the new variables as

∂τ
(∗,2)
23

∂η2
+

∂τ
(∗,2)
13
∂ξ l

=
∂2v∗2
∂τ2 −Ω∗

2

2 v∗2 , τ
(∗,2)
13 =

∂v∗2
∂ξ l

, ε2 τ
(∗,2)
23 =

∂v∗2
∂η2

, (46)
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subject to the boundary conditions

τ
(∗,2)
23 = θ1

(
ρ1

ρ2

(
∂2v∗2
∂τ2

2
−Ω∗

2
v∗2

)
− µ1

µ2

∂2v∗2
∂ξ2

l

)
− p∗2 v∗2 at η2 = θ1,

and v∗2 = w∗2 at η2 = 1,

(47)

where θ1 = h1/(h1 + h2).
Therefore, at the leading order O(1), we have

∂τ
(0,2)
23

∂η2
+

∂τ
(0,2)
13

∂ξ l

=
∂2v(0)2

∂τ2
2
−Ω∗

2

2 v(0)2 , τ
(∗,2)
13 =

∂v(0)2
∂ξ l

,
∂v(0)2
∂η2

= 0, (48)

subject to the boundary conditions

τ
(0,2)
23 = θ1

(
ρ1

ρ2

(
∂2v(0)2

∂τ2
2
−Ω∗

2
v(0)2

)
− µ1

µ2

∂2v(0)2
∂ξ2

l

)
− p∗2 v(0)2 at η2 = θ1,

and v(0)2 = w∗2 at η2 = 1.

(49)

Once again, the solution of the above system yields

v(0)2 = w∗2 , τ
(0,2)
13 =

∂w∗2
∂ξ l

, (50)

τ
(0,2)
23 =

(
η2 + θ1

(
ρ1
ρ2
− 1
))(

∂2w∗2
∂τ2

2
−Ω∗

2

2 w∗2

)
−
(

η2 + θ1

(
µ1
µ2
− 1
))

∂2w∗2
∂ξ2

l

− p∗2 w∗2 , (51)

such that upon returning to the original dimensional variables, the stress determined in
Equation (51) at x2 = h1 + h2 becomes

τ3
23 = (h1 ρ1 + h2 ρ2)

(
∂2v3

∂t2 −Ω2 v3

)
− (h1 µ1 + h2 µ2)

∂2v3

∂x2
1
− pv3. (52)

5.2. Approximate Dispersion Relation

Having successfully derived the approximate or rather asymptotic expressions for the
respective stresses in the upper and lower coating layers, we now aim to determine the
approximate dispersion relation with loaded and unloaded end surface conditions in what
follows.

Now, having determined the approximate boundary condition in Equation (52),
an approximate equation of motion in the presence of a loaded end surface condition is
thus constructed as follows

µ3 eβ(h1+h2)
∂v3

∂x2
− (h1 ρ1 + h2 ρ2)

(
∂2v3

∂t2 −Ω2 v3

)
+ (h1 µ1 + h2 µ2)

∂2v3

∂x2
1

= −pv3. (53)

Thus, the main results of the present Section are contained in what follows:

Theorem 5. The approximate dispersion relation in the case of the loaded end surface condition is
given by

γ3 eα(h+1) + K2(1 + hµ)− (1 + hρ)
(

χ2 + Θ2
)
− ζ

h
= 0. (54)

Proof. Without a loss of generality, the present proof follows upon applying Equations (17)
and (15) into Equation (53).
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Lemma 4. The approximate dispersion relation with the unloaded end surface condition follows
from Theorem 5 when ζ = 0 as follows

γ3 eα(h+1) + K2(1 + hµ)− (1 + hρ)
(

χ2 + Θ2
)
= 0. (55)

Thus, we have shown in what follows the comparison between the exact and approxi-
mate dispersion relations with a loaded end surface condition determined in Equations (54)
and (32), respectively, in Figure 2, while the comparison between the exact and approximate
dispersion curves with an unloaded end surface condition determined in Equations (55)
and (28), respectively, is depicted in Figure 3. Importantly, these figures showed perfect
agreement between the exact and approximate fundamental modes in both cases. In ad-
dition, the case of a soft elastic Winkler foundation was considered by setting ζ = 0.01 in
Figure 3, as was asserted by Erbas et al. [43].

Figure 2. Comparison between the exact and asymptotic fundamental modes with an unloaded end
surface condition.

Figure 3. Comparison between the exact and asymptotic fundamental modes with a loaded end
surface condition when ζ = 0.01.
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6. Application and Discussion of Results

More recently, Mandi et al. [38] examined the case of propagating Love waves in
a double-layered structure resting over inhomogeneous semi-infinite media. As an ap-
plication, the double-layered structure was considered to be made of a combination of a
fiber-reinforced medium and a dry sandy medium while perfectly resting over inhomoge-
neous semi-infinite media. However, having made the assumption of alternating layers
with non-dimensionalization for the present obtained dispersion relations and, at the same
time, not forgetting the presence of the material nonhomogeneity in the half space, we
therefore, for the sake of numerical simulation, considered the physical data reported in [38]
by considering an arbitrary material in the upper coating layer, a dry sandy lower coating,
and the same arbitrary material in the half space in the presence of nonhomogeneity α.
These data are tabulated in Table 1.

Table 1. Material constants in the respective regions of the structure [38].

Layer Lame’s Constant
(×1010 Nm−2)

Density (×103 kgm−3) Thickness (m)

Upper coating µ1 = 7.10 ρ1 = 3.32 h1 = 1.00
Lower coating (dry sandy) µ2 = 6.54 ρ2 = 3.40 h2 = 0.50

Nonhomogeneous half space µ3 = 7.10 ρ3 = 3.32 Semi-infinite

Furthermore, we studied the variational effects of the material nonhomogeneity in
cases of unloaded and loaded end surface conditions, while the effect of the elastic Winkler
foundation was examined specifically with regard to the loaded scenario. Thus, Figure 4
portrays the variation of the fundamental mode with respect to the variation of the nonho-
mogeneity parameter α at various fixed angular velocities Θ, while Figures 5 and 6 show
the corresponding plots with regard to the loaded end surface condition and with respect
to the variation of the nonhomogeneity parameter α and the elastic Winkler foundation
parameter ζ, respectively.

Figure 4. Response of the fundamental mode to the variation of the nonhomogeneity parameter α at
a different fixed angular velocity Θ (unloaded end surface case).
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Before discussing these figures, it would be relevant to mention here that the presence
of the nonhomogeneity parameter α and the rotation presided over by the angular velocity
Θ were what prevented the fundamental mode to start propagating from zero (0, 0). Clear
evidence of this can be seen in Figures 2a and 3a, where these parameters were taken to be
negligible. Hence, Figure 4 portrays the variation of the fundamental mode with respect
to the variation of the nonhomogeneity parameter α at various fixed angular velocities
Θ. Evidently, in the absence of the angular velocity Θ = 0, as shown in Figure 4a, an
increase in the nonhomogeneity parameter α resulted in propagation with a relatively
long frequency. This was due to the fact that the fundamental mode was continuously
moving toward χ = 1, and the fact that low-frequency propagation always satisfies the
condition χ� 1 [16–19]. Moreover, the same trend was applied to Figure 4b, except that
the propagation at α = 0.1 had a wider validity range of low frequencies. Additionally, the
case of the higher value of the angular velocity, as in Figure 4c, was a completely different
one. In fact, the fundamental mode curves were over the wavenumber axis K, with the
highest nonhomogeneity parameter value α = 0.9 having a wider long-wave validity range.

Moreover, the same interpretation of Figure 4 applies to Figure 5 for the case of the
loaded end surface condition. However, one could observe the effect of the presence of
a soft elastic Winkler foundation when ζ = 0.01. To be precise, the presence of an elastic
foundation proliferated the transition between having a fundamental mode over the χ-axis
to the K-axis as the angular velocity increased.

This interpretation would equally be extended to the case of Figure 6 where, in this
case, the variational effect of an elastic Winkler foundation parameter ζ is portrayed.
According to Figure 6a, when Θ = 0, one can observe that the fundamental mode had the
widest validity range over a long-wave interval when ζ = 0.01, and gradually shrank as ζ
increased. Additionally, this was due to the fact that we considered a soft foundation (i.e.,
ζ � 1) [43]. Moreover, the same interpretation was applied to Figure 6b,c, except that an
increase in the angular velocity Θ reduced the vicinity of the long-wave range.

Figure 5. Response of the fundamental mode to the variation of the nonhomogeneity parameter α at
a different fixed angular velocity Θ when ζ = 0.01 (loaded end surface case).
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Figure 6. Response of the fundamental mode to the variation of soft elastic Winkler foundation
parameter ζ at a different fixed angular velocity Θ when α = 0.1 (loaded end surface case).

7. Conclusions

In conclusion, the current manuscript examined the propagation of surface waves in
a rotating, doubly coated nonhomogeneous half space. The coating layers were assumed
to be made of different homogeneous isotropic materials, while that of the half space was
of a nonhomogeneous material. Perfect bonding conditions were prescribed between the
layers, in addition to the prescription of two end surface conditions on the outer layer.
An analytical approach was employed for the determination of the consequential exact
vibrational displacements and dispersion relation, in addition to the deployment of an
asymptotic approximation method for the validation of the obtained analytical results
within the long-wave limit. Two cases of mechanically unloaded and loaded end surface
scenarios were analyzed through their respective fundamental modes. Moreover, an elastic
Winkler foundation was considered in the case of the mechanically loaded end surface
condition. More precisely, the presence of an elastic foundation was found to proliferate
the transition between having a fundamental mode over the dimensionless frequency axis
to the axis of the dimensionless wavenumber as the angular velocity increased. In addition,
smaller values for the angular velocity were found to ensure a propagation with a low
frequency, while long-wave propagation was ensured through higher values for the angular
velocity. Aside from that, an increase in the nonhomogeneity parameter α was discovered
to result in propagation with a relatively long frequency. This was due to the fact that the
fundamental mode was continuously moving toward χ = 1. Finally, the present study
can be extended to the case of multi-coat half spaces in the presence of, for example, an
external influence.
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